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FEKETE-SZEGO INEQUALITY FOR CLASSES OF ANALYTIC
FUNCTIONS CONNECTED WITH THE (p,q)-DERIVATIVE

AHMED M. ABD-ELTAWAB* AND ABBAS KAREEM WANAS

Abstract. In this paper, we introduce the new classes Y{\I)q(n.,g.,(p) and 63 ,,(n,¢, ) of

analytic functions in the open unit disc, by using the (p,q)-derivative, which are a generalization
of the known starlike and convex functions of complex order, respectively. Our aim for these
classes is to investigate the Fekete-Szegd inequalities. The various results, which are presented
in this paper, would generalize those in related works of several earlier authors.

1. Introduction

Let A denote the class of all functions of the form
f@) =2+ an", (1)
n=2

which are analytic in the open unit disc U= {z € C: |z| < 1}. Further, by S we shall
denote the class of all functions in A which are univalent in U.
For the function f given by (1) and { € A given by

() =z+ i b,7", (2)

n=2

the Hadamard product (or convolution) of f and { is defined by

(F*0) @) =2+ ianbnz" — (1) ().

For b, =1, n>2, let {(z) =1(z), then (f*I)(z) = f(z).

The theory of g-calculus plays an important role in many fields of mathematical,
physical, and engineering sciences. The first application of the g-calculus was intro-
duced by Jackson in [14, 15]. Recently, there is an extension of g-calculus, denoted
by (p,q)-calculus which is obtained by substituting ¢ by ¢/p in g-calculus. The
(p,q)-integer was introduced by Chakrabarti and Jagannathan in [8]. For definitions
and properties of the (p,q)-calculus, one may refer to [4, 5, 22].
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For 0 < ¢ < p < 1, the (p;q)-derivative operator for f x { is defined as in [1]:
(8 (p2)—(f*+E)(q2) if ze U*:=U— {O} .
Diq(f +$)(2) = e 3)
1(0), if z=0.

From (3) we deduce that
qu(f* O) =1+ 2 [n,p,q] ananrHl (ze ),
n=2

where the (p,q)-bracket number is given by

[n,p,q] = Zp /+1 )
Jj=

n—3 2 n—1

=p"’1+p’q+p 4. +q (0<g<p<l),

which is a natural generalization of the g-number. Clearly, we note that [n,1,q] =
[n], = 11—’2, and lim,__,,- [n,1,4] =n.

By using (4) the (p,q)-shifted factorial is given by
1
[, p,q)t=q »

IM[i,p.q], if neN:={1,2,3,...},
i=1

, if n=0;

and for any positive number 0, the (p,q)-generalized Pochhammer symbol is defined
by
1, if n=0;

67 ’ - 7
19,74l M[6+i—1,p,q], if neN.

i=1
For the functions f and { are given by (1) and (2), respectively, we define the
linear operator Z:A’p “:A— A by

yl’qu() My gp1=Dpg(fxE)(z)  (A>-1, 0<g<p<l, zel),

where the function .#,, , ; .| is given by

[A+1,p,q]
Mp g1 = Z+Z bt

(A>—-1, 0<g<p<l, zel).
= In—1pg]!

It is easy to find that

%“Wf(z):HZ‘Pn,lanz" (A>-1, 0<qg<p<l1, zel), (5)
n=2
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where
y o [l
[A+1,p.dl,
We note that Z:O’l’qf(z) —z2(fx8)(z) as A=0, p=1,and ¢ — 17, where
(f* &) is the ordinary derivative of the function fx . Also, for A = b, = 1, we have
TP (@) = f(2).

b,, n=2. (6)

REMARK 1. The linear operator ﬂgl’p 1 is a generalization of many other linear
operators considered earlier, we obtain the next special cases:

(i) For p =1, we obtain the operators

‘%ﬂg}hqf(Z) =z+ Y O i@t (A>-1, 0<g<1, zeU),
n=2

where
[n,q]!

b, = —
T L),

by,

and

i |
Tr(2) = lim FHYf(0) =7+ Lanbnz" A>—1, zel),
Cf() —1- C f() ngz(x',_l)n_l ( )

where the operators j‘f?’q and 9& were introduced and studied by El-Deeb et
al. [11];

n—1
(ii) For p =1 and b, % v >0, A > —1, we obtain the operator

A < " 'rv+y
Hal ”Z 7L+1 q] [T DID(n+v) ™"

