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NECESSARY AND SUFFICIENT CONDITIONS

FOR THE CONVERGENCE OF POSITIVE SERIES

VYACHESLAV M. ABRAMOV

Dedicated to my parents Menashe (1922–1992) and Zinaida (1931–2020)

Abstract. We provide new necessary and sufficient conditions for the convergence of positive
series developing Bertran–De Morgan and Cauchy type tests given in [M. Martin, Bull. Amer.
Math. Soc. 47(1941), 452–457] and [L. Bourchtein et al, Int. J. Math. Anal. 6(2012), 1847–
1869]. The obtained result enables us to extend the known conditions for recurrence and tran-
sience of birth-and-death processes given in [V. M. Abramov, Amer. Math. Monthly 127(2020)
444–448].

1. Introduction

Let
∞

∑
n=1

an (1)

be a series with positive terms, for which an+1 � an , n � 1.
The ratio tests of convergence or divergence of (1) are widely known and go back

to the works of d’Alembert and Cauchy as well as many other researchers in the eigh-
teenth and nineteenth centuries such as Raabe, Gauss, Bertrand, De Morgan and Kum-
mer. They are classified into the De Morgan hierarchy [3, 7]. The extended Bertrand–
De Morgan test is the last test in this hierarchy. It was originally established in [10]. An
elementary proof of this test, its connection with Kummer’s test, as well as its applica-
tion to birth-and-death processes is given in [1]. Further generalization of the extended
Bertrand–De Morgan test based on the connection with the class of regularly varying
functions is given in [2]. Similarly defined hierarchy of Cauchy’s tests is obtained in
[4].

In the present note, we establish necessary and sufficient conditions for conver-
gence of positive series that generalize the original version of the extended Bertrand–
De Morgan test [1, 10] and Bertrand–De Morgan–Cauchy test [4]. The first theorem on
a necessary and sufficient condition for convergence of series was obtained by Cauchy
[8], widely known as Cauchy’s convergence test. Later, at the beginning of the twenti-
eth century, necessary and sufficient conditions for convergence of positive series were
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obtained by Brink [5, 6]. The statements of the aforementioned theorems [5, 6] involve
the convergence of double or triple improper integrals having the complex expressions.
Furthermore, the test in [6, page 47] is based on the double ratios rn = an+1/an and
Rn = rn+1/rn . This made the areas of their applications very limited by problems hav-
ing technical nature. The basic theorem of Brink [5] was developed in [11]. Another
theorem of Brink [6] is mentioned in [10] as starting point for the derivation of the
main result. A theorem of Tong [12] that develops Kummer’s test also provides neces-
sary and sufficient conditions for convergence or divergence of positive series. How-
ever, its practical applications to real world problems is hard, since it requires a special
construction that involves an auxiliary sequence.

The idea of our approach is to use the extended Bertrand–De Morgan–Cauchy test
in the form of an explicit inequality with the following derivation of the expression
for an for large n . Then the test can be naturally adapted to the problems from applied
areas. Specifically, the result obtained in this note improves the conditions of recurrence
or transience for birth-and-death processes given in [1, Theorem 3], thus extending the
class of birth-and-death processes for which that condition can be established.

Below we recall the extended Bertrand–De Morgan test in the formulation given
in [1]. Let ln(k) z denote the k th iterate of natural logarithm, i.e. ln(1) z = lnz , and
ln(k) z = ln(ln(k−1) z) , k � 2.

THEOREM 1. Suppose that for all large n and some K � 1

an

an+1
= 1+

1
n

+
1
n

K−1

∑
i=1

1

∏i
k=1 ln(k) n

+
sn

n∏K
k=1 ln(k) n

. (2)

(The empty sum is set to 0 .) Then (1) converges if liminfn→∞ sn > 1 , and it diverges if
limsupn→∞ sn < 1 .

The statement of Theorem 1 is a ratio test for the fraction an/an+1 when n is large.
For the purpose of the present paper an application of this theorem is insufficient (see
explanation given later in Remark 1), and we need a stronger version of the theorem,
in which the fraction on the left-hand side of (2) is replaced with −n

√
an , i.e. the ratio

test is replaced with a variant of Cauchy’s root test. This stronger version presents
Bertrand–De Morgan–Cauchy test formulated below.

THEOREM 2. Suppose that for all large n and some K � 1

−n
√

an = 1+
1
n

+
1
n

K−1

∑
i=1

1

∏i
k=1 ln(k) n

+
sn

n∏K
k=1 ln(k) n

.

Then (1) converges if liminfn→∞ sn > 1 , and it diverges if limsupn→∞ sn < 1 .

