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ON MULTIPLE ¢-LAGUERRE POLYNOMIALS

P. NJIONOU SADJANG, J. C. MUNLUEM MOUNCHAROU
AND SALIFOU MBOUTNGAM *

Abstract. We study g-Laguerre multiple orthogonal polynomials. These polynomials are or-
thogonal with respect to g-analogues of Laguerre weight functions. We focus our attention on
their structural properties. Raising and lowering operators as well as Rodrigues-type formu-
las are obtained and their explicit representations are given. A high-order linear ¢g-difference
equation with polynomial coefficients is deduced. Moreover, we obtain the nearest neighbor
recurrence relation using a g-analogue of the theorem 23.1.11 by M.E.H. Ismail in [12].

1. Introduction

Multiple orthogonal polynomials are a generalization of orthogonal polynomials
in the sense that they satisfy orthogonality conditions with respect to r € N measures
Wi, W [2, 11, 18]. Throughout this paper r will always be the number of weights.
Multiple orthogonal polynomials arise naturally in the theory of simultaneous rational
approximation, in particular in Hermite-Padé approximation of a system of » (Markov)
functions (see for instance [9, 10, 16]).

There are two types of multiple orthogonal polynomials, for more details about
these two kinds we refer the reader to [2] and [12, Chapter 23]. In the present paper
we only consider multiple orthogonal polynomials of type II. Let 7#i = (nj,na,...,n,)
be a vector of r nonnegative integers, which is called a multi-index with length |7i| :=
ny +ny +---+n,. Furthermore let Q,...,Q, be the supports of the » measures. A
multiple orthogonal polynomial P; of type Il with respect to the multi-index 7, is a
(nontrivial) polynomial of degree || which satisfies the orthogonality conditions

/Pﬁ(x)x"duj(x)zo, k=0,...,nj—1, j=1,....r (1)
Q;

In the literature, one can find many examples of multiple orthogonal polynomials
with respect to positive measures on the real line which have the same flavour as the
classical orthogonal polynomials. In the continuous case where the measures can be
written as dj(x) = wj(x)dx, with w; the weight function of the measure u;, there are
multiple Hermite, multiple Laguerre I and II, Jacobi-Pifieiro, multiple Bessel, Jacobi-
Angeleso, Jacobi-Laguerre and Laguerre-Hermite polynomials, see [2, 11, 18] and the
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references therein. Some classical discrete examples are multiple Charlier, multiple
Krawtchouk, multiple Meixner I and II and multiple Hahn introduced [4] and their
difference equations are studied in [15]. Multiple Wilson polynomials and multiple
Meixner-Pollaczek polynomials are defined and studied respectively in [7] and [8].The
multiple g-Charlier orthogonal polynomials and their structural properties are stud-
ied in [6]. In [21], the authors introduced two kinds of the multiple Little g-Jacobi
polynomials and gave their explicit expressions. But neither g-difference equation nor
recurrence relation is given. Recently, in [20], the authors use special transformations
to obtain explicit expressions of multiple Askey-Wilson, multiple continuous dual g-
Hahn, and multiple Al-Salam-Chihara polynomials from the multiple Little g-Laguerre
and the multiple Little g-Jacobi polynomials. But this transformation does not make it
possible to obtain their structural properties.

Since it is known that g-Laguerre polynomials (at least their explicit represen-
tation) can be obtained as limit case from Little g-Jacobi polynomials, in this paper
the main point will be structural properties of multiple g-Laguerre polynomials. Ro-
drigues formulas, partial basic hypergeometric representation, explicit representation,
high-order linear g-difference equation and the nearest neighbor recurrence relation are
discussed.

The structure of the paper is as follows. Section 2, we recall some basic results
on g-calculus. In Section 3, we will define the multiple g-Laguerre polynomials and
obtain raising operators and then the Rodrigues-type formula using the r orthogonality
conditions. In Section 4, an (r+ 1)-order g-difference equation is obtained. Section 5
deals with the (r+ 2)-term recurrence relations.

2. Preliminary definitions and results
The g-Laguerre polynomials Lﬁ,a)(x; q) are polynomials on the lattice {g*,k =
0,1,2,---}, where 0 < g < 1. They fulfill the following discrete orthogonality relation
[14, p.522]

=X a) k(@) 1-q(9,—¢""", =4 %)= (4" ";q)n
—— Ly (g 59)Ly ' (g 39)dgx = Omn,
/0 (—q)e (@)L (a2 a)dy 20 (" —q,~4:9)= (@)
o> 1. )
where we use the Jackson g-integral [13]
| fwdi=0-a) ¥ q'r@"). 0<q<1. 3)
N—=—o00
Here (a;q), stands for the g-Pochhammer symbol and defined by:
n—1
(a:q)o=1, (a:q),=]]01 —aqb), forn e N,
k=0
and (a;q)e := lim (a;q),, provided that the limit exists. Observe that
@a)e Ny gl < 1. @)

