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AN ELEMENTARY PROOF OF RAMANUJAN’S

IDENTITY FOR ODD ZETA VALUES

SARTH CHAVAN

Abstract. The main purpose of this article is to present an elementary proof of Ramanujan’s
identity for odd zeta values. Our proof solely relies on a Mittag-Leffler type expansion for
hyperbolic cotangent function and Euler’s identity for even zeta values.

1. A brief history and introduction

The Riemann zeta function ζ (s) is one of the most important special functions of
Mathematics. While the critical strip 0 < ℜ(s) < 1 is undoubtedly the most important
region in the complex plane on account of the unsolved problem regarding location of
non-trivial zeros of ζ (s) , namely, the Riemann Hypothesis, the right-half plane ℜ(s) >
1 also has its own share of interesting unsolved problems to contribute to.

It is well known that many number theoretic properties of odd zeta values are
nowadays still unsolved mysteries, such as the rationality, transcendence and existence
of closed-forms. Only in 1978 did Apéry [2] famously proved that ζ (3) is irrational.
This was later reproved in a variety of ways by several authors, in particular Beukers
[10] who devised a simple approach involving certain integrals over [0,1]3 .

In the early 2000s, an important work of Rivoal [21], and Ball and Rivoal [4] de-
termined that infinitely many values of ζ at odd integers are irrational, and the work of
Zudilin [27] proved that at least one among ζ (5),ζ (7),ζ (9) and ζ (11) is irrational.
A very recent result due to Rivoal and Zudilin [22] states that at least two of the num-
bers ζ (5),ζ (7), . . . ,ζ (69) are irrational. Moreover, for any pair of positive integers a
and b , Haynes and Zudilin [17, Theorem 1] have shown that either there are infinitely
many m ∈ N for which ζ (am+b) is irrational, or the sequence {qm}∞

m=1 of common
denominators of the rational elements of the set {ζ (a+ b),ζ (2a+ b), . . .,ζ (am+ b)}
grows super-exponentially, that is, q1/m

m → ∞ as m → ∞ . Despite these advances, to
this day no value of ζ (2n+1) with n � 2 is known to be irrational.

One should mention that Brown [11] has in the past few years outlined a geometric
approach to understand the structures involved in Beukers’s proof of irrationality of
ζ (3) and how this may generalize to other odd zeta values.

Ramanujan made many beautiful and elegant discoveries in his short life of 32
years. One of the most remarkable formulas suggested by Ramanujan is the following
intriguing identity involving the odd values of the Riemann zeta function [6, 1.2]:
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THEOREM 1.1. (Ramanujan’s Formula for ζ (2m+1)) If α and β are positive
numbers such that αβ = π2 and if m is a positive integer, then we have

α−m

{
1
2

ζ (2m+1)+
∞

∑
n=1

n−2m−1

e2αn−1

}
− (−β )−m

{
1
2

ζ (2m+1)+
∞

∑
n=1

n−2m−1

e2βn−1

}

= 22m
m+1

∑
k=0

(−1)k−1 B2k B2m−2k+2

(2k)!(2m−2k+2)!
αm−k+1β k.

(1.1)

where Bm denotes the m-th Bernoulli number with the exponential generating function

∑
m�0

Bm
zm

m!
=

z
exp(z)−1

.

Theorem 1.1 appears as Entry 21 in Chapter 14 of Ramanujan’s second notebook
[5, 173]. The first published proof of Theorem 1.1 is due to S.L. Marulkar [20] although
he was not aware that this formula can be found in Ramanujan’s Notebooks. Grosswald
too rediscovered this formula and studied it more generally in [15], [14]. Berndt [8,
Theorem 2.2] derived a general formula from which both Euler’s identity for even zeta
values (1.1) and Ramanujan’s identity for odd zeta values follow as special cases, thus
showing that Euler’s and Ramanujan’s formulas are natural companions of each other.