(ze ),

where the operator e/VV’}I was studied by El-Deeb and Bulboacd [10];

(iii) For p =1 and b, = (ﬁ—;)a, o >0, k>0, we obtain the operator

k+1 n,q|! n
i £ (20) e e

where the operator j/kk f‘ was studied by El-Deeb and Bulboaci [9];

(iv) For p =1 and b, = 1, we obtain the the operator

quf( _Z+2 A,—f—l q] 1a"Zn (ZEU)v

where the operator /f was studied by Arif et al. [3];
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(v) For p=1 and b, = (;”:l)!e"“, m > 0, we obtain the g-analogue of Poisson

operator:

m"! [n.q)!

=0 A+,

fq’l’mf(z) =z+ i ( a, 7" (zeU),
n=2

where the operator fql ™ was studied by Porwal [18];

(vi) For p=1 and b, = [%&_1)] ,meZ, >0, u>0, we obtain the g-

analogue of Prajapat operator [19], defined by:

I+0+u(n—1 n,q|! Y
/q[ﬂ _Z+2|: ll—v:—(f ):| M,—f[—l,ql]n_lanz (ZEU).

For two functions f and {, which are analytic in U, we say that f is subor-
dinate to §, written f(z) < {(z) if there exists a Schwarz function s, which (by
definition) is analytic in U with s(0) = 0 and |s(z)| < 1 for all z € U, such that
f(z) = &(s(z)), z € U. Furthermore, if the function ¢ is univalent in U, then we have
the following equivalence, (cf., e.g., [6] , and [17]):

f(2) < ¢(2) < f(0) = £(0) and f(U) C ¢(U).

Ma and Minda [16] unified various subclasses of starlike and convex functions
consist of functions f € A , satisfying the subordination * (( <¢(z) and 1+ Z;,H((Zz)) =<
¢ () respectively, where the function @(z) is analytic in U with Re(¢(z)) >0, @(0) =
1 and ¢’(0) > 0. Seoudy and Aouf [23] introduce the classes of g-starlike and g-
convex functions of complex order, by using the g-derivative and the principle of sub-
ordination. The classes of (p,q)-starlike and (p,q)-convex functions of complex or-
der, by using the (p,q)-derivative in terms of the subordination principle, are defined
by Yatkin and Kadioglu [27].

Let & be a subclass of all functions ¢ € A, which are analytic and univalent in
U with Re(¢(z)) >0, ¢(0) =1 and ¢’(0) > 0. By using principals of subordination
and the (p, q)-derivative, we now introduce the following classes of analytic functions:

DEFINITION 1. A function f* givenby (1)is said to be in the class .77 n,¢,0)
(A>—-1,0<g<p<1, ze),if it satisfies the following subordination condition:

1+ 1 [ %Pprq <<Zjl’p’qf(z)>
N TEPf (2)

-1 =<0(@), )

where n € C*:=C—{0},p € &, and { is given by (2).
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DEFINITION 2. A function f givenby (1)is said to be in the class &, , ,(1,C, ¢)
(A>-1,0<g<p<1,zel),if it satisfies the following subordination condition:

14 1 Dpq (ZDM (%}L’p’qf (7)>)

n Dpq <ygl’p’qf (Z)>

where n € C*, ¢ € &2, and ( is given by (2).

—1] <9(), ®)

We note that:

() A7, (N1,0) =754 (9), and € 4 (N,1,0) =€y (9) (Yatkin and Kadioglu
[27]);

(ii) Yl*’p’q(l,l,(p) :Y;q (@), and 61 4 (1,1,0) =Cp (@) (Srivastavaet al. [25]);

(i) 77, (.1.9) = F4n (@), and €114(n.1,¢) = €4n (@) (Seoudy and Aouf
[23]);

@iv) &Vl*’l’q(Lqu) =7 (@), and 61,14 (1,1,90) = €, (@) (Cetinkaya et al. [7]);

v) limq—d* y]ﬁhq (TI:I: (P) = y;]k ((P) ) and limqﬁlf %l,l,q (TI;I; (P) = %TI ((P) (Ravi-
chandran et al. [20]);

(vi) lim,__;- yfﬁ,q(hlﬂo) =."(¢), and lim, ;- C14(L,1,0) =% () Ma
and Minda [16]);

