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ON IDEAL CONVERGENCE OF NESTED SEQUENCES OF SETS

HÜSEYIN ALBAYRAK

Abstract. In this work, we show the equivalence of ideal Wijsman convergence and Wijsman
convergence and the equivalence of ideal Hausdorff convergence and Hausdorff convergence for
the nested sequences of sets. Then we prove that the ideal Wijsman limit and the ideal Hausdorff
limit of the nested sequence of sets are equivalent each other for every admissible ideal.

1. Introduction

Wijsman [13, 14] defined the concept of Wijsman convergence for sequences of
sets (see also [8], [11]). Wijsman convergence is defined as the pointwise convergence
of the distance function. Hausdorff convergence, which is defined by the Hausdorff
distance, corresponds to the uniform convergence of the distance function (see [4], [7],
[3], [11]). Therefore, Hausdorff convergence always implies Wijsman convergence.
Apreutesei [1] showed that Wijsman convergence and Hausdorff convergence are equi-
valent for monotone sequences of compact sets.

Nuray and Rhoades [10] introduced the notions of Wijsman statistically conver-
gence and Hausdorff statistically convergence. In 2000, Kostyrko et al. [6] introduced
the notion of ideal convergence for sequences defined on the metric spaces, where I
is an ideal on N . In [5] Kişi and Nuray introduced Wijsman I -convergence, and in
[12] Talo and Sever introduced Hausdorff I -convergence. The reader can refer to the
recent monographs [2] and [9] on the sequence spaces and summability theory, and
applications.

We show that I -Wijsman convergence is equivalent to Wijsman convergence
for every I admissible ideal and the nested sequences of nonempty closed sets (see
Theorem 1). Similarly, we give the equivalence of I -Hausdorff convergence and
Hausdorff convergence (see Theorem 2). Finally, we show that I -Wijsman limit and
I -Hausdorff limit of the nested sequence of sets are equivalent each other for every
admissible ideal (see Corollary 1).
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2. Preliminaries

Throughout this paper, (X ,ρ) denotes a metric space. We denote the family of
all nonempty closed subsets and the family of all nonempty compact subsets of X by
Cl(X) and K (X) , respectively. cl (A) denotes the closure of a set A .

The distance d(x,A) from a point x ∈ X to a set A ⊆ X is defined as

d(x,A) = inf
y∈A

ρ(x,y)

(see [13]).
Hausdorff distance of nonempty sets A,B ⊆ X is defined as

H (A,B) = max{h(A,B) ,h(B,A)}

where h(A,B) = supa∈A d (a,B) , or equivalently

H (A,B) = inf{ε > 0 : A ⊆ Bε and B ⊆ Aε}

where Aε =
⋃

a∈A {x ∈ X : ρ (a,x) < ε} = {x ∈ X : d(x,A) < ε} is the ε -enlargement
of A .

A sequence (An)n∈N of nonempty subsets of X is said to be Hausdorff convergent
to a set A ⊆ X if

lim
n→∞

H(An,A) = 0.

In this case, we write H− limAn = A or An
H−→ A ([3], [7], [11]).

We say that a sequence (An)n∈N of nonempty subsets of X is Wijsman convergent
to a set A ⊆ X if

lim
n→∞

d(x,An) = d(x,A) for each x ∈ X .

In this case, we write W − limAn = A or An
W−→ A ([13], [14]).

Let An ’s be nonempty subsets of X . The sequence (An)n∈N
is called a nested

sequence of sets if it is monotone increasing or monotone decreasing according to the
inclusion relation, that is,

An ⊆ An+1 (∀n ∈ N) or An+1 ⊆ An (∀n ∈ N) .

A family I of subsets of N is said to be an ideal on N if the following conditions
are satisfied:

(i) /0 ∈ I ,

(ii) A∪B ∈ I for each A,B ∈ I ,

(iii) B ∈ I for each A ∈ I such that B ⊆ A .
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An ideal is called proper if N /∈ I , and proper ideal is called admissible if {n} ∈
I for each n ∈ N. Obviously, an admissible ideal includes all finite subset of N . If I
is an ideal on N then the family F (I ) = {N\A : A ∈ I } is a filter on N ([6]).