A lengthy proof of this theorem in another formulation can be found in [4]. For
the purpose of the present paper we provide a simple alternative proof given below.
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Theorem 2 follows, since −n
√

an = e−
1
n lnan leads to the equation

e−
1
n lnan = 1+

1
n

+
1
n

K−1

∑
i=1

1

∏i
k=1 ln(k) n

+
sn

n∏K
k=1 ln(k) n

, K � 1. (3)

With some algebra (see Appendix A) for large n we arrive at

an =

⎧⎨
⎩

Cn

(n∏K−2
k=1 ln(k) n) lnsn

(K−1) n
, K � 2,

Cn
nsn , K = 1,

(4)

where the empty product is set to 1, and Cn are the constants satisfying the property
limn→∞Cn = e−1 . Then, convergence or divergence of (1) follows from the integral test
for convergence or divergence of series applied to (4).

Theorem 2 is then used to prove the main result of this paper formulated in the
next section.

The cases liminfn→∞ sn = 1 or limsupn→∞ sn = 1 remain undefined for both The-
orems 1 and 2. The main result of this paper covers all possible limit cases including
these undefined ones.

The rest of the note is structured into two sections. In Section 2, the main result
of this note is proved. In Section 3, an application of the main result to birth-and-death
processes is discussed.

2. Necessary and sufficient conditions for convergence of (1)

The theorem given below provides necessary and sufficient conditions for the con-
vergence of positive series.

Let N ⊂ N , and let N(n) denote the number of integers in N not greater than
n .

DEFINITION 1. We say that the set N contains almost all elements of N , if
limn→∞ N(n)/n = 1.

DEFINITION 2. We say that the set N contains strongly almost all elements of
N , if N(n) = n+O(1) as n → ∞ .

Elementary examples of these definitions are N(n) = n−�lnn� , where �a� de-
notes the integer part of a , and N(n) = n− cn , where cn < n is a bounded sequence
of integers. In the first case, N contains almost all elements. In the second one, N
contains strongly almost all elements.

THEOREM 3. Suppose that there exist constants r and α > 0 such that for all
values n we have an < rn−α . Then (1) converges if there exist integer K � 1 and real
c > 1 such that for strongly almost all n

−n
√

an � 1+
1
n

+
1
n

K−1

∑
i=1

1

∏i
k=1 ln(k) n

+
c

n∏K
k=1 ln(k) n

, (5)
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and only if (5) is satisfied for almost all n .

Proof. Assume that N(n)/n = 1+O(1/n) , and N\N is the subset of indices for
which (5) is not satisfied. Write

∞

∑
n=1

an = ∑
n∈N

an︸ ︷︷ ︸
=I1

+ ∑
n∈N\N

an︸ ︷︷ ︸
=I2

. (6)

Since N(n)/n = 1 + O(1/n) , then the fraction of the terms satisfying the inequality
an < rn−α and not satisfying (5) is O(1/n) as n→ ∞ , and hence I2 < R∑n∈N n−1−α <
∞ for some constant R . Then I1 contains the only terms, for which (5) is satisfied.
Combining these terms, we have the presentation

I1 =
n1

∑
i1= j1

ai1 +
n2

∑
i2=n1+ j2

ai2 + . . . , (7)

where the series of sums is given over the indices belonging to N . Since N(n) =
n+O(1) , then, as m → ∞ , the difference between the indices nm + jm+1 and nm , that
are the lower index of the m+1st sum and the upper index of the m th sum, respectively,
must be bounded. That is, jm = O(1) . Hence taking into account the expression on the
right-hand side of (5) we obtain the estimate

−nm
√

anm
= −nm− jm+1

√
anm

+O

(
1
n2

m

)
. (8)

Specifically, the presence of the remainder term O(n−2
m ) in (8) is explained by the fact

that [
1+

1
nm

+o

(
1
nm

)]
−
[
1+

1
nm + jm+1

+o

(
1

nm + jm+1

)]
= O

(
1
n2

m

)
.

Then, renumbering the terms in I1 and taking into account estimate (8), we arrive
at the new series ∑∞

n=1 a′n that approximates I1 .
According to (5) there exist c > 1 and integers K and n0 such that for all n > n0

−n
√

a′n � 1+
1
n

+
1
n

K−1

∑
i=1

1

∏i
k=1 ln(k) n

+
c

n∏K
k=1 ln(k) n

,

and the sufficient condition follows by application of Theorem 2.
For the necessary condition, we are to prove that if no such K that (5) is satisfied

with c > 1 for almost all n , then series (1) diverges. Suppose that (5) is satisfied with
c > 1 and K � 1 only for some N ⊂ N such that limn→∞ N(n)/n = α < 1. Then,
∑∞

n=1 an = I1 + I2 > I2. Write

I2 =
n1

∑
i1= j1

ai1 +
n2

∑
i2=n1+ j2

ai2 + . . . ,
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where the series of sums is given over the indices belonging to N \N . Under the
assumption limn→∞ N(n)/n = α < 1, the fraction of the terms in the series that are not
satisfied (5) is proportional to 1−α > 0. Let Nm = nm−nm−1− jm +1 be the number
of consecutive terms in the sum ∑nm

im=nm−1+ jm
aim . We have the following cases:

(a) the sequences Nm and jm are bounded;

(b) limsupm→∞ Nm = ∞ .

