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NEW CONVERGENCE DEFINITIONS FOR
DOUBLE SEQUENCES IN g-METRIC SPACES

MEHMET GURDAL, OMER KISI* AND SAIME KOLANCI

Abstract. In this paper, we define g-convergence and g-Cauchy of double sequences in g-
metric spaces. Also we prove that g-limit is unique and every g-convergent double sequence is
a g-Cauchy sequence. Additionally g-statistical convergence of double sequences is introduced
and the theorem giving the relationship between statistical convergence and strongly Cesdro
summability in a g-metric space is demonstrated. Further, we put forward the notations of g-
lacunary statistical convergence and g-strongly lacunary convergence of double sequences and
we also present some inclusion theorems.

1. Introduction and preliminaries

In mathematical analysis, a distance function or metric is a generalization of the
concept of physical distance. There are several ways to generalize the concept of dis-
tance function [15]. Because of very big and complex data sets, the description of the
distance function needs to be generalized. Gihler [12] stated that a 2-metric is a gen-
eralization of the usual concept of a metric, but various researches demonstrated that
there is no relation between these two functions. For example, Ha et al. [10] demon-
strated that a 2-metric do not have to be a continuous function of its variables. These
opinions led Bapure Dhage [6] in his Ph.D. thesis to investigate a new class of gener-
alized metric space named D-metric space. Dhage [6] aimed to establish topological
features in these spaces and these works formed the basis for those who studied in this
field for a long time. In the studies [19, 20], the authors denoted that most of the claims
concerning the basic topological features of D-metric spaces are incorrect, nullifying
the validity of many results acquired in these spaces.

Among them, the notion of G-metric space that has been studied by Mustafa and
Sims [18] is a different generalization of the ordinary metric. Metrics in this space are
distance between three points. These properties supply if G(x;y;z) is the perimeter of
a triangle with vertices at x; y and z in R?, further getting ¢ in the interior of the
triangle denotes that (G5) is best possible. G-metric function is a distance function
that generalizes the notion of distance between 3 points. For more generalization, Choi
et al. [5] put forward g-metric with degree n, that is a distance between n+ 1 points.
Statistically convergent sequences with regards to the metrics on g-metric spaces was
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presented and significant properties of this statistical form of convergence were exam-
ined by Abazari [1].

A g-metric space and its properties are described by Choi et al. [5] as follows:

Let X be a nonempty set. A function g : X’*! — R* is called a g-metric with
order ¢ on X if it satisfies the following conditions:

(g1) g(uo,ur,---,u) =0 iff ug=uy = - = uy,

(22) g (uo,ur,--+,ur) = g (Up(0), Up(1),** Up(r)) for any permutation p on
{0’1"" ’t}a

(3) g(uog,ur,--- ,u;) < g(vo,vi, - ,v) forall (ug, - ,u;),(vo, - ,v) € X' T
with {u;:i=1,---,t} C{v;:i=1,---,1},

(gq) Forall ug,uy,---,ug,vo,vi, -, vm,w € X with s+m-+1=t¢

g(MOaula"'7uS7V07v17"'an) <g(anulf"au.\'an"aW)

+g(VO,V1,"'7Vm,W7"',W).

The pair (X,g) is called a g-metric space.

THEOREM 1. ([5]) Let (X,g) be a g-metric space with order s. In this context,
the following properties are provided:
(l) g(u7---7u7v,---7v) < g(u,---,u,w7---,W)+g(w7---7w7v,---,\/)7
—— —— ——
s times s times s times
(”) g(u7v7 e 7V)
v

<g(u,w7---,W)+g(w7v,---,v)7
(”l) g(ua"'7ua Tty
——

) V)gsg(u,v,~~~,v) and
s times

g(u,~~~,u,v,---,v) g (t+1-S)g(V,M,"',M),

s times
3

(lV) g(anu17"'aut) < _Zog(uiav7"'7v)a
i=

(V) ‘g(v7u17u27"'7ut)_g(W7ulau27"'7ut)‘ <max{g(v,w7---,W)7g(w,v7---7v)}7
(Vl) |g(u,~~~,u,v,---,v)—g(u,~~~,u,v,---,v)| < |s—§|g(u,v,~~~,v),

S~—— S~——

s times § times

vii) g(u,v,--- V) <1+ (s = 1)t +1—5))gu, - u,v,---,v).
——

s times

As a result, each g-metric space is topologically equal to a metric space derived
from the ordinary metric. This allows many concepts and findings from metric spaces
to be transferred into the g-metric context.