(@)= (aq";q)e’
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The g-Laguerre polynomials have hypergeometric representation [14]

(o) /. (@*“ ) A
Ly’ (x;q) = ————— 1— X
n ( q) (q,q)n 1¢1 qOH_l q q
1 q"—x +otl
= iq" ; (5)
(q,q)nzqn ( 0 |

(b1, ,bs;q)n (4:9)n

with (ap,---,a,)n == (a1;9)n - (ar;q)n-
Using the transformation formula [14, Eq. (1.8.14)]

(aq ":q)n = (@ ' g q)n(~a)'q "), a0,

for the specific case a =1

(@ "a)n = (=1 " (gq)n, (6)

it is not difficult to see that the monic ¢-Laguerre polynomials are given by

<« (a1,-,arq)n a (M s 2t
q;z) =y @ ana ((_1) q(z)> 7
n=0

iﬁmumrﬁ—wﬁﬁﬁﬁﬁfkmm. (M)

They satisfy the lowering operation

1 _
Dq.ﬁfn(a)(x;q) =g I 23( f )(qx q), (8)

and the raising operation

D, [l :q) 21 x3q)] = —q" 2@
q W(xﬂstI)gn (stI) - l—q W(xva_lsq)zH_l (X,CI)7 (9)
o
where w(x, 0(;q) = an 1s the Hahn derivative defined by [ 13,
h ( ) d D, is the Hahn derivative defined by [13, 14]
—X;q) oo
fW-fla)
Dyf(x)=¢ (I—gq)x ’
7(0), x=0;
with the assumption that f is differentiable at 0.
D, fulfills the power derivative rule [19]
D) = = 3 (-0 i 0 Dt
k=0 q
2 Dk ), (10)
( )"x k=0 (@:9)x
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where the g-binomial coefficient is defined for positive integers n, k, as

Repeated application of the raising operator gives the Rodrigues formula

n(n+o)

n oy 4 . (a)/..
Dyw(x,00+n;q) = w(x,o59) % (x:q). (12)

(g—1)"

REMARK 1. It is well known that the g-Laguerre and the Little ¢g-Laguerre are
related by [14]

P N L) O T
Pu(x,q"%q )_MLH (—x19),
which for monic polynomials reads
pu(eg %q ") = 4" (~x:q). (13)

1

1
If we change g to ¢~', x to —x and take into account that Ev=. = (¢x%:q) o »
X, e

|x| < 1, then (12) is transformed to the Rodrigues formula for Little g-Laguerre/Wall
polynomials in [14, Equation (14.20.10)].

REMARK 2. Taking a = (1 —¢)u and x = ¢*, the Little g-Laguerre/Wall poly-
nomials defined in [14, formula (14.20.1)] by:

1 g x| x
Pn(x,a,q) = m2¢0 < qu_l q; 5) 9 (14)
become the g-Charlier polynomials C,’;f »(s) given in [1, formula (85), page 317], i.e
—n -8 Ky
200 (q A q; (16]7);1 . This connection establishes a relationship between the
- —q

q-Laguerre polynomials and the g-Charlier polynomials on the lattice x(s) = ¢° due to
(13).

Based on these two previous remarks, we will show how algebraic properties of
the multiple g-Charlier polynomials studied in [6] are equivalent to those of multiple
g-Laguerre polynomials in section 2.

. . . . . i
REMARK 3. Notice that the monic multiple g-Charlier polynomials Cqﬁ(s) on
S

the lattice y(s) = el 1 studied in [6] and the monic multiple g-Charlier polynomials
q—

Cg (s:q) on lattice x(s) = ¢* are connected by Cg (s:9) = (q— 1)"7‘C5ﬁ(s).
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Recall that for any complex number a the g-number [a], is defined by [14]: [a], =
11 L q#1
—q
In section 2, we use the following result on the determinant of a particular matrix
of Cauchy-type involving g-numbers.
Let C be the matrix defined by

1 1 1
(1] mito—oly [m+o—ol
1 1 1
top—o +0n— 0
C— [n2 2 l}q ["2]11 [na 93 ]q (15)
1 1 1
[+ o —ouly [ny+ 04— 0ly ],

It can be inductively proved by row and column operations using [5, Lemma 3.2 ] (see
also [15, Lemma 2.8]), that the determinant of C is given by:

i inx r—1 r
qlzzs:l H H [as - at]q[nt — Ny + O — (xs]q
t=1s5=t+1
r
H [ns + O — at]q

t=1s=1

detC =

(16)

3. Multiple g-Laguerre polynomials

Multiple g-Laguerre polynomials fﬁa (x;q) are monic polynomials of degree |7
satisfying the orthogonality relations