(vii) lim, -7, (n, 1, %) =75 (n), and limy__;- %114 (n, I, 1+(}—:Z2/3)z>

=%p(n) (0<B < 1) (Frasin [13]);

(viii) limg_j- A, (0,1, 152) =% (), and limg_y- 6114 (0,1, 152) =€ (n)
(Wiatrowski [26]);

(IX) limq—d’ yl*.l.q (1 - ﬁ717 }_J_r;) =" (ﬁ)v and limq—d* %l,l,q (1 - Bal l_J_rz) =
€ (B) (0<B < 1) (Robertson [21]);

x) limg_;- 7, (ne=®cos 6,1, i—f;) =.79(n), and lim,__,- 61,1 4(ne " cos @
1,£)=%¢° () (|6 < %) (Al-Oboudi and Haidan [2]).

In order to derive our main results we need to use the following lemmas of Ma and
Minda [16]:

LEMMA 1. If p(z) = 1 +c1z+ 2% + ¢32° + ... is a function with positive real
partin U and O € C, then

|2 — ﬁcﬂ < 2max{1;]20 —1]}.
The result is sharp for giving two choices of the function p as follows:

14z
p(2) =gz p(Z)—l—_Z-
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LEMMA 2. If p(z) = 1 +c1z+ 22> + 322 + ... is a function with positive real
part in U and ¥ € C, then

—49+2, ¥<0;
c2 — D] < 2,  0<9<L;
49 -2, O>1.
The result is sharp for ¥ <0 or © > 1 if and only if p(z) is i—f; or one of

its rotations. When 0 < ¥ < 1, then the equality holds if and only if p(z) is }fi

or one of its rotations. Further, the result is sharp for & =0, if and only if p(z) =

(%) }—in + (%) i—;i (0< & < 1)or one of its rotations. If O = 1, the result is

sharp if and only if p(z) is the reciprocal of one of the functions such that equality
holds in the case of ¥ =0.

Also the above upper bound is sharp, and it can be improved as follows when
0<v<1:

1
|2 — 0} + 0 |er]* <2 (0<0<§)7 9)

and |
oo = 03|+ (1= 0)]e1]* <2 <§<19<1>. (10)

The Feteke-Szeg6 problem is to find the coefficients estimates for second and third
coefficients of functions in any class of analytic function having a specified geometric
property [12]. For some history of Feketo-Szeg8 problem for class of starlike, convex
and close-to-convex functions, refer to work produced by by Srivastava et al. [24].

In the present paper, we obtain the Feteke-Szegd inequalities for the classes
75 7[1(17, ¢,9) and 6 ,,(n,C, ). The results presented in this paper would gen-
eralize some recent works of [7, 20, 23, 25, 27].

2. Main results

To get our results, we use the similar methods studied by Seoudy and Aouf [23].
Unless otherwise mentioned, we assume throughout this paper that, {, [n,p,q] and
W,_1, n€{2,3} are given by (2), (4) and (6), respectively, p € Z, L > —1, 0< g <
p<l,ueC, neC* and z€U.

THEOREM 1. Let ¢ (z) = 1 +B1z+B2z> + B3z’ +..., where B1,By, ... € R with
By # 0. If the function f given by (1) belongs to the class 5 v (n,8,9), then

B
jas —nad| < 5| (11)

37P7‘]]_ I‘TZ

B b <l_<[3,p,q]—1>% )’}

X max< 1;
{ Bl [2,p,q]—1 ([zvpvq]_l)\}l%‘u

The result is sharp.
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Proof. If f €7} ». (n,¢, ), from (7) and the definition of subordination it fol-

lows that there exist a Scflwarz function u such that

Y e G

n yglvwf@ 1] =0(u(2).

Now, we define the function r with Re{r(z)} > 0 and r(0) =1 by:

14+u
r(z) = (@) =14 uz+m +u’ +....
1—u(z)
Since u is a Schwarz function.
Therefore,
r(z)—1
u
o =o(557)
_ uy 1 ”% 2
—(p<22+2<u2 2)2 +
B 1 ul 1, .1,
=1 - — —= |B;+-uiB
+ 3 z+{2<m 3 1+4u12z +
On the other hand

I+ 1 [ “Pra <ygl7p’qf (Z)>
n TEP (2)

([2,[?,61] — l)q’la

=1+ 22

+% [([3.p,q) — 1)¥2a3 — ([2,p,q] - 1) ¥ia3| Z + ...