Let (X,g) be a g-metric space, u € X be a point and () be a sequence in X.
Then, we have the followings:

(i) (ug) is g-convergent to u, if for all € > O there exists ngp € N such that
1,00, +,iy = ng, g(u,u,-l,---,u,-t) <E.

(ii) (uy) is said to be g-Cauchy, if for all € > 0 there exist np € N such that

i07i17i27"'ait >n0jg(uioyui17"'aul}) <E.
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Statistical convergence, which is one of our other main subjects, is investigated
by Fast [7] and Steinhaus [25], independently. In 1959, Schoenberg [24] presented
several fundamental statistical convergence properties. After then, numerous research
have been done on the idea of statistical convergence, which has been rapidly stud-
ied. Fridy [9] presented the properties of statistical convergence in a significant study.
Quite recently, Savas and Patterson [23] investigated the lacunary statistical analogue
for double sequences.

The density of the subsets of the set N of natural numbers is base to the concept
of statistical convergence. The natural density of a subset A of N is defined by

O (A )_hm Hk<n:keA}

and the sequence (i) is said to be statistically convergent to a point u, if for every
>0

hm \{k n:lug—ul > e} =0.
If (uy) is statistically convergent to u, it is denoted as st — limu; = u. Also, the se-

quence (uy) is said to be statistically Cauchy sequence, if for every € > 0 and there
exists a positive integer number N depending on € such that,

hm \{k n:lug—uy| =€}t =0.

A double sequence 0, = 6, = {(k,ls)} is called double lacunary sequence if there
exist two increasing sequences of integers (k) and () such that

ko=0, hy=k —k_1—o and lo=0, hy=1I—1l; | — 0, 15— oo
We will utilize the following notation ks := ks, h.s := h-hs and 6, is identified by
Ly ={(k,]) k1 <k <k, and [, <<},
kr

ky—1

Throughout the paper, by 6, = 6, = {(k,,I;)} we will denote a double lacunary se-
quence of positive real numbers, respectively, unless otherwise stated.

In 2022, Abazari [1] extended on these ideas by proposing statistical convergent
and statistical Cauchy analogs of these definitions, as well as their properties in g-
metric spaces. Let t € NJA € N and

qr = qs = and gy := grqs.

ls—l

A(n) :{ilyiza"'ail gn: (i17i27"'ait) EA}7

then
& (A) = hm IA( )|

is called 7-dimensional natural density of the set A.
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DEFINITION 1. Let (u,) be a sequence in a g-metric space (X,g).
(i) (up) is statistically convergent to u, if for all € > 0,

1 . .. .
hinﬁH(zl,zz,w,l,)EN’211,12,~~~,1,Sn,g(u,uil,~~~,u,~,)28}|=0,

and is denoted by ¢S — limu,, = u or u, 5, u.
(ii) (up) is said to be statistically g-Cauchy, if for all € > 0 and there exist iy € N
such that

t!
li}gn;’{(il,ig,---,i,) eN SN STERRN # gn,g(uio,lfiil,"',ui,) 2 8}’ =0.

Pringsheim’s investigations in 1897 and 1900 include double sequences and the
well-known Pringsheim idea of convergence for these sequences ([21], [22]). Finally,
let’s finish by providing the definition of double sequence that we employ in our re-
search.

Let X be a nonempty set and N be the set of all nonnegative integers. The se-
quence (u jk) is said to be double sequence such that the function u is defined as

u:NxN—=X; (j,k) = uj.

A double sequence (ujk) is said to be in the Pringsheim’s sense if for every € > 0O there
exists no € N such that |uj —u| < & whenever j,k > ng. u is called the Pringsheim
limit of (u jk) . Additionally, a double sequence (u jk) is said to be Cauchy sequence if
for every € > 0 there exists ny € N such that |upq — ujk| < ¢ forall p>j>ngand
q>k>ng. Wereferto [2, 3, 13, 14, 16, 17, 26] and recent monograph [4] for relevant
literature for double sequences.