/ka(x,q/;q)fﬁa(x;q)dqxzo, k=0,1,....n;—1, j=1.2,...r, 17)
0

where aq,...,a, > —1. Observe that all the measures are orthogonality measures for
q-Laguerre polynomials with different parameters o;. All the multi-indices will be
normal when we impose the condition that o; — o;; ¢ 7 whenever i # j, then all the
measures are absolutely continuous with respect to w(x,0;¢)dyx and the system of
functions

x4 xotl o xoatmml o ool ot =l o ot o]

is a Chebyshev system on (0,<). Thus the measures (w(x, a1;q)dgx, ..., w(x, 04;q)dgx)
form an AT-system, which implies that all the multi-indices are normal [18, Theorem
4.3].

REMARK 4. The link between w(x, 0;;¢) and the weight functions vy’ (s) in [6]
(see page 10) makes clear that the orthogonality conditions (17) are equivalent to the
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orthogonality conditions (3.5) in [6] for g-Charlier multiple orthogonal polynomials.
Therefore, g-Laguerre multiple orthogonal polynomials are g-Charlier multiple poly-
nomials studied in [6].

There are r raising operators for these multiple orthogonal polynomials.

THEOREM 1. Supposethat o, ..., 0> 1, with 0; — oi; ¢ 7 whenever i # j, then
— g2t

e g kg ()

D, [w(x,0,9) % (x:q)] =
SJor 1 < j<r, where &1 = (1,0,0,...,0),...,&,=(0,...,0,0,1), are the standard unit
vectors.

Proof. We have

w(x, 0:9) L3 (x;q) — w(qx, 039)- L% (qx3q)
(1—g)x
L% (x:9) — g% (1+x).2% (gx;q)

=w(x, 0 —1;q) = .

D, [wix,a59) Z8 (v:q)| =

fﬁa (x;q) — q%i(1 +x).$ﬁ5‘ (gx;q) is a polynomial of degree |7i| + 1 with the leading
coefficient —g% 1l . Henceforth
— gt

Dy [w(x i) 2 (va)| = < —

w(x, 0 — 1:9) Qji41 (%:9),

where Q);11(x;¢q) is amonic polynomial of degree |7i| + 1. We will show that Q5 11 (x;¢)

satisfies the multiple orthogonality conditions (17) of R (x;g). Since all o — ot ¢

ii+e)
7, whenever i # j, the uniqueness of the monic multiple orthogonal polynomials will

lead us to the conclude that Q4.1 (x;q) = Rl (x;q)-

ii+e)
Using the formula of g-integration by parts for g-integral [13], we get:

_qaj+|ﬁ\ oo
17_(1/0 Hw(x, 0 — 1;q) Qjy41 (3 q)dgx
_qOCjJr‘ﬁ‘ & oo i
= ﬁq /0 (gx)*w(x, 0t — 15q) Qi1 (X3 ¢)dgx

=~y [ wln0510) £ (i) dgr
=0, k=0,1,...,n;.
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For the other components ¢; (i # j) of ¢, we have
_qaj+|ﬁ| oo L
ﬁ/o Xw(x, 0459) Qjiij41 (x: q)dgx

_qajHﬁl —k—o;+o;—1 ~ k+oi—oj+1
= qu e /0 (gx)" TN w(x, o — 15.9) Qg1 (X3 ) dgx
[k+ o — o+

g [* xioo &
= ) X 05i0) 2 (g

k+oi—o;+1 - 5
- [qkﬂx—ajJrlLl/o xw(i, 04:q)- 23 (x:q)dypr = 0,

o —e

k=0,1,...,n; — 1. Hence, all the orthogonality conditions for ., .7 (x;q) are satis-

i+
fied. [

In the next proposition, we give a partial Rodrigues formula for .L”ﬁa‘ (x:q).

PROPOSITION 1. The polynomials .L”ﬁa‘ (x;q) satisfy the following equations

n; & qnj(a'f+|%|) 0—n;é;
Dy \w(x, 39) %y (x;q)} = Ww(x, aj—nj;q)$ﬁ+n;gj_’ (x:q), (19)
Dnj qnjaj zdfnjé‘j 20
q w(x,a5:q)] = WW(X’ o —njiq) nié; (x:9), (20)

for j=1,...,r.

Proof. 1If we apply the raising operator (18) for ¢; recursively n; times to .,2”’?16‘ (x;q),

then
" - — g%t —glei=Dl+ej]
Dy [wlx, 0,9) 28 (x:9)] = x

l—gq l—gq
_q(a_,—n,+1)+|y7,+(n,—1)5,|
. >< l _q

a—n;e;
Xw(x, 0 —nj;q) Ly, o (6:4).