Now, equating the coefficients in (14) and (15), we get

(2,p,q -1D¥1 B
ajy = 5
n 2

Biuy _Blu% Bzu%:l

1
From (16) and (17), we get

nBiuy
2(12,p,q) = ¥y’

a3:’7—31[u2_l<1_@_”731)u2}
2([3,p.q] — 1) 2 Bi [2,pq—1) ']

ay =

and

12)

13)

(14)

15)

(16)

7)

(18)

19)
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Therefore, we have

2 7731 _ 2
BT B - ) 2 = 0] 0
where
Igzl(l_&_ni&(l_w“)). Q1)
2 Bl [2,p,q]—1 ([2,p,q]_1)\.}l%

Hence, by applying Lemma 1, we get the Feteke-Szegd inequality, given by (11),
for the class .5 | (1, $.0).

The result is sharp for the function r(z) = li = 1+2z+27>+..., and (12) gives

1 (Do (T2 ()
p 70 ¢ (2) (22)

= l-l-BlZ-l-BzZz-i-....

By comparing (14) and (22), we have u; = 2 and up = 2, and (20) gives the equality
sign in the place of the inequality given by (11).
Similarly, for r(z) = HZ =1+222+..., and (12) gives

i+ 1 [ Prg (%z’p’qf(zﬁ
n TP (2)

1] =9 () (23)

=14+BZ+....

By comparing (14) and (23), we have u#; =0 and u, = 2, then (20) gives the equality
sign in the place of the inequality given by (11). This completes the proof of Theorem
1. O

Similarly, we can investigate the Feteke-Szegd inequality for the class 3, , , (11, ¢, ¢)
in the following theorem:

THEOREM 2. Let ¢ (z) = 1 +Biz+B2z> + B3z’ +..., where B1,By, ... € R with
By # 0. If the function f given by (1) belongs to the class €}, , ,(N,C, @), then

InBi|
[3,[7,‘1} |[3apaq] - 1|LI12

. & T]B] _ [3,[?,6]]([37[776]]_1)\Pz
Xmax{l’ B 2,p.q]—1 (1 [2,p,q}2([2,p,q]—1)‘P§”>‘}'

The result is sharp.
Taking A = b, = 1 in Theorem 1, we get the following corollary which obtained
by Yatkin and Kadioglu [[27], Theorem 4]:

jas — pa3| < 24)
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COROLLARY 1. Let ¢ (z) = 1 4+ Byz+ Baz> + B3z + ..., where By,B;,... € R
with By # 0. If the function f given by (1) belongs to the class y[ﬂq (@), then

B, nB ( 3,p,q]— 1 )‘}
=4+ 1— .
Bi  [2,p,q]—1 2,p,q]— i

Taking p =1, and ¢ — 1~ in Corollary 1, we obtain the following result which
improves the result of Ravichandran et al. [[20], Theorem 4.1]:

2 InBi| .
|(13 —,LLa2’ < mmax{l,

The result is sharp.

COROLLARY 2. Let @ (z) = 1 4+ Byz+ Byz> + B3z + ..., where By,B;,... € R
with By # 0. If the function f given by (1) belongs to the class .y (@), then

2

Taking A = b, = 1 in Theorem 2, we get the following corollary which obtained
by Yatkin and Kadioglu [[27], Theorem 5]:

B
By

|as — pa3| < mfl‘ maX{l;

+(1—=2u)nB,

The result is sharp.

COROLLARY 3. Let ¢(z) = 1 4+ Biz+ Byz® +B3z® +...,where By,B,,... € R
with By # 0. If the function f given by (1) belongs to the class Cﬁlﬂq (@), then

InBi|
3,p.4)|[3,p.q) — 1]

. & nBl _ [371775]]([3»17,6]]_1)
Xmax{l’ Bl Zop.g—1 (1 [2,p,q}2([2,p,q}—1)“>'}'

The result is sharp.

|a3 —#a%’ < [

REMARK 2. (i) Taking n =1 in Corollary 1, we obtain the result obtained by
Srivastava et al. [[25], Theorem 2.1];

(i) Taking p =1 in Corollary 1, we obtain the result obtained by Seoudy and Aouf
[[23], Theorem 1];

(iii) Taking n =1 in Corollary 3, we obtain the result obtained by Srivastava et al.
[[25], Theorem 2.2];

(iv) Taking p =1 in Corollary 3, we obtain the result obtained by Seoudy and Aouf
[[23], Theorem 2];

(v) Taking p =mn =1 in Corollary 1, we obtain the result obtained by Cetinkaya et
al. [[7], Theorem 3];
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(vi) Taking p =n =1 in Corollary 3, we obtain the result obtained by Cetinkaya et
al. [[7], Theorem 6].