Ramanujan’s identity has a number of applications. For example, a contemporary
interpretation of the above identity, as given for instance in [16], is that it encodes
fundamental transformation properties of Eisenstein series on the full modular group
and their Eichler integrals. This observation is extended in [9, Section 5] to weight 2k+
1 Eisenstein series of level 2 through secant Dirichlet series. Moreover, Ramanujan’s
identity also has applications in theoretical computer science [18] in the analysis of
special data structures and algorithms. More specifically, it is used there to achieve
certain distribution results on random variables related to data structures called tries.

B. Berndt and A. Straub in their article [6, 3.1] show that identity (1.1) is equivalent
to

α−m
∞

∑
n=1

coth(αn)
n2m+1 − (−β )−m

∞

∑
n=1

coth(βn)
n2m+1

= −22m+1
m+1

∑
k=0

(−1)k B2k B2m+2−2k

(2k)!(2m+2−2k)!
αm+1−kβ k. (1.2)

Letting α = β = π and replacing m with 2m+1, we get the following [6, 3.2]:

PROPOSITION 1.2. The following identity holds

∞

∑
n=1

coth(πn)
n4m+3 = 24m+2π4m+3

2m+2

∑
k=0

(−1)k+1 B2k B4m+4−2k

(2k)!(4m+4−2k)!
(1.3)

where as before m ∈ N and Bm denotes the m-th Bernoulli number.
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This variation was apparently first established by M. Lerch [19]. Later proofs were
given by G.N. Watson [26], H.F. Sandham [23], J.R. Smart [25] and F.P. Sayer [24].

The main purpose of this article is to present an elementary proof of Theorem 1.1
and Proposition 1.2. Our proof solely relies on a Mittag-Leffler type expansion for
hyperbolic cotangent function and Euler’s identity for even zeta values

2. Preliminaries

PROPOSITION 2.1. (Euler’s Formula for ζ (2m)) For m � 1 , we have

ζ (2m) = (2π)2m (−1)m−1 B2m

2(2m)!
. (2.1)

Euler’s identity for even zeta values (2.1) not only provides an elegant formula
for evaluating ζ (2m) for any integer m � 1, but it also gives us information about the
arithmetical nature of even zeta values. For a fascinating account of the history and
proof of this formula, we refer the reader to [3].

PROPOSITION 2.2. (Mittag-Leffler expansion for hyperbolic cotangent function)
Let x ∈ C\ {0} , then the following identity holds

coth(πx) =
1

πx
+

2x
π

∞

∑
k=1

1
x2 + k2 . (2.2)

Note that equation (2.2) appears as identity 1.421.4 in [13].

3. Proof of Proposition 1.2

Replacing x with n , dividing both sides of identity (2.2) by n4m+2 and summing
over n produces

1
2

∞

∑
n=1

π coth(πn)
n4m+3 − 1

2

∞

∑
n=1

1
n4m+4 =

∞

∑
n=1

∞

∑
k=1

1
n4m+2 (k2 +n2)

.

Since the above double sum is absolutely convergent, we may switch the order of sum-
mation to get

1
2

(
∞

∑
n=1

π coth(πn)
n4m+3 −

∞

∑
n=1

1
n4m+4

)
=

∞

∑
k=1

∞

∑
n=1

1
n4m+2 (k2 +n2)

.

Next, we simply notice that

1
n4m+2 (k2 +n2)

=
1

n4mk2

(
1
n2 −

1
k2 +n2

)
.
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Thus, we have

∞

∑
n=1

∞

∑
k=1

1
n4m+2 (k2 +n2)

= ζ (2)ζ (4m+2)−
∞

∑
k=1

∞

∑
n=1

1
n4mk2 (k2 +n2)

.

Similarly, we find that

1
n4mk2 (k2 +n2)

=
n2

n4mk4

(
1
n2 −

1
k2 +n2

)
.

Thus, we have

∞

∑
k=1

∞

∑
n=1

1
n4mk2 (k2 +n2)

= ζ (4)ζ (4m)−
∞

∑
k=1

∞

∑
n=1

1
n4m−2k4 (k2 +n2)

.