By taking m = 0 in (19), (20) follows. This ends the proof of the proposition. [
Note that if in (20), one replaces o; by a; +n;, it follows that

nj(othrnj) 4 '
WW(X7 aj§ﬂ)=%,_/gj(X;Q)» j=1...n (21

which is the Rodrigues formula for the polynomials .Z afz‘ (x;q), j=1,...,r.
757

Dy [w(x, et +nj:q)] =
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THEOREM 2. The multiple q-Laguerre polynomials have the following Rodrigues
formula representation

) () o N
agﬁa(x’q) — (q l) ( ;x’q)“ H (x—aqu./xOCj+nj>

AR (22)
i nj (O!,'Jr > nj> Jj=1 (_x7q)oo
1 j=1

Proof. We write relation (20) with j = 1 and multiply both sides of the resulting
w(x, 00:q)

equation by = x%27 %t 1o get
w(x, 0 —ny;q)
X2t D y(x a3q)] = " w(x, 0p; )faﬂ”a (x;q)
q 9 lsq (q—l)nl 9 2sq nlEI 9q N

Next, applying (19) with j =2, we get

D [xO‘Z—O‘1+”1D21 [w(x, al;q)ﬂ

g™ gr(m+o) L
- x wlx, 00 —n23q) L, 5" (x ).

(g=1)m  (g—1)
Continuing this process we arrive at
DZr (xO(r*OCr—rH’lr’lDerl) (xar—lfar—Z*‘rnr’ZDerZ) (xOCZ*OClJrnlDZl) w(x, a13q)
qnlal qnz(nl-HZQ) an(n1+n2+'~+n,,1+a,) Gii
— X X oee X Ol — Ny O :q).
PR e
Then we replace each o by o +n; to obtain
(DZ’xa’+n’) (x_a’*IDZ”lx"’*I) (x_o‘lDZl) w(x,oq +ni;q)

S (estzioim) )
. (.
= PR w(x, 0::q) L5 (x:q).

Hence the required expression is indeed proved. [

As consequence, we have a non-terminated basic hypergeometric representation
and explicit expressions using finite sums which are limited cases of the multiple Little
q-Jacobi polynomials of the first kind P;(x, &, b;q) with the normalization P;(0, &, b;q)
=1, (b= ¢P), when using the substitution x — —b~ !¢~ 'x and then taking the limit
b — —oo (see [21, Equation 2.7]).

COROLLARY 1. The multiple q-Laguerre polynomials have the following basic
hypergeometric representation
q; —X>;

OC_,'-‘rl;

\II.',:IX

(q q)n_,-
1 q

q
; r+10r o+l o+l
z,;ln,-<a,-+zn_,-> gt g
q =1

o+l oo poetnetl (g
) )

L xq) = (—x1q)

|x| < 1.
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PROPOSITION 2. The multiple g-Laguerre polynomials are given by the relation

‘fa 2 i % (ﬁq i(njrojtl) (q ,61) ) [%] q(’;)xm, 23)
j q

> 3 (@) ) Lm
ji—1
o+'3 i+l

r nj;CI)k-(q - ;6])n'
i : J
= K, Z 2 H 5!

1=0  k=0,=1 ot 2 kit
a5
X q(k{)+k_/ (nj405+0) o Sacicjrkiky K| -

where K ; = (—1)\ﬁ|q_z'r:1""(a"J’Zlf’:l"f) .

Proof. The proof of the second expression is the same as the proof of the explicit
expression of the multiple Little g-Jacobi polynomials of the first kind. (see [21, The-
orem 2.3] or [20, Theorem 3.2]).

Let us now prove (23). We apply (10) recursively to the Rodrigues formula (22)
then, setting

q—] |7
Aiig = —; ( )I, ,
qzi:l nj (OCH-ZJ-:I n_,-)
we have
~ - iy .
gﬁa(xﬂ) = (—x;q)mAﬁ’q <x_a/qux0‘j+”j> (7
j=1 —X;q)e
r ni xoa+n
=(—x ‘I)ooAﬁﬂ H <x7aqu]xO‘j+”j> |:x061DZ1 (_7]
j=2 X5q)eo
= M n qkl(nHrOtHrl)M H ( oy Jxaﬂr"]) ;
(1 - ) k1=0 (q q)kl j=2 (_Clklx;q)oo
= (—x Z 2 qk1 nitoq+1) (C] ,Q)kl .“qkr(n,+a,+1)w
( Inl (4:9)x, @,
1
—
(—q*x; )

We end by using the relation [14, Eq. 1.9.8]
%:(_x;q)ﬂ - E [%] d®xm. O
(—q"x:q)e Mz lml,

As mentioned in Remark 1 we establish a connection with the Rodrigues formula
of the multiple g-Charlier polynomials.
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1