Now, we estimate the coefficient bounds for the coefficients of z and z2 of the
functions belonging to the class .75 n,8,0):

THEOREM 3. Let ¢ (z) = 1+ Biz+Byz*> + B3z’ +.... with By >0 and By > 0.

Let
_([2,p,q) = D¥i B+ ([2,p,q] — 1) (B, — B1)]
o1 = R 7 (25)
(13,p,q] — 1)¥2nBj
_ ([2,p,q) = D)¥i [nB] +(12,p,q] — 1) (B2 + B1)]
0y = 5 7 (26)
(13,p,q] — 1)¥2nBj
2,p.ql— Y2 [nB*+ (]2, p.q — 1)B
o= Zpdl =) t[nBi+( P;ﬂ )B2] o
(13,p,q] — 1)¥2nBj
If the function [ given by (1) belongs to the class yj_pq (n,&,p) with n >0,
then /7
nB n’B _(Bra-1% . :
Gord- 1% T Erd DBrd 1% (1 ([zp,q]_l)qq“) f m<oy
B .
|as—pa3| < e if o1<p<on
_ nB _ nsz _ ([37177(1]71)\}’2 ;
T~ e (- (hRas) o
(28)

Further, if 01 < U < 03, then

2 (2.p.g)— 1P l B =5, 2
las — pas | + nB} ([B.p.g]- 1) |az]
(13,p,q) = 1)¥2nBT | —ppgT (1 - ([27,77,1]71)\}'%“)
nB
S 5o 2
([3,p,q] — 1) Y2 @)
and if 03 < U < 02, then
2 (2.pg - 1) BBy 2
a3 — ud3| + nB} (B.p.gl-D¥ |z
(13,p,q) = 1)¥Y2nBY | 0T (1 - ([2,,?,(1]71)\}%“)
nB (30)

<—7.
(13:p,q] —1)¥2
The result is sharp.
Proof. 1If ¥ <0, then (21), gives

< ([27[776]} - 1)\{’% [773%4' ([2,[?,61] - l)(B2 _Bl)]
h ([3,[?,61] - l)\PZnB%
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(2.p.4)-)¥3[nB3+(12,p.9)—1)(B—B1)]
([37[)7[1]71)\112773%

Let 01 =
u<o.
Applying Lemma 2 to (20) and (21), we obtain

, then from the above relation, we have

nBi By nB (1 _(B.pg -1 )] ’

_ a2 < -
’33 K 2| S ([3,[?,6]]_ l)\PZ Bl * ([27P7C]}_ l) ([2,[),(1}— 1)‘}1%

(3D
where U < 0.
Simplifying the Inequality (31), we get the first inequality of Assertion (28).
Again, if we take 0 < 9 < 1, then (21), gives

(12,p.q)—1)¥1 [nBi+ ([2,p,q)— 1) (Ba+ By)]
([3717751}—1)‘1’2773% ,

O] < U<

where o) is given by (25).

([27177(1]71)\11% [773%+([27P7f1]*1)(32+31 )]
([37[)7[1]71)\112773%

Let 0, =
O] < U< 0.

Now, using Lemma 2 for 0 < 9 < 1 in (20), we obtain the following inequality,
which gives the second inequality of Assertion (28):

, then from the above relation, we have

a3 ] < (32)

37P7‘I] - 1)\1127
where 0] < 4 < 0p.
Next, if we take ¥ > 1, then (21), gives that i > 0,,where o, is given by (26).
Now, applying Lemma 2 to (20) and (21), we obtain

nB; By L(l_w )]

_ a2 S | =
B S G | B Bpd =D\ (opa - DR

Simplifying the above inequality, we obtain the third inequality of Assertion (28).
Further, if 0 < ¥ < %, then using (21), we have

(12,p,q) - 1)¥7 [nBi + (12,p,q] — 1) By]
(13,p,q] — 1)¥2n B}

o < U<

)

where o) is given by (25).

([27[)7[1]71)\11% [HB%Jr([szvf{]*l)Bz]
([37[)7[1]71)\112773%

Let o3 =
o] < U < 03.