This recursive pattern that produces even zeta values continues as follows:

∞

∑
k=1

∞

∑
n=1

1
n4m−2k4 (k2 +n2)

= ζ (6)ζ (4m−2)−
∞

∑
k=1

∞

∑
n=1

1
n4m−4k6 (k2 +n2)

∞

∑
k=1

∞

∑
n=1

1
n4m−4k6 (k2 +n2)

= ζ (8)ζ (4m−4)−
∞

∑
k=1

∞

∑
n=1

1
n4m−6k8 (k2 +n2)

and so on. At the end, we get

∞

∑
k=1

∞

∑
n=1

1
n2k4m (k2 +n2)

= ζ (4m+2)ζ (2)−
∞

∑
k=1

∞

∑
n=1

1
k4m+2 (k2 +n2)

.

Therefore, we obtain the final result

∞

∑
k=1

∞

∑
n=1

1
n4m+2 (k2 +n2)

= ζ (2)ζ (4m+2)− ζ (4)ζ (4m)+ · · ·+ ζ (4m+2)ζ (2)

−
∞

∑
k=1

∞

∑
n=1

1
k4m+2 (k2 +n2)

(3.1)

which can be easily proved by induction on m . Next, we observe that, by symmetry,

∞

∑
k=1

∞

∑
n=1

1
n4m+2 (k2 +n2)

=
∞

∑
k=1

∞

∑
n=1

1
k4m+2 (k2 +n2)

.

Therefore we have

2
∞

∑
k=1

∞

∑
n=1

1
n4m+2 (k2 +n2)

= (−1)m ζ (2m+2)ζ (2m+2)

+2
m−1

∑
k=0

(−1)k ζ (4m+2−2k)ζ (2k+2).
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Putting all things together produces

∞

∑
n=1

π coth(πn)
n4m+3 = ζ (4m+4)+ (−1)mζ (2m+2)ζ (2m+2)

+2
m

∑
k=1

(−1)k−1 ζ (4m−2k+4)ζ (2k)

where k has been replaced with k−1 in the summand. Thus, it suffices to prove that

ζ (4m+4)+ (−1)mζ (2m+2)ζ (2m+2)+2
m

∑
k=1

(−1)k−1 ζ (4m−2k+4)ζ (2k)

= 24m+2π4m+4
2m+2

∑
k=0

(−1)k−1 B2k B4m+4−2k

(2k)!(4m+4−2k)!
. (3.2)

After replacing m with m−1 in the above equation, it suffices to prove that

ζ (4m)+ (−1)m−1ζ (2m)ζ (2m)+2
m−1

∑
k=1

(−1)k−1 ζ (4m−2k)ζ (2k)

= 24m−2π4m
2m

∑
k=0

(−1)k−1 B2k B4m−2k

(2k)!(4m−2k)!
(3.3)

which is indeed just a matter of substitution; using Euler’s identity for ζ (2m) , we have

ζ (4m)+ (−1)m−1 ζ (2m)ζ (2m)+2
m−1

∑
k=1

(−1)k−1 ζ (4m−2k)ζ (2k)

= 24m−2π4m

{
− B4m

(4m)!
+

(−1)m−1 B2m B2m

(2m)!(2m)!
+2

m−1

∑
k=1

(−1)k−1 B2k B4m−2k

(2k)!(4m−2k)!

}
(3.4)

The summand in equation (3.3) is invariant under the substitution k �→ 2m−k , so if we
split it according to k ∈ {0,2m}, k ∈ {1,2, . . . ,m+1, . . . ,2m−1} and k = m , we get

2m

∑
k=0

(−1)k−1 B2k B4m−2k

(2k)!(4m−2k)!
= − B4m

(4m)!
+

(−1)m−1 B2m B2m

(2m)!(2m)!
+2

m−1

∑
k=1

(−1)k−1 B2k B4m−2k

(2k)!(4m−2k)!
.