Since we will use the distance function and Hausdorff distance in the next defini-
tions of convergence, let’s remind the definition of ideal convergence in R : Let (xn)n∈N

be a sequence in R and x0 ∈ R . Let I be any ideal on N . If for every ε > 0

{n ∈ N : |xn− x0| � ε} ∈ I

then (xn) is said to be I -convergent to x0 . Then we write I − limxn = x0 ([6]).
The family I f = {A ⊆ N : A is finite} is the minimum admissible ideal according

to the inclusion relation. Then I f -convergence and classical convergence is equivalent
to each other. If I is a proper ideal with I ⊇ I f then I is an admissible ideal.

DEFINITION 1. ([12]) We say that the sequence (An)n∈N of nonempty subsets of
X is I -Hausdorff convergent to the set A if{

n ∈ N : sup
x∈X

|d(x,An)−d(x,A)| � ε
}
∈ I

for every ε > 0, or if I − limH (An,A) = 0, i.e., for every ε > 0

{n ∈ N : H (An,A) � ε} ∈ I

or equivalently
{n ∈ N : h(An,A) � ε or h(A,An) � ε} ∈ I .

In this case, we write I -H − limAn = A or An
I -H−→ A .

DEFINITION 2. ([5]) We say that a sequence (An)n∈N of nonempty subsets of X
is I -Wijsman convergent to a set A ⊆ X if

I− limd(x,An) = d(x,A) for each x ∈ X ,

i.e., for each ε > 0 and each x ∈ X

{n ∈ N : |d(x,An)−d(x,A)|� ε} ∈ I .

In this case, we write I -W − limAn = A or An
I -W−→ A .

LEMMA 1. ([1]) Let (An)n∈N
be a nested sequence where An ∈ K (X) for every

n ∈ N .

(i) If (An)n∈N
is an increasing sequence then

W − limAn = H− limAn = cl

(⋃
n∈N

An

)
.
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(ii) If (An)n∈N
is a decreasing sequence then

W − limAn = H− limAn =
⋂
n∈N

An.

In the following, we give an example of a nested sequence where Hausdorff conver-
gence and Wijsman convergence are not equivalent. This example does not contradict
Lemma 1 because the elements of the sequence are not compact.

EXAMPLE 1. In the Euclidean space R
2, let’s consider the sequence (An)n∈N

de-
fined as

An =
{

(x,y) ∈ R
2 : −|x|

n
� y � |x|

n

}
for each n ∈ N

and let

A =
{
(x,y) ∈ R

2 : y = 0
}

.

(An) is a monotone decreasing sequence with An+1 ⊆ An for every n ∈ N . The sets An

are closed but not compact. We have

W − limAn = A,

but (An) is not Hausdorff convergent.

LEMMA 2. Let A,An ∈ Cl(X) (n ∈ N) and I be an admissible ideal on N .

(i) If An
W−→ A then An

I -W−→ A.

(ii) If An
H−→ A then An

I -H−→ A.

EXAMPLE 2. Let I1 = {A ⊆ N : A∩Nk = /0 for some k ∈ N} where Nk = {nk :
n ∈ N} and I2 = {A ⊆ N : A ⊆ 2N} . I1 is an admissible ideal, but I2 is not.

In the Euclidean space R
2, consider the sequence (An)n∈N

defined as

An =
{{

(x,y) ∈ R
2 : y = 1/n

}
,n 	= 3k−1{

(x,y) ∈ R
2 : |x|+ ∣∣ny−n2

∣∣= n2
}

,n = 3k−1
(k ∈ N)

and A =
{
(x,y) ∈ R

2 : y = 0
}

. The sequence (An)n∈N
is not nested.

We have An
W−→ A and so An

I1−W−→ A (because I1 is an admissible ideal). But
(An) is not I2 -Wijsman convergent and therefore it is not I2 -Hausdorff convergent.