To demonstrate these cases, we provide the following example. Consider a series,
the terms of which for all large n satisfy the relation

−n
√

an = 1+
1
n

+
1
n

K−1

∑
i=1

1

∏i
k=1 ln(k) n

+
1+ εn

n∏K
k=1 ln(k) n

, K � 1, (9)

where εn is a vanishing sequence. Apparently, (9) can be rewritten in the form

−n
√

an = 1+
1
n

+
1
n

K

∑
i=1

1

∏i
k=1 ln(k) n

+
εn ln(K+1) n

n∏K+1
k=1 ln(k) n

, K � 1.

Hence, according to Theorem 2, (1) converges if εn > C
(
ln(K+1) n

)−1
, C > 1, and it

diverges if εn �
(
ln(K+1) n

)−1
. (The last statement does not follow directly from the

formulation of Theorem 2, but easily follows from the derivations provided in Appendix
A.)

If εn =
(
ln(K+1) n

)−1 +ε ′n , where ε ′n is another vanishing sequence, then the prob-
lem reduces to that considered above involving the additional term in presentation (9).
That is,

−n
√

an = 1+
1
n

+
1
n

K

∑
i=1

1

∏i
k=1 ln(k) n

+
1+ ε ′n

n∏K+1
k=1 ln(k) n

.

Due to the recursion, there can be any number of additional terms.
Now, to illustrate case (a), one can imagine that εn for n � n0 , where n0 is some

odd large number, satisfies the following property: εn > C
(
ln(K+1) n

)−1
, C > 1, if n

is even, and εn �
(
ln(K+1) n

)−1
if n is odd. Then the terms of the series, for which

εn > C
(
ln(K+1) n

)−1 , C > 1, belong to I1 , while the remaining terms, for which εn �(
ln(K+1) n

)−1
, belong to I2 . That is,

I1 =
∞

∑
k=(n0+1)/2

a2k, I2 =
∞

∑
k=(n0+1)/2

a2k−1.

The terms of I2 can be further renumbered as a′n0
, a′n0+1 ,. . . such that the terms of a

new series ∑∞
j=n0

a′j satisfy the inequality

− j
√

a′j � 1+
1
j
+

1
j

K

∑
i=1

1

∏i
k=1 ln(k) j

. (10)
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Table 1: Correspondence between the values of n and inequalities for εn (n � n0 , C > 1 )

Value of n Corresponding inequality for εn

n0 εn > C(ln(K+1) n)−1

n0 +1 εn � (ln(K+1) n)−1

n0 +2 εn > C(ln(K+1) n)−1

n0 +3
n0 +4 εn � (ln(K+1) n)−1

n0 +5
n0 +6 εn > C(ln(K+1) n)−1

n0 +7
n0 +8
n0 +9 εn � (ln(K+1) n)−1

n0 +10
n0 +11
. . . . . .

Apparently, presentation (10) is true in the general situation under the conditions de-
scribed in case (a).

Case (b) also can be derived on the basis of presentation (9). For instance, one
can assume that starting from n0 we have the following alternate relationships given
in Table 1. Based on this table one can see that, as m tends to infinity, there exists
an increasing to infinity subsequence Nm1 , Nm2 ,. . . , resulting in the series of sums

∑
nm1
i=nm1−1+ jm1

ai , ∑
nm2
i=nm2−1+ jm2

ai ,. . . with increasing to infinity number of terms.

Notice that in both of these examples the assumption an+1 � an is supported. This
is seen from the presentation for an given by (4).

Hence, following cases (a) and (b), without loss of generality it can be assumed
that for the original series ∑∞

n=1 an , there is no K � 1 such that (5) is satisfied for all
large n .