, then from the above relation, we have
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Now, using (18), (20) and (25), we get

a3 — pa3| + (u — o1) |aa? (34)
[ uy — Vu?
SO — ([2.p.al-1)¥}[nB} [([ ] )1<] )]
- _ 1 2,p,q|-1)¥1|nB1—([2,p,q]-1)(B2—B; (3,p,9]-1)¥2nB; 2
2Bl 0% |+ (u- A= eeot)] ) Gpdotiyan
- B, i [uz—ﬂuﬂ
- _ B By 3, v,
2B.pdl =¥z | +3(1- 32— i 1 —uM%))u%

S L/
2(3,p,ql —1)¥2

Since 0 < ¥ < %, therefore using Inequality (9) of Lemma 2 in (34), we get

uy — ﬁuﬂ + ﬁuﬂ .

nBi
([3,[?,61] - 1)‘P2

Using (25) in (35) and then simplifying, we obtain the following inequality, which gives
Assertion (29):

a3 — pad| + (u — 01) |aa]* < (35)

([zapaq} B I)le%
3,p,q]—1)¥anB}

. nB ~_(B.pg -DYs 22
o [27p761}—1<1 ([2,19,(1}—1)‘1’?“)] 2

|a3 —,LLa%} + i

< nB;
S (B,pygl - 1Y
Similarly, if we take % < 9 < 1, then (21), gives that 03 < U < 0>, where 0, and

03 are given by (26) and (27), respectively.
Using (18), (20) and (26), we get

a3 — 3| + (02 — ) o) (36)
w | i
R | (S ) et
nB [ [uz — ﬁu%]
TR 4 e 33
_ —2([3,;751_ 7, [~ 0ud] + (1 0)].
Now, since % < ¥ < 1, therefore using Inequality (9) of Lemma 2 in (36), we get

|z — na3| + (02— p) |aa|* < (37)
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Using (26) in (37), we get

(12.p,q)—1)'¥i [nB] — (2,p.4) — 1) (B2 + B1)] — | |aa)?
(3:p,q] = 1)¥2n B :

|a3 —,LLa%} +

< nB;
T ([3,p.q) - )Y

Finally, on simplifying the above inequality, we obtain the Assertion (30).
To show that the bounds are sharp, we define the functions 2, ,(n=2,3,4,...)
by

1+1 2Dpq <<7gl7p7q=%pn(z)>
n\ 72 ()

—1 :(P(Zn_l)y gLV(Pn( ) 0= “%;;n( ) ’

and the functions #; and 7 (0<E<1) by

L (D0 (T4 ) -
T T A (@) - :(P<1+§Z>7 Hz (0) = 0= (0)
and
1 (P (7% 2) 1+ £ ,
l+ﬁ fgl’p’qiﬂé(z) -1 :§0<—Z(Z+&)>, 35(0):0:$§(0)_

Clearly, the functions Zy,, £ and Z; belongs to the class y& (n £,0).
The result is sharp for y < oy or y > 0 if and only if f is 2%, or one of 1ts rotations.
When o) < |1 < 02, then the equality holds if and only if f is 2%, or one of its
rotations.

Further, the resultis sharp for ¢t = 01, if and only if f is Z or one of its rotations.
If 4 = 02, then the equality holds if and only if f is £ or one of its rotations. [

Similarly, we can estimate the coefficient bounds for the coefficients of z and 72
of the functions belonging to the class ¢} , ,(1n,$,9):

THEOREM 4. Let ¢ (z) = 1+ Biz+Byz> + B3z +... with By >0 and B, >0
Let

29,4 (12,p.q] — 1)¥3 [nB2 + (12,p,q] — 1) (B, — B))]
n= 3.pd(Bp.gl 1) ¥anB] B
X = [27[776]}2 ([27[776]} - 1)\{’% [773% + ([2,[?,61] - l) (B2 +Bl)] (39)
’ 3,p.4] (3.p.q] — 1) ¥20B; ’
1= [zvpvq]z ([2,p,q] - 1)\{’% [TIB%‘F ([27[776]} - 1)32] ) (40)

[37p7‘ﬂ ([3,17,6]] - l)\Pan%
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If the function f given by (1) belongs to the class €, ,,(n,¢, @) with n >0,

then
rIBZ + nzB%
[37177[1]([37177(1]71)\112 ([27177(1]71)[37177‘1]([37177‘1]71)\112 f < .
| Brdrd-ut RS
2.p.a] (12.p.4)-1)¥?
B . .
s — pa3| < BB d % faosusas
_ nB; _ n’B}
[37177(1]([37177‘1]71)\112 ([27177‘1]71)[37177‘1]([37177‘1]71)\112 . S
| Brdrd-ut Torzr
[27177[1]2([27177[1]71)\11%
(41)
Further, if x1 < U < x3, then
2 22
2 [27P751} ([27p7q}_ l) \Pl
az — Has| + 42)
| 2’ [3apaq}([3apaq}_1)ql2n3%
By —B;
2
< e BpdBra-n Y | el
[2.,[?7(]]—1 [27177[1]2([27177[1]71)\11%
< nBi
[&Pa‘ﬂ ([3ﬂpaq} - 1)\.}127
and if y3 < U < X2, then
2,04 (12 —1)*y?
|a3—,ua%}+ [ ap’q} ([ ap’q} ) 1 (43)

[37p7‘ﬂ ([37[776]} - 1)‘1’21’]3%

B>+ By ,
X nB} _ Brd(Bpg -1, |az|
T Epa T (1 [271?,!1]2([271?,!1]1)‘1’%“)

< nB;
= [37P7‘1}([37P751} - 1)‘{’2

The result is sharp.

Taking A = b, =1 =1 in Theorem 3, we get the following corollary which ob-
tained by Srivastava et al. [[25], Theorem 3.1]:

COROLLARY 4. Let ¢ (z) = 14 B1z+Byz> + B3z’ +... with B; >0 and B, > 0.

Let
o = ([2’pvq}_1) [B%—i_([zapaq}_l)(BZ_Bl)]
1 (B.p.gl— 1B} ’
s = (12,p,q] — 1) [BT +(12,p,q) — 1) (B2 + B))]

(3,p.ql—1)B} 7
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(2,p,q) = 1) [Bi +([2,p.q] - 1) B,]
([3apaq} - I)B%
If the function f given by (1) belongs to the class 7} , (@), then

B B? 3.p.q]—1 . )
{ Bod T T Crd DErad T (1 pd 1“) if pu<on
u

O3 =

By

2 . )
laz — pas| < Bpa-T if op<u<on;

B B? [3,p,9]—1 .
BT T EraDEra T (1 Z.pdl- 1“) if  uzo

Further, if o1 < u < 03, then
2, (2,pg]—1) [ B} ( 3,04 1)]
az — Haz| + 1— B> - as
’ 2| ([37 ) ] I)B% [zapaq}_l [27p7 ] 1 ‘ |
B
S5
[37P7Q]_1

and if 03 < U < Oy, then

(2,p.q) - 1) [ B ( 3,p.q]—1 )] >
a3 — uas| +—1222 2 B, + B+ 11— a
a3 = has| Bopa - DB 27 2pgl -1 g —1H a2

By
<—0
[3717»6]] -1
The result is sharp.

Taking A = b, = p =1 in Theorem 3, we get the following corollary which ob-
tained by Seoudy and Aouf [[23], Theorem 3]:

COROLLARY 5. Let ¢ (z) = 14 B1z+Byz> + B3z’ +... with B; >0 and B, > 0.

(121, 1) [nB?+ (P2l ~ 1) (B2~ BY)|
Ce
() o (2 e
(Bl 1)n8} |
. (21, ~1) [nB3+ (21, —1) B |

(131, ~1)n83
If the function [ given by (1) belongs to the class %4 (@) with 1 >0, then

Let

o] =

n’B} [3),-1 . ,
[3] =N (2l=1)(Bl,-1) <1_ mZ—ﬁ‘) ifoonson

_nB_ : .
a3 — naz| < Bl,-1 if 01 <U<O0

_ mBy n’B} Bl .
A - o () o ezo
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Further, if 01 < U < 03, then

(2,-1)

|a3 - ,LLCZ%| +
(131, 1)n83

2], -1

T]B% [3]q_1 2 nBy
— — -1 < —
31 32 1 —1” |a2| RS [3 _17
and if 03 < U < Oy, then

(2,-1)

(1), ~ 1) n

The result is sharp.

|a3 —,LLCZ%| +

B? B, -1 B
B;+Bl+[£7:4<1_ 4_ ”>]|aﬂ2< _nb1
q

Taking A = b, =N =1 in Theorem 4, we get the following corollary which ob-
tained by Srivastava et al. [[25], Theorem 3.2]:

COROLLARY 6. Let ¢ (z) = 1 4+ Biz+Byz> + B3z + ... with By >0 and By > 0.