REMARK 5. Changing g to ¢~ and x to —x, the Rodrigues formula (22) is

transformed into
a b <a,-+ 5 n,>
ZLH—x;qg7) = (1—q)llg = ) g )
x jljl <x_°‘-’DZ£1xO‘/+"-f> m
g g (i)

(gx:9)e

,
<1 (x*“fDZ’,lxaf*"f) (gX;q) oo,
=1

which is the Rodrigues formula for the monic multiple Little g-Laguerre polynomials
pii(x,0:;¢q) found in [20]. Thus multiple g-Laguerre polynomials and multiple Little
g-Laguerre polynomials are related by the following formula

pi(x, @:9) = 27 (—x:q7"). (25)
Hence the multiple Little g-Laguerre polynomials satisfy the ¢-difference equation
qlfajflm

———w(x, & — 1;q)piire; (x, 00— €ji9), (26

D1 [w(x, 0j3q)pa(x,0:q)] = =1

for 1 < j<r, with w(x, &tj;q) = (qx;q)~x%, and the Rodrigues formula

= (l_q)lﬁl 1 ! —oi Y o
pii(x, a5 q) = . — ] (x iD" x% ,) (gx:q)w.  (27)
I7il— s ni<0¢i+ s nf) (a53)- J=1 7
i=1 j=1

q

We now take ¢% = (1 —q)u; for 1 < j <r in the expression of pj(x,d;q) and use
the following observations:

w(x,05q9) = (¢:9)=V) (s);  Vx(s+1/2)=(g— 1) y(s+1/2);

D g2 N
o a2y
where 7f(s) = Af(s— 1) = f(s) — f(s— 1) vi(s) = ﬁ and T, is the g-
Gamma function given by,
(4:9)
51q) = —— D= oy
=4 7= T g 01 (28)

(s—1)(s—2) _
g 2 flssqgh), q>1.
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The g-Charlier multiple polynomials is given by

- XP(_Q'\';qil)
cHo(s)="01 307 29
q.,n(s) (q— D) (29)

They satisfy the raising operations
1/2 -
Y f 4q Hji/q Mj1/q

S — C = —Hiv C /44, 30
vx(s+1/2) { )Gyl )} g (g —1) " (5)Cqjite,(s)  (B0)

for 1 < j<r,with i = (1, lr), Bj1/g= (M1, 14;/q, -, 1r) and the Rodrigues
formula

Clals) = (1= (H“) | CRaRN AT

i=1

XH( v ”%))ﬁ; 31)

4

vx(s+1/2)
Equations (30) and (31) are receptively equivalent to equations (4.2) and (4.8) in

[6].

where V :=

4. Difference equations for the multiple g-Laguerre polynomials

The idea here is to find a lowering operator that can be combined with the raising
operators (18) to derive a g-difference equation of orderr+ 1. This idea was applied
in [12] for multiple Hermite polynomials and in [15] for multiple Charlier and Meixner
polynomials. In order to prove the next theorem, we need the following lemmas.

LEMMA 1. The multiple q-Laguerre polynomials fulfil

/ (g, 0 4 159) Dy L% (x;q)dyx
0

O(k+l

/ e, 04 ) L (s ) (32)
andfori=1,---,r,
/0 X hw(gx, o+ 1:9). 250 (g q)dyx
= 9k,i/ Xw(x, ak;q).,?ﬁa‘(x;q)dqx; (33)
0

Ot

q" q
1—gq [nk—|-OCk—OC,'}q

where Oy ; =
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Proof. We use the following relation

q*(l+x)—1

D o;q) =
qW(X, q) q_ l

w(x,a—1:q), (34)

to obtain

X gt o (14 x) — 1]

! w(x, 04%:q).

D, [x""flw(x, oy + l;q)] =

Then, using the g-integration by parts together with the orthogonality condition of
Z2(x;q), we obtain:

/ % Y(gx, o + 159) Dy LY (x; q)dyx
0
Y /O (gx)™ " w(gx, o + 15q)Dg L8 (x:q)dyx

— _ql_nk/o D, [x”k_lw(x, oy + l;q)] .,Sﬂﬁa‘(x;q)dqx

oy+1

q = G
= 0y;q) L (x,q)d,
[t ouiq) 7 (q)dgs

Thus (32) holds.
On the other hand, using the raising operator and again the g-integration by parts,
we getfori=1,---,r,

|t 00:0) 28 (s q)dx
0

— /O x"k"rak—aiw(x, ai;q)a?ﬁa (x;q)dqx

q_l “ n -0y e
= 25T Jo K=o, [ (x, 06+ 1; q)f (x q) | dgx

(g=D)[m+ oy —
qa,Hn

—Ockl_ n+a_a o a-te
It q);ﬁ"' d ’]‘1/0 X Nw(gx, on + 15q) 255 (g6 q)dgx.