Also we have An

H
	−→ A , but An

I1−H−→ A .
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3. Main results

In this section, we give the equivalence of Wijsman convergence,Hausdorff conver-
gence, ideal Wijsman convergence and ideal Hausdorff convergence for the nested se-
quences of sets.

THEOREM 1. Let (An)n∈N
be a nested sequence of closed subsets of X and A ∈

Cl(X) . Let I be an admissible ideal on N . Then we have:

An
W−→ A ⇐⇒ An

I−W−→ A.

Proof. (=⇒) : It was given in Lemma 2.
(⇐=) : We will prove the sufficient condition in two stages, depending on whether

the sequence (An)n∈N
is increasing or decreasing.

(1) Let (An)n∈N
be an increasing sequence such that An ⊆ An+1 for every n ∈ N .

Let’s assume that An
I−W−→ A .

Firstly, we show that An ⊆ A for every n ∈ N . Let’s fix n ∈ N and let u ∈ An .
Since (An) is increasing, for every m � n we have u ∈ Am and so d (u,Am) = 0. From

An
I−W−→ A, we have

K (u,ε) := {m ∈ N : |d (u,Am)−d (u,A)| < ε} ∈ F (I )

for each ε > 0. For each ε > 0 there is an mε ∈ N which is mε ∈ K (u,ε) and mε � n .
Hence we get

d (u,A) = |d (u,Amε )−d (u,A)| < ε (1)

for each ε > 0. Then we obtain u ∈ A from the closeness of A .
Then we can write d (x,A) � d (x,An) and so

d (x,An)−d (x,A) � 0 (2)

for each x ∈ X and each n ∈ N .
Now, let x ∈ X and ε > 0. From An

I−W−→ A, we have

L(x,ε) := {n ∈ N : |d (x,An)−d (x,A)| < ε} ∈ F (I ) . (3)

Let n0 = n0 (x,ε) := minL(x,ε) . Since (An) is increasing, we have

d (x,An) � d
(
x,An0

)
(4)

for every n � n0 . From (3) and (4), we get

d (x,An)−d (x,A) � d
(
x,An0

)−d (x,A) < ε (5)

for every n � n0 .
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From (2) and (5), we get

|d (x,An)−d (x,A)| < ε (6)

for every n � n0 .
Since x ∈ X is arbitrary, we obtain

lim
n→∞

d (x,An) = d (x,A) (7)

for every x ∈ X . Consequently, An
W−→ A .

(2) Let (An)n∈N
be a decreasing sequence such that An ⊇ An+1 for every n ∈ N .

Let’s assume that An
I−W−→ A .

Firstly, we show that A⊆ An for every n∈N . Let’s fix n∈N and let u∈ A . From

An
I−W−→ A, we have

K (u,ε) := {m ∈ N : |d (u,Am)−d (u,A)| < ε} ∈ F (I )

for each ε > 0. For each ε > 0 there is an mε ∈ N which is mε ∈ K (u,ε) and mε �
n . Since (An) is decreasing, we have Amε ⊆ An and d (u,An) � d (u,Amε ) . Since
d (u,A) = 0 we get

d (u,An) � d (u,Amε ) = |d (u,Amε )−d (u,A)| < ε (8)

for each ε > 0. From the closeness of An, we obtain u ∈ An .
Then we can write d (x,An) � d (x,A) and so

d (x,An)−d (x,A) � 0 (9)

for each x ∈ X and each n ∈ N .
Now, let x ∈ X and ε > 0. Again from An

I−W−→ A, we have

L(x,ε) := {n ∈ N : |d (x,An)−d (x,A)| < ε} ∈ F (I ) . (10)

Let n0 = n0 (x,ε) := minL(x,ε) . Since (An) is decreasing, we have

d
(
x,An0

)
� d (x,An) (11)

for every n � n0 . From (10) and (11), we get

− ε < d
(
x,An0

)−d (x,A) � d (x,An)−d (x,A) (12)

for every n � n0 .
From (9) and (12), we get

|d (x,An)−d (x,A)| < ε (13)

for every n � n0 .
Since x ∈ X is arbitrary, we obtain

lim
n→∞

d (x,An) = d (x,A) (14)

for every x ∈ X . Consequently, we get An
W−→ A . �
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THEOREM 2. Let (An)n∈N
be a nested sequence of closed subsets of X and A ∈

Cl(X) . Let I be an admissible ideal on N . Then we have:

An
H−→ A ⇐⇒ An

I−H−→ A.