Let
o = 2l (2pa) =) [BL+ (2.p.6] 1) (B2 = By)]
1 3..4](3.p.q — ) B ’
. 2,p,41” ([2.p.q) = 1) [B} + ([2,p,q] — 1) (B2 + By)]
’ 3.4 (3.p.q— ) B? ’
o= 2ol (2:pa) V) [Bi 4 (2.p.9] = 1) By

3.r.4]([3,p,q)—1)B?

If the function [ given by (1) belongs to the class 6,4 (@), then

2
[371741](%1774]—1) T ([2717’4]—1)[3’1;174]([3~,p’q]—1) (1 N [[237;),:]]2(([[32’32]—11))“ )
if 1<
las — pa3| < W‘I](EW i < U<y
_ B) _ Bt (1 _ Bpd(Brg-1) u)
B.p.al(B.pg-1)  ([2,p.41-D[3.p.ql(3,p.4]-1) 2.p.4)*([2,p.q)-1)
if uzx.

Further, if X1 < u < X3, then

2 2 B —B
2 [z’paq} ([27P7Q] - 1) 1 2 2
az — pa| + B 3.p.4)(3:p.)~ 1) |az|
| Gl Bopa - DB, ~Erar (1~ k)

< By
h [37p7q] ([3’17"1] - 1)7
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and if y3 < U < X2, then

By + B

2 2
n B} (1_ B.p.al(B.pal-1) ”> la?
(2,p,q]-1) 2.p.af(2.p.4-1)

[3 p. q}([37p761}—1)3%

|Cl3 —,uaz| +

< B
b [37p7‘ﬂ ([37[776]} - 1)

The result is sharp.

Taking A = b, = p = | in Theorem 4, we obtain the following result which im-
proves the result of Seoudy and Aouf [[23], Theorem 4]:

COROLLARY 7. Let ¢ (z) = 14 B1z+Byz> +Bsz> +... with B; >0 and B, > 0.
Let

28 (121, - )[n32 (121, ~ 1) (B2 = B1)]
X1 = )
(8, 1) e

2%, (120, 1) [n83+ (120, 1) (B2+B)
31, (131, 1) nBt

22 (121, — 1) [+ (121, - 1) B
31, (Bl,— 1) nB} |

If the function [ given by (1) belongs to the class 64y (@) with n > 0, then

)

X3 =

nB, n’B _ [3]q([3]q_1) : < vy
B, (3,1 B, (-0 (@, (1 B, M) o Hs
nB : .
|a3—ua%}< W I x<p< s
_ nB, _ n’B _ mq(mq_l) . >
31, (Bl B, (B, ) (1, -1) (1 L A

Further, if x1 < 1 < x3, then

22 (12, 1)’

gy [ Bl (Bl,-1)
3], (31, ~ 1) n3 [Bl T [Z]q—l ! (1 R (1,1 “)] ezl

|a3 —[.m%’ +
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and if y3 < U < X2, then

SHERY
S T Ry
st 3], (13, - 1
X Bz-l-Bl—F[ ] — 1— [2}5 <[2]q_1>u |as|
nB;

The result is sharp.

Taking ¢ — 1~ in Corollary 7, we obtain the following result which improves
the result of Seoudy and Aouf [[23], Corollary 4]:

COROLLARY 8. Let ¢ (z) = 1 4+ Biz+Byz> + B3z + ... with By >0 and By > 0.
Let

2[nB3+ B, —By] 2[nB}+B,+ By
X1 = 3 > 5 X2 = > )
nB] 3nB]
and
p 2 [nB} +B,]
3= " %5537 -
3nB?

If the function f given by (1) belongs to the class 6y (¢) with 11 > 0, then

2g? .
WA (1=3n) f <
a3 — ua3| < 2% if X <M<
2p? .
o et (R DI T 23

Further, if x1 < W < X3, then
2 2 3 2 nBl
|a3—ua2’+ 37]32 |:Bl — B, —nB; (1 —§u>:| las|” < <
and if y3 < U < X2, then
nBi

|@—uah-2 &+Bm4w21—§u las|* < —
21 3nB? ! 2 ST6

The result is sharp.
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