(3.5)
Combining equations (3.3), (3.4) and (3.5) gives us the desired result. �

4. Proof of Theorem 1.1

Substituting x �→ (αk/π) , with α ∈ R>0 , in identity (2.2) yields

1
e2αk −1

= −1
2

+
1

2αk
+

∞

∑
m=1

αk
π2m2 + α2k2 . (4.1)
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Dividing both sides of the above identity by αnk2n+1 and summing over k produces

α−n

{
∞

∑
k=1

k−2n−1

e2αk −1
+

1
2

ζ (2n+1)

}
=

ζ (2n+2)
2αn+1 +

∞

∑
k=1

∞

∑
m=1

αn+1

(α2k2)n (π2m2 + α2k2)
.

Next, we notice that, for an arbitrary positive integer n and two arbitrary non-vanishing
sequences {xk} and {zm} , we have

∞

∑
k=1

∞

∑
m=1

1
xn
k (xk + zm)

=
∞

∑
k=1

1
xn
k

∞

∑
m=1

1
zm

−
∞

∑
k=1

∞

∑
m=1

1

xn−1
k zm (xk + zm)

(4.2)

assuming that the sums involved are convergent. Using the same recursive technique as
in the previous section, we find that

∞

∑
k=1

∞

∑
m=1

1
xn
k (xk + zm)

=
∞

∑
k=1

1
xn
k

∞

∑
m=1

1
zm

−
∞

∑
k=1

1

xn−1
k

∞

∑
m=1

1
z2
m

+
∞

∑
k=1

1

xn−2
k

∞

∑
m=1

1
z3
m

+ · · ·+(−1)n−1
∞

∑
k=1

1
xk

∞

∑
m=1

1
zn
m

+(−1)n
∞

∑
k=1

∞

∑
m=1

1
zn
m (xk + zm)

. (4.3)

For notational convenience, set
∞

∑
k=1

1
xn
k

= ζx(n),
∞

∑
k=1

1
zn
m

= ζz(n).

These are also known as quasisymmetric zeta function (the correct analog of a Riemann
zeta function in the ring of quasisymmetric functions).

Thus, equation (4.3) can now be rewritten as

∞

∑
k=1

∞

∑
m=1

1
xn
k (xk + zm)

=
n−1

∑
p=0

(−1)pζx(n− p)ζz(p+1)+ (−1)n
∞

∑
k=1

∞

∑
m=1

1
zn
m (xk + zm)

(4.4)
Substituting xk �→ α2k2 and zm �→ π2m2 in identity (4.4) produces

∞

∑
k=1

∞

∑
m=1

1

(α2k2)n (α2k2 + π2m2)
=

n−1

∑
p=0

(−1)p ζ (2n−2p)
α2n−2p

ζ (2p+2)
π2p+2

+(−1)n
∞

∑
k=1

∞

∑
m=1

1
(π2m2)n (α2k2 + π2m2)

. (4.5)

Euler’s formula for ζ (2m) allows us to transform the zetas into Bernoullis as follows:

n−1

∑
p=0

(−1)p ζ (2n−2p)
α2n−2p

ζ (2p+2)
π2p+2 = (−1)n 22n

n−1

∑
p=0

(π
α

)2n−2p (−1)p−1 B2n−2pB2p+2

(2n−2p)!(2p+2)!
.

Moreover, using αβ = π2 and replacing p with p−1 in the summand produces

n−1

∑
p=0

(−1)p ζ (2n−2p)
α2n−2p

ζ (2p+2)
π2p+2 = (−1)n 22n

n

∑
p=1

(
β
α

)n−p+1 (−1)p B2n−2p+2B2p

(2n−2p+2)!(2p)!
.
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Substituting this expression in equation (4.5) we get

∞

∑
k=1

∞

∑
m=1

1
(α2k2)n (α2k2 + π2m2)

= (−1)n 22n
n

∑
p=1

(
β
α

)n−p+1 (−1)p B2n−2p+2B2p

(2n−2p+2)!(2p)!