Ba [ e hu(gn ait 1:0) 48 g )y

whichis (33). [0

The multiple g-Laguerre polynomials satisfy the following g-derivative rule

THEOREM 3. The multiple q-Laguerre polynomials satisfy

D2 (xiq) = 2 27 axq), (35)
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with

gV I [+ — 1]
§=

I3

3 loj—oulg TI [ov — e
t=1,1#j t=j+1 (36)

()" IgE 0 T s+ 0~ e
1=

=1 g+ 0 — o]y :;117t;éi[nt_ni+af_ai]q IT [ni—n+oi— ol

where E(it,0,1) = — Ens andfor 2 <i<

=

&, a,i) =Y (as— o) — (i—1)n 2 ng.

s=2 s=i+1

In particular for r =2, i = (n,m) and @ = (o, 3), (35) reduces to

CmenMgm+p - ;
D) (xia) = d! %%ﬁ%)(fmq)

1—m— n[ ] [l’l—|—OC ﬁ]qgaﬁﬂ)

+q CEYP m—1) (@%:4)-

Proof. We denote by £ the linear subspace of polynomials of degree < |7i| — 1
which are orthogonal to all polynomials of degree < n; —2 with respect to w(gx, o +

. . . 0+¢j
l,q), j=1,---,r. Itis easy to see that each polynomial DS%_Ej’ (gx;q) belongsto £ .

Using integration by parts together with the relation (34) and finally the orthogo-
nality conditions of .Z¥(x;q) we get:

| wta.og+ 10D, L = a7 [ (@0 wlax. 0+ 10D, L (k)

& pes
— 4 [k [q“ﬁk“(l +x) —1|w(x, 0;9)
g—1Jo

X fﬁa‘ (x;q)dgx
=0, k=0,..n—2.

Since qu}éa)(x; q) is a polynomial of degree |ii| — 1, this shows that Dq.,?ﬁa‘ (x:q) €
& . In the next step, we will show that D, .,Sfﬁ(a)(x;q) can be represented by a linear
combination of polynomials DS,Q( ) )(qx q),j=1,.

All indices being normal, any polynomial of @ can be written with |7| coeffi-
cients and (|7i] — r) conditions are imposed on Z7; so dim & < r.
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Assume that
2 42 (aviq) = (37)

where all the d; are constants. Multiplying (37) by x~1 and integrating with respect
to w(gx, o4+ 1,q), we get

r oo
2 / X w(gx, o+ 1, q)o% - (qx q)dgx =0.

Using (33) leads to

"Inlmk K Lo (xg)dx ]S ! d;=0, k=1,
X(X =7 (X X - a;=VY, =L,z,--,0
Dy s o) G ) X o
7|+ o _
and since 7 1/x""w(x,ock;q)ﬁﬁ“(x;q)dqx;éO,We obtain
-1 Jo
i 1
> =0, k=1,2,---,r;

which can be written Cd” = 0, where C is given by (15) and d = (dl, coeydy).
Since, det C # 0 as given in (16), then d; =0 for j=1,.

Hence we can write D,.Z; & (x;4) as linear combination of polynomlals .,Sﬂ J (qx q),
j=1,...,r.

To complete the proof, we compute the coefficients of the linear combination. We
suppose that n; > 1, j=1,...,r and

D‘fa (x;q) Ed‘fﬂte’(qxq)
Jj=

If we multiply both sides by x*~! and integrate with respect to w(gx, o + 1;q), k =
1,...,r, then we get after using Lemma 1,

O(k+l

Yo | vrwin o) L g =T [rin o) £ gy
j=1 0

which gives, since / Xw(x, ak;q).i”ﬁa (x;9)dgx #0,
0

(Xk+l

2 O jd; =

_ 6] o

This last relation can be written as:
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where e = (1,---,1) ; d; = ¢I""d;.
We have det C; = ¥/, (—1)""/det C;;, where Cj; is the (i,j)-minor of C, and
using again (16),

r r

> X ng r—1 r r—1 r
q/:z/;&zx:z,x;&z H H [Ofs _ at]q H H [nt —ng+ 0y — as]q
t=10#js=t+1,s#] t=11#1 s=t+1,5#1
det Clj = m m )

I1 IT [ns + 0 — O‘t}q
s=1s£li=1,1#]

andfor 2 <i<r,

r i—1
Y XY net Y (os—o)
det Cl] — qt:Z.t#is:t.s#i §s=2

— r r—1 r
H H [as - at]q H H [nt — Ny + O — (xs}q
X =11#£js=t+1,5#] t=1t#is=t+1,s#i
r r
M I [+o— ol
s=1sAit=11#]

det C ’ ’
il ,[ aly 11 [on— el
t=1t#]j =j+
Hm+% o]
« =1
r—1 r ’
ni+oai—ojly T [m—ni+o—oily T [ni—n+ 0 — oy
t=1#i t=i+1