The aim of the present paper is to investigate the new kind of convergence for
sequences in g-metric spaces. The following is how the paper is structured. The lit-
erature review is covered in Section 1 of the introduction. The key findings are then
demonstrated in Section 2. That is, we intend to investigate the concepts of statisti-
cal convergence and lacunary statistical convergence for double sequences in g-metric
spaces and to develop essential features of these concepts.

2. Main results

In this section, we first define g-convergence and g-Cauchy sequence for dou-
ble sequences in g-metric spaces. The idea of g-statistical convergence in double se-
quences is then introduced. Finally, we prove the theorem that explains the connection
between statistical convergence and strongly Cesaro summability after stating the clas-
sically known theorems in double sequences.

DEFINITION 2. (X,g) bea g-metric space and (u;) be a double sequence in X .
(i) (ujx) is said to be g-convergent in the Pringsheim’s sense if for every & > 0
there exists ng € N such that

g(”’”jlh""?”jtkr) <ée
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whenever ji,---, ji =ng and ky,---,k > no. u is called the Pringsheim limit of ().
(i) (u jk) is said to be g-Cauchy sequence if for every € > 0 there exists ng € N
such that
8 (Wjoko Uiy s> Uiy ) < €
forall jo=j1>-->=ji=>noand ko > k; = --- >k > no.

PROPOSITION 1. The following are true.

(i) The limit of a g-convergent double sequence in a g-metric space is unique.

(ii) In g-metric space every g-convergent double sequence is a g-Cauchy se-
quence.

Proof. (i) Let (X,g) be a g-metric space and (u jk) be a double sequence in X .
Suppose that u,v € X are the g-limits of (u jk) . There are ny,n, € N such that

8 . .
g(uauj1k17"'7uj,k,)<t+—1 for all ]17"'7]1‘2”1 and kl,"'7kt>n1,
8 . .
g(vaujlkla"'aujfkf)<H_—l for all ]l7"'a]t>n2 and kl7"'akt>n2-
Set N =max {nj,n,}. If ny > N, then we get
g(u,v,...,v)gg(u,unono,...’unono)+g(un0n0,v’...,v)
<g (u,unon07 ... ’unono) +1g (v, Ungngs " a“nono)
S S
<——t1——=¢
t+1  r+1

Since € is arbitrary g (u,v,---,v) = 0. Therefore, u = v.
(ii) Let (X,g) be a g-metric space and (ujk) is g-convergent to u. There exists
no € N such that

€ . .
g(uaujlk17"'7ujtkt)<H_—l for all Jls s Jt = ng and kla"'ykt Z Ny,
Then we have
t
8 (Wjgko s Wk s~ i) < D8 (i1t 1)
i=0
¢
< — =&
s+l

Thus, (u;x) is a g-Cauchy sequencein X. [
DEFRINITION 3. Let r € N, K C N x N set of positive integers and
K(n7m) = {((jlf"ajl)7(k17"'akt>) EK:jla"';jt gnaklf"akt gm}7
then
t!
O (K) =lim —— |K (n,m)|
nm (nm

is called 7-dimensional natural density of the set K.
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DEFINITION 4. Let (u,,) be a double sequence in a g-metric space (X,g).
(1) (unm) is g-statistically convergent to u, if for all € > 0,

!
11mﬁ’{]b:]t Sn,kl,"',kz gm:g(“’“./lk[:"%”jth) 28}’ =0

and is denoted by gS> — limy, ;utpm = 1 OF Uy 852, u. We indicate the set of all
g-statistically convergent double sequences by g5>.

(ii) (unm) is a statistically g-Cauchy sequence if for all € > 0, there exists jo, ko €
N such that

. 1!
lim
nm (nm

)t ’{jlv"'7jt <n7k17"'7kt <m:g(ujokoaujlklv"'7uj[k,) = £}| =0.

THEOREM 2. Every g-convergent double sequence in g-metric spaces is g -statis-
tically convergent.

Proof. Let (uny) be a double sequence converging to u in g-metric space (X,g).
For & > 0 there exists ng € N such that for all ji,---,j: > no and ky,---,k = ny,

g(u7ujlkl’.“7ujtk/) <E&.
Set
K(n7m) = {((jla"'7jt)a(k1a"'7kt)) € Nl XNI .
Jusde Sk ke < m’g(x’ujlkl""7ujtkr) < 8}7
Then ,
IK (n,m)| > ("'";”0)
and

2
mt!|K(n,[m)\ . t! t nm—my\ _
nm  (nm) nm (nm) t
so g8 —limy, sty = u. U
The converse of Theorem 2 does not generally hold, i.e., if (u,,,) is g-statistically

convergent, then (u,,,) need not be convergent.

EXAMPLE 1. Let X =R and g be the metric as follows;
¢:RP > RT
g(u,v,w) =max{|u—vl|,|lu—w|,|v—w|}
and a double sequence (u,,,) in X be defined as,

u o nm, if n and m are squares,
i 0, otherwise.

It is clear that (u,,,) is g-statistically convergent while it is not convergent normally.
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THEOREM 3. In g-metric space g-statistical limit is unique.

Proof. Let (u,n) be a double sequence in g-metric space (X,g) such that u,, &%,

852
u and uy, — v.

For arbitrary € > 0,

. . €
K(S) = {((.]17"'7]t)7(k17"'7kt)) ENt XNt :g(u7uj1k17"'7uj[k,) > 5}7

. . €
L(E) = {((Jla"'7Jl)a(kla"'7kl)) ENI XNI 3g(V;uj1k17"'auj,k,) 2 Z}

Since tpm 52 u and g, 22> v, we have & (K(¢)) = o and § (L(¢)) = 0. Let M(e) =
C

K(e)UL(e), then & (M(g)) =0, hence & (M(¢)) =
Suppose ((j1,--+Ji),(ki, - k) € M(€), then we have;
g (u,v <g(u ”J’lkl""7”j1k1)+g(”j1k1’v7""v)
S8 (u u.f1k17""uj1k1) +ig (V’ujlku""ujlkl)
<@ (s ) +18 (Vtjiky -+ Wik, )
<t g (ttjoty i) +& (Vs ok, )

N

(EeE) e
2 2u)
Since € > 0 is arbitrary, we get g (u,v,---,v) =0, therefore u =v. O

THEOREM 4. Every g-statistically convergent double sequence is statistically
g-Cauchy.

Proof. Let (unn) be a g-statistically convergent double sequence in g-metric
space (X,g) and € > 0. Then, we have

. t!
lim
n,m (nm)

. . €
i {]l7"'7]t <n7k17"'7kt gm:g(uaujlklf"auj,k[) < m}‘ =

By the monotonicity condition and the definition of g-metric and Parts (iv) and (vi) of
Theorem 1, we get

t
8 (”jokw”jlkl""”jtk/) < zg (”jiki7”7""u)

i=0
t
< tZg (M»”j,-km"'v”jiki)
i=0
t
gtzg (u7uj1k1"“ujtkt)
i=0
<t(t+1) £ =¢€.
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So
. . €
{]1,"',]r <nky,- ke <m:g(u,ujlkl,---,u,/,k,) < m}
C{j1, e Smkpye ke <m g (joky Wjiky s+ Wik ) < €
Therefore
1'11%1 (ntril)’ Hjl:""jz Sk, ke <mtg (g, gk stk ) < 8}| =1

Thus (upy) is a statistically g-Cauchy sequencein X. [

Statistical convergence is closely related to strong Cesaro summability.

DEFINITION 5. Let (X,g) be a g-metric space and (u,,) be a double sequence
in X. The sequence (uy,) is said to be strongly g|C, 1, 1]-statistically convergent to u

if " " "
E%l(nmy. ) 1% Zk lg(”»”nkl»--wu,-,k,)zo.
’ Juynd=lky e ke=

(AN
This is denoted by g[C,1,1] — limuy, = u Or Uy g[;>] u. The set of all strongly

g[C,1,1]-statistically convergent double sequences is denoted by g[C,1,1].

THEOREM 5. Let (X,g) be a g-metric space and (uny) be a double sequence in

this space. Then,
. glc,L1] . 252
(i) Uy " —  u implies Uy, — u.
.. . . g8 .. glC,1,1]
(ii) If g is a bounded function, w,, — u implies uy, — u

C1,1
Proof. (1) Suppose that uy,, g[—>]

t! n m
2 2 g(u’ujlkl"“’ujrkr)

u and € > 0 be given. Then,

(nm)' Jlsmsde=1kp k=1
£ n m
> (nm)t . 2 2 8 (”’”jlklf"v”‘j/kz)
Jiji=1 kyyki=1
g(”7”./1k1="'=“jtk/)>8g(”7”j1k17"'7”jrkt)>g
!
2 gﬁ |{jla"'7jt g nakl7"'akl < m: g(uj()k07uj1k1a"'7ujtk,) 2 8}} .

. 852
Then we obtain u,,, — u.

.. . .S
(ii) Let € > 0, g be a bounded function and uy,, £%2, 4. From the boundedness of
g, there exists a positive number N such that

g(uaunlmla"'aun,m,) <N
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for all ny,---,n, and my,---,m,;. Then
t! n m
7 2 2 g(u’ujlkl""7ujtkr)
(nm) j, Gk, T
t! n m
(nm)t ) 2 | . 2;: | 8 (u’ujlkH' o ’ujtkt)
J1ssJi= 1 k=
g(“:“,’lklwwu_,',k,)288(u7uj1k1wvuj,k,))«?
t! n m
+ oy > 1 . 2}; 1 & (it ik,
Jl7‘”7-]t: 17'”7 [=

g(u7u./1k1""’thkt><8g(u7u./1k1""’thkt <€
r! . :
:MW |{J1a"'7]t gnaklf"akt gm:g(uj()koaujlkla"'yujtk,) P 8}’ + €.

. c.1,1
We obtain that u,,, g[—> ] u. O

DEFINITION 6. Let (X,g) be a g-metric space and (u,,,) be a double sequence
in X. The sequence (uy,) is said to be g-lacunary statistically convergent to u, if for
all € >0,

!
rliﬁ‘m(ht—f [{Gokw) € Loy T<w <28 (41005 Wk, ) > €
” rs

=0,

o . &S0 .
and is indicated by gS¢, — limy, s ttym = u OF Uppy ~2 u. We indicate the set of all

g-lacunary statistically convergent double sequences by gSg, .

DEFINITION 7. The sequence (up,) is called to be g-strongly lacunary conver-
gent to u provided that

) t!
lim TN 2 8 (M,Mjlkl [ 7ujwk"’) =0
r,s—00 (hrs) (Jwkw)

clg, 1<w<t

gN,
where 1 <w <1, and is indicated by gNg, — limy, y Uppm = U OT Uy =% u. We indicate
the set of all g-strongly lacunary convergent double sequences by gNg, .

THEOREM 6. Let (X,g) be a g-metric space and (uny) be a double sequence in
X . Then, the following statements hold:

. o) . . gS92
(1) upm —> u implies wym —> u.

. . . 8o, .. &Ny
(ii) If g is a bounded function, up, —> u implies tn

— Uu.

Now, we give relations between g -statistical convergence and g-lacunary statisti-
cal convergence of double sequences in g metric space.
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THEOREM 7. For a double lacunary sequence 0, = 0,5, gS> — limy, ;u Upy = u
implies gSg, — limy, s, ym = u iff liminf, g, > 1 and liminf;g; > 1.

Proof. Assume first that liminf,q, > 1 and liminf;g; > 1. Then, there exists
o > 0 such that g, > 1+ o and g5 > 1+ o for sufficiently large r, s which means that

h, o hy o
s % oand B %
L-o1va ™ L7 11a

If gS> —limy, ; upy = u, then for all € > 0 and for sufficiently large r, s we get

|
(kt—')t |{j17"'ajl < kg, kl;"'akl < s :g(u’ujlk“'”’ujtkt) 2 8}|
rs

!
. }{ -]W’ GI’S’I\wgt:g(u’ujlh’”.’ujwkw)28}}
hrs o .
> — (—[’{(Jw,kw)elrs,1<w<t:g(u,ujlkl,~~~,ujwkw)28}’

a \' 1! ,
g (l—f—a) (hys)' H(Jmkw) €l 1 <Wgt:g(u’ujlkl""’uJ'wkw) 28}}'

As aresult gSg, — limy, ;, Upm = u.
Suppose liminf, g, = 1 and liminf;g; = 1, and suppose without loss of generality
that liminf,g, = 1; means there is an ordinary subsequence {kgj} of the lacunary

ko,
ko‘ = and > j where 0; > 0j_1 +2. Letus
J

establish u as follows:

. 1fn616 and m e N
tnm 0, if not.

So by ([8], p. 510), the rows are not in gNg, however each row is such that u is in
g|[C,1]; therefore u is in gSq. by part (C) of Theorem 6. Also each row is in gS such
that g§ & ¢Sy, . Since the double lacunary sequences 6,, gS» ¢ gSp,,. O

THEOREM 8. For a double lacunary sequence 6, = 0,5, gSq, — limy, y tpym = u
implies g8y —limy, ; Uy, = u iff limsup, g, < oo, limsup, gs; < oo.

Proof. Assume limsup, g, < oo, limsup,gs; < eo. Then there exists Q > 0 such
that g, < Q and g; < Q forall r,s > 1. Assume that gS¢, — lim,, s, 14y, = u and

r\:—|{ Jws Ky Elrs,l\wét:g(u,ujlkl,~ ujww) 8}|

By the definition of gSg, — limy, ; upm = u given € > 0 there exists rp € N such that

N” < g forall r,s > ry. Take

U=max{N,;:1<r<r, 1<s<r}.
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Assume n,m be such that k,_| <m <k, and [;_| < n < I. As aresult, we obtain the
following:

t!
—t }{jla"'ajt <n9k17"'7kt <m:g(uvujlklf"vujwkw) >£}|

t}{]lv : 7jt<kr’kl7"'7k <! g(u Ujikys- ujuku)/g}|

<
( r— lls l
1 r s
= (k l )t 2 Z Nll S Jwok1 ek
r—1ts—1 Jiydw=lky k=1
Urit! t! - S
ol: .
= (k i )t + (k I )t 2 2 Nll7"JW7k17"
r=tls-1 el 1) U =tk =
2 r K
UV t' t‘ 2 2 le~,"'~,./'W7k1:"':kwhjl7""jw~,kl7""kw
ST T Iy
r—lts—1 r—1ts—1 J1sdw=ro+1ky - ky=ro+1 Josdwik sk
2 . ,
UrOt! 1! N“7"'7.1W7kl7'"7kw
S Goilt)  oetlsy)’ P T
(kr—1l5—1) (kr—1l5—1) T dwoka ke =ro.rg Lok ki

r s
ro+1

Jrsdw=rot kg, k=

Urdt! i S
O .
< (k l )t +8 Z Z hjlv"'7jW7kl7"'7kW
r—1ts—1 Jussgw=ro+1ky - kw=ro+1

Ur%t!
(kr— 1ls—1 )[

The converse of this theorem follows similarly to that of Theorem 6. This completes
the proof of this theorem. [J

+eH>.

Theorem 7 and Theorem & imply the following:
THEOREM 9. Let 0,5 be a lacunary double sequence. If
1< limrinfq, <limsupg, <eeand 1 < limsinqu < limsupgs < oo,
r s
then gS> = gSe, .
THEOREM 10. If u = (tnm) € 52N gSe,, then

880, — lim wyy = g8 — limuyy,.
n,m—oo n,m

Proof. Assume g7 —1limy, yy—c0 Upy = o and gSg, — limy, .o Uy = 11 such that
Uo 7é uy. Let

t!
lim —[’{jla . 7Jl n k17 akt <m:g(ulaujlkp'"auj,kt) 28}| =1

nmee (m)
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for € < % |uo — u1|. Let us now consider the kI, -th term of the following expression:

r!
W ’{jla"'7jt gnakla"'akt <m:g(ulaujlkla"'auj,k,) = 8}|

al ) psv
= il 7 (]t;kt) S U Ir,.\' 8 (ul7uj1k17' o auj,kt) 2 3
( 14 V) rs=1,1

14
< XY 2 hr,.\'tr,.\'

h rs=1,1
E 7,8
7,8

A 4

= _(k ] )t 21 ) }{((]t,kz) Elr’s:g(ul’ujlk17"'auj,k,) > 8}|
P™V) rs=1,

where |
Irs = h_ ’{(]nkt) 6Ir,s : g(u17uj1k17"'7uj,k,) > £}|

is a Pringsheim null sequence, since gSg, — limy, oo Upy = uy. Since 6y is a dou-
ble lacunary sequence, the last equation satisfies all conditions for a four-dimensional
matrix transformation to map Pringsheim null sequence into Pringsheim null sequence
([11]), and therefore it also tends to zero in the Pringsheim sense. In addition, it is also
a double sequence of

t! . .
W ’{]1a"'7]t gnakla"'akt <m:g(ulaujlkla"'auj,k,) 2 8}|

which does not tends to 1 in the Pringsheim sense. This contradiction implies that
uyg=1uj. U
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