Thus, following the assumption that (5) is not satisfied, our study reduces to the
following two cases:

(i) there exists K � 1 and n0 such that for all n � n0

−n
√

an � 1+
1
n

+
1
n

K−1

∑
i=1

1

∏i
k=1 ln(k) n

+
c∗

n∏K
k=1 ln(k) n

,

where c∗ � 1;

(ii) for large n and K

−n
√

an = 1+
1
n

+
1
n

K

∑
i=1

1

∏i
k=1 ln(k) n

,

where n and K are given such that ln(K) n is large.
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In case (i), if c∗ < 1, then the series diverges due to representation (4). If c∗ = 1,
then the inequality in (i) is rewritten

−n
√

an � 1+
1
n

+
1
n

K

∑
i=1

1

∏i
k=1 ln(k) n

,

and following the derivation similar to that given in Appendix A, we obtain the inequal-
ity

an � C
1

n∏K−1
k=1 ln(k) n

, K � 1,

where C > 0 is some constant. Hence (1) diverges.
In case (ii), we are to consider the sequence

−n
√

an(K) = 1+
1
n

+
1
n

K

∑
i=1

1

∏i
k=1 ln(k) n

,

assuming that both K and n increase to infinity, where n and K are chosen such that
ln(K) n is large. Let n0(K) be such a number that ln(K) n0(K) > 0. Then

∞

∑
n=n0(K)

an(K) � C
∞

∑
n=n0(K)

1

n∏K−1
k=1 ln(k) n

= ∞,

and for any increasing sequence K1 < K2 < .. . we have

lim
i→∞

∞

∑
n=n0(Ki)

an(Ki) � C lim
i→∞

∞

∑
n=n0(Ki)

1

n∏Ki−1
k=1 ln(k) n

= ∞,

where C is an absolute constant for all i . Thus if a series is convergent, then it must be
presented by (5) with some c > 1 and integer K � 1 for almost all n . �

REMARK 1. For the ‘if’ condition of Theorem 3, the root function −n
√

an on the
left-hand side of (5) can be replaced with the fraction an/an+1 . Indeed, assume that for
strongly almost all n ∈ N we have the inequality

an

an+1
� 1+

1
n

+
1
n

K−1

∑
k=1

1

∏k
j=1 ln( j) n

+
c

n∏K
k=1 ln(k) n

,

where c > 1, K � 1. Then, presentation (7) implies that ni + ji+1 � n � ni+1 , i � 0,
n0 = 0. For the boundary elements in the sums of I1 , we have the similar inequality

anm

anm+ jm+1

� 1+
1
nm

+
1
nm

K−1

∑
k=1

1

∏k
j=1 ln( j) nm

+
c

nm ∏K
k=1 ln(k) nm

,

which is true due to the convention an+1 � an for all n � 1. Then, renumbering the
terms in I1 we arrive at the required result.
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However for the ‘only if’ condition, −n
√

an cannot be replaced with an/an+1 . It is
seen from the following simple example. Suppose that for series (1) we have a2k−1 =
a2k , k = 1,2, . . . , and for all large k

a2k

a2k+1
� 1+

1
2k

+
1
2k

K−1

∑
i=1

1

∏i
j=1 ln( j)(2k)

+
c

n∏K
j=1 ln( j)(2k)

, K � 1, c > 1.

Then, despite limn→∞ N(n)/n = 1/2, the series is convergent.

3. Application

Theorem 3 can be used to improve the conditions of recurrence and transience for
Markov processes and, in particular, birth-and-death processes.

Consider a birth-and-death process, in which the birth and death parameters λn

and μn all are in (0,∞) . It is known [9, page 370] that a birth-and-death process is
transient if and only if

∞

∑
n=1

n

∏
k=1

μk

λk
< ∞.

So, Theorem 3 can be immediately applied, if the required conditions are satisfied.
Then for the ‘if’ condition, it is convenient to use the fraction an/an+1 on the left-hand
side of (5) rather than −n

√
an , since an/an+1 in this case reduces to λn+1/μn+1 (see

Remark 1).
Note also that the condition ∏n

k=1(μk/λk) < rn−α can be replaced by the follow-
ing simpler conditions: (i) μn/λn converges to 1 as n → ∞ , and (ii) there exist α > 0
and n0 such that for all n > n0 we have ln(μn/λn) < −α lnn/n .

Appendix A. Derivation of (4)

From (3) we have

lnan = −n ln

(
1+

1
n

+
1
n

K−1

∑
i=1

1

∏i
k=1 ln(k) n

+
sn

n∏K
k=1 ln(k) n

)
, K � 1. (11)

From Taylor’s expansion of the logarithm on the right-hand side of (11) we obtain

lnan = −1−
K−1

∑
i=1

1

∏i
k=1 ln(k) n

− sn

∏K
k=1 ln(k) n

+O

(
1
n

)
, K � 1.

Hence,

an =

⎧⎨
⎩e−1+O(1/n) 1

(n∏K−2
k=1 ln(k) n) lnsn

(K−1) n
, K � 2,

e−1+O(1/n) 1
nsn K = 1.

The result follows.
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