, .
with &(7,@,1) = — Y ns and E(7,0,i) = Y (0 — 04) — (i— 1)n Z ng.
s=2 s=2 s=i+1
l i r )
2 ’ﬂdet Ci; which is equivalent to (36). [
=1

Finally d; =

REMARK 6. In (37), if we take m = 0 or n = 0 then we obtain respectively
. _,1=q" 1,
DL (5q) = q' "= 2 P (qrq)
(n,0) 1—g~ (n=10)
and

> —ml_q R 1
D, %0 (x:9) = ¢* 1_q£$£3kwm%

which both are equivalent to (8), since ,ﬁg‘f))(x; q) = .,%,(,ﬁ )(x; q) and %%f )(x; q) =
29 (x:9).
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Combining raising operators (18) and the lowering operator (35), we find a linear
differential equation of order 4 1 for the multiple g-Laguerre polynomials.

THEOREM 4. The multiple q-Laguerre polynomials satisfy

o ) D.,Sﬂa‘(x;q)
oc,D o;+1 q9==n
[H(x ) ( (—qx19)e )
A . r - _ 92456( X )
4q o o o;+1 i \4xsq
= dig% D, x% ", 38
iR | J1 oo (EEL). o

where d; are defined as in Theorem 3.

r 1

Proof. We apply the operator | [] (x‘o‘iqu“"“)] Coa to (35) then, the use
i=1 —4Xx;q)~

of the raising operator (18) and the relation D, f(gx) = q(D,f)(gx) in the right hand

side leads to

l r ] Dq%a_? (qx:q)

H (x—OC,'qu(X,'-‘rl)

i=1 (_‘IX;‘])M
|7+ r L% (gx;
_4 H (x*aiquaiH) 7 (gx:q) :
=1 | Tiy; (—qx:9)=
since the operators x~%D,x%"! i =1,...,r are commuting. [J

COROLLARY 2. The multiple q-Laguerre polynomials X(a’ﬁ))(x; q) (for r=2)

(n,m

satisfy the following third-order g-difference equation:

as(x:q) Dy (x) +a3(x:q) Dy (x) + az (x:q)Dyy(x) + a1 (x:q) Dgy(gx) +ao(x:q)y(qx) =0,

(39)
where
as(x;q) = q* P (g — 122 (1 + gx) (1 + ¢%x);
a3(x;q) = (q— 1)x(1 + gx) [q"‘””s (1+q)x+q* P21+ q) — gPH1 —goH

ax(xv:q) = (1+¢%) [g%P2(1 4 g%) — g+ — P 1] — 1
a1 (x;q) = —q* PGy d)x(1 4 g);
ap(x;q) = —q"*" [anBH(dl +d>)(1+gx) —dig”* —dzqﬁ} ;

1—-m—n [n]q[m—i_ﬂ_a}f{, _ 1-m—n [m}q["“‘a_mq

R T R
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Proof. By Theorem 38, each polynomial o%((noin%)(x,q) satisfies a g-difference
equation
(0.B) (.
Dyl (50)
(—ax;:q)-

n-+m+o. B+1
_dig B (D x gw,ﬁ)(qx;q))

(xPD P (D%t

q—1 (—qriq)es (1)

dog P, X ) ) —
Tt P T (5] =0

from which the conclusion follows after some calculations. [l

Let us now clarify the relationship between the difference equation (38) and the
one satisfy by the g-Chalier multiple polynomials in [6].

REMARK 7. Observe that the change of g to ¢!, x to —x following by a second
change of x to gx, transform the lowering operator (35) to

DuLF (—xiq ) = ¥ 4 (—xg ), (40)
j=1 |

which is the lowering operator of the multiple Little g-Laguerre polynomials; where
A; is obtained by changing g to g~! in the expression of d -

Thus due to the substitutions mentioned in Remark 1 the g-Charlier multiple or-
thogonal polynomials satisfy the following g-difference equation

[ﬁ (79" (q)") | (ACH(5))

i=1

(), (41)

=— ziq‘ﬁ'ujlﬁ,,f l IT (wV"(d"m)")
j:

i=1,i#j
where Aj ; is obtained by changing g% to (1—gq)u; in the expression of A; and

A= o1/

5. Recurrence relations for the multiple ¢-Laguerre polynomials

Type II multiple orthogonal polynomials are known to satisfy nearest neighbor
recurrence relations of the form [12, Theorem.23.1.11]

xXP;(x) = Py (x) + biiPi(x) + Y, aii jPi—e (%), (42)
J=1
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where k=1,...,r and

[ 2w 0px)ax
aq i = . 43)

J —
/Rx"f le(x)Pﬁ_gj(x)dx

For multiple g-Laguerre polynomials, a; ; can be obtained in the same way as in the
proof of the [12, Theorem 23.1.11], but with discrete measures.

THEOREM 5. The nearest neighbor recurrence relations for multiple q-Laguerre
polynomials are

X LH5q) = L g5 >—q'ﬁ<1— e zq "f—1>)z§<x;q>

# 3 E  llls + ol

~.

1
o it o -l
g g R4 44
“ it 0 — 0l ,,e(xq) @

J
where |ii|; = Y n;.
i=1
Proof. From (23) and after some calculations using the relations

(q*T’l’q)n — _l)anw

k)

(@:9)n
(@ " @n1 _ 1y g
(@:9)n1 a ’

i”i(ai"’ Xl,nj)=inial Zn +Z Z ninj,

i=1 j=1 i=1 i=li=j+1

we find that B B .
L (xq) = X4 5qﬁx|"|_l +...,

where
,
8,i=q =1l |7 Z g' il

If we identify the coefficients of x| in (42), then by k. = Oqi — 6y jivé, » Which gives

big=—q"" (1— e Zq )>. (45)
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For the recurrence coefficients aj ;, we use (43) and the Rodrigues formula where we
- —2";<0€:+Zn,>
get K5 = (q —l)|"‘q =1 .

/mx"fw(x, aj;q)fﬁa (x;q)dgx
0

dyx;

had r
=K ﬂ/ xanraj*OtanlxnlJral x*aiD”ixaiJr"i
o | q g( " )(—x;q)m

and the integration by parts (n; times ) leads to
/ X, 0 ) (3 0)dgx

n11

(n—1)
= an (H nj—l—aj—al—l}q) —n (nj+o— a1)+¥
I

r 1
x"f“"f Ol Ot dyx.
/ ™) g

Repeating this process r times gives

/mx"fw(x, 0j1q)-LF (x:q)dyx
0

r ni—1 l) oo o
Z ni(nj+o; a,)+2 njT o)
= |"‘K (I I II nj+oj—o;—I )q =T / (xidqx.
o .

i=1 1= —X;q)eo

Finally we use (43) with

o Nt I ooxnj+06j71
/o (7“'4)6:(1—61)61 % "’[”ﬁaﬂq/ e e

—X;q)e 0 (—X%¢)w
to find that
L [nj+ o — o]
an,j ql 20,;—2n;— ‘nlj |"‘( 1)2[nj]q[nj+aj]q H [n_Jn_FJa_(‘;] . (46)
i=1,ij I — 1 J ilq

O

COROLLARY 3. The multiple q-Laguerre polynomials f( ( 3q) (for r=2)

}’1 Wl
satisfy the following recurrence relations:

L) wa) = L7, ()

(n+1,m
—q " l=g T =g Mg = 1) =g Pl = )| L (a)

nta—PBly  ap .

m%n—l,; ) (x:9)

gl 22 1)2[m]q[m+ﬁ]q%%mﬁ)l)(ﬂq)'
(47)

tq' RO (g — 1)2["]4[” +aly
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(@B .\ _ cplaB) (.
x'i’ﬂ(n,m) (x’q) - °‘2€(n,m+l)(x’ q)
g =g P g P - 1) g g - 1) L ()

nto—Bly  ep .
Tr—mta— Bl tm 9

BB Bl R0 (),

(48)

tq' RO (g — 1)2["]4[” +aly

REMARK 8. If we take m =0 in (47) or n = 0 in (48) then we obtain

x L (g) = LN () +a7 T (1= ) +q (1 -] 25 ()

g2 (L gy (1 — q"+°‘)gﬁfﬁﬁ)o) (x;q). (49)
2P () = LP) (ag) + a7 P (- ") +q(1 - PLED (i)

_|_q—4m—2/3+1 (1 _ qm) (1 _ qm-‘rﬁ)%(a B) )(x q) (50)

which are both equivalent to the three terms recurrence relation for monic g-Laguerre
polynomials [14, Equation 14.21.6].

In the same way as for the Rodrigues formula, we can obtain the nearest neighbor
recurrence relations for multiple Little g-Laguerre polynomials by changing x to —x
and g to g~

REMARK 9. Notice that:

_X.,?ﬁa(—x;qil) — %aeﬂk(—x;qil)_qlm <l_ql+ak+nk_ Eqaf(q"j—l)> .,?ﬁa(—x;qil)
j=1
+ X g g = D)l + ey
J=1

4 q " [nj+aj (Xl] )01

X
—nitoj— oy

i (g7,
i=1,i#j
Hence the multiple Little g-Laguerre polynomials satisfy the following nearest neigh-
bor recurrence relations

xpi(x,05q) = Pﬁ+e”k(xaa;Q)+q‘m ( g ot — Eqaf )pﬁ(x,&;q)

)

+ 3 g% Y g — 1)2[n)gln; + el
Jj=1

r [l’l i+ o — Oti