+(−1)n
∞

∑
k=1

∞

∑
m=1

1
(π2m2)n (α2k2 + π2m2)

(4.6)

Putting all things together produces

α−n

{
∞

∑
k=1

k−2n−1

e2αk −1
+

1
2

ζ (2n+1)

}
= (−1)n αn+1

∞

∑
k=1

∞

∑
m=1

1
(π2m2)n(α2k2 + π2m2)

+
ζ (2n+2)

2αn+1 + αn+1

{
= (−1)n 22n

n

∑
p=1

(
β
α

)n−p+1 (−1)p B2n−2p+2B2p

(2n−2p+2)!(2p)!

}
.

Next, we notice that the remaining zeta term

ζ (2n+2)
2αn+1 =

(−1)n

2αn+1

(2π)2n+2 B2n+2

2(2n+2)!
=

(−1)n β n+122nB2n+2

(2n+2)!

is the missing p = 0-th term in the summand. Thus, we have

α−n

{
∞

∑
k=1

k−2n−1

e2αk −1
+

1
2

ζ (2n+1)

}
−αn+1

{
(−1)n

π2n

∞

∑
k=1

∞

∑
m=1

1
m2n (α2k2 +m2π2)

}

= (−1)n 22n
n

∑
p=0

(−1)p B2n−2p+2B2p

(2n−2p+2)!(2p)!
α pβ n−p+1.

(4.7)

Notice that, using αβ = π2 we obtain

∞

∑
k=1

∞

∑
m=1

1
m2n (α2k2 +m2π2)

=
1
α

∞

∑
k=1

∞

∑
m=1

1
m2n (αk2 + βm2)

=
1
α

∞

∑
k=1

∞

∑
m=1

1
k2n (α2m2 + βk2)

,

where the last equality is obtained by replacing k by m and m by k so that we get

∞

∑
k=1

∞

∑
m=1

1
m2n (α2k2 +m2π2)

=
β
α

∞

∑
k=1

∞

∑
m=1

1
k2n (β 2k2 +m2π2)

(4.8)

Dividing both sides of identity (2.2) by k2n+1 and summing over k produces

β
∞

∑
k=1

∞

∑
m=1

1
k2n (β 2k2 +m2π2)

=
∞

∑
k=1

k−2n−1

e2β k −1
+

1
2

ζ (2n+1)− 1
2β

ζ (2n+2) (4.9)

where we have replaced α with β . Thus, we have

∞

∑
k=1

∞

∑
m=1

1
m2n (α2k2 +m2π2)

=
1
α

{
∞

∑
k=1

k−2n−1

e2β k −1
+

1
2

ζ (2n+1)− 1
2β

ζ (2n+2)

}
.
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Finally, substituting this expression in equation (4.7) yields

α−n

{
∞

∑
k=1

k−2n−1

e2αk −1
+

1
2

ζ (2n+1)

}
− (−1)n 22n

n

∑
p=0

(−1)p B2n−2p+2B2p

(2n−2p+2)!(2p)!
α p β n−p+1

=
(−1)n αn

π2n

{
∞

∑
k=1

k−2n−1

e2β k −1
+

1
2

ζ (2n+1)

}
− (−1)n αn+1

π2n

{
1

2αβ
ζ (2n+2)

}

= (−β )−n

{
∞

∑
k=1

k−2n−1

e2β k −1
+

1
2

ζ (2n+1)

}
− (−1)n αn+1

π2n+2

(−1)n 22n+2π2n+2B2n+2

4(2n+2)!

Next, we notice that the remaining term:

− (−1)n αn+1

π2n+2

(−1)n 22n+2π2n+2B2n+2

4(2n+2)!
=

(−1)2n+1 22nB2n+2

(2n+2)!
αn+1

is the p = n+1-st term in the summand. Therefore, we deduce that

α−n

{
∞

∑
k=1

k−2n−1

e2αk −1
+

1
2

ζ (2n+1)

}
− (−β )−n

{
∞

∑
k=1

k−2n−1

e2β k −1
+

1
2

ζ (2n+1)

}
(4.10)

= (−1)n 22n
n+1

∑
p=0

(−1)p B2n−2p+2B2p

(2n−2p+2)!(2p)!
α pβ n−p+1.

Replacing p with n− p+1 in the above identity gives us the desired result. �
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