Proof. (=⇒) : It was given in Lemma 2.
(⇐=) : We will prove the sufficient condition in two stages, depending on whether

the sequence (An)n∈N
is increasing or decreasing.

(1) Let (An)n∈N
be an increasing sequence such that An ⊆ An+1 for every n ∈ N .

Let’s assume that An
I−H−→ A .

Firstly, we show that An ⊆ A for every n ∈ N . Let’s fix n ∈ N and let u ∈ An .

Since (An) is increasing, we have u ∈ Am for every m � n . From An
I−H−→ A, we have

K (ε) := {m ∈ N : h(Am,A) < ε and h(A,Am) < ε} ∈ F (I )

for each ε > 0. For each ε > 0 there is an mε ∈ N which is mε ∈ K (ε) and mε � n .
Hence we get

d (u,A) � h(Amε ,A) < ε (15)

for each ε > 0. Then we obtain u ∈ A from the closeness of A .
Since An ⊆ A for every n ∈ N , we get

h(An,A) = 0 for each n ∈ N. (16)

Now, let’s fix ε > 0. Let n0 = n0 (ε) := minK (ε) . Since (An) is increasing, we
have

d (x,An) � d
(
x,An0

)
(17)

for every n � n0 and every x ∈ X . From n0 ∈ K (ε) we have

d
(
x,An0

)
� h

(
A,An0

)
< ε (18)

for every x ∈ A . From (17) and (18), we get

d (x,An) < ε (19)

for every n � n0 and every x ∈ A . Then we obtain

h(A,An) = sup
x∈A

d (x,An) < ε (20)

for every n � n0 . From (16) and (20) we get

H (An,A) = max{h(An,A) ,h(A,An)} = h(A,An) < ε

for every n � n0 . Consequently, we get An
H−→ A .
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(2) Let (An)n∈N
be a decreasing sequence such that An ⊇ An+1 for every n ∈ N .

Let’s assume that An
I−H−→ A . Then we have

K (ε) := {m ∈ N : h(Am,A) < ε and h(A,Am) < ε} ∈ F (I )

for each ε > 0.
Firstly, we show that A ⊆ An for every n ∈ N . Let’s fix n ∈ N and let u ∈ A .

For each ε > 0 there is an mε ∈ N which is mε ∈ K (ε) and mε � n . Since (An) is
decreasing, we have Amε ⊆ An and

d (u,An) � d (u,Amε ) � h(A,Amε ) < ε (21)

for each ε > 0. From the closeness of An, we obtain u ∈ An .
Therefore we get

d (x,An) = 0

for each n ∈ N and each x ∈ A, and so

h(A,An) = sup
x∈A

d (x,An) = 0 (22)

for each x ∈ X and each n ∈ N .
Now, let’s fix ε > 0. Let n0 = n0 (ε) := minK (ε) . Since (An) is decreasing, we

have
d (x,A) � h

(
An0 ,A

)
< ε (23)

for every n � n0 and every x ∈ An ⊆ An0 . Hence we get

h(An,A) = sup
x∈An

d (x,A) < ε (24)

for every n � n0 . From (22) and (24), we get

H (An,A) = max{h(An,A) ,h(A,An)} < ε (25)

for every n � n0 . Consequently, we obtain An
H−→ A . �

Now, from Theorem 1, Theorem 2 and Lemma 1, we can give the following corol-
lary.

COROLLARY 1. Let (An)n∈N
be a nested sequence where An ∈ K (X) for every

n ∈ N .

(i) If (An)n∈N
is an increasing sequence then

I -W − limAn = I -H − limAn = cl

(⋃
n∈N

An

)

for every admissible ideal I on N .

(ii) If (An)n∈N
is a decreasing sequence then

I -W − limAn = I -H− limAn =
⋂
n∈N

An

for every admissible ideal I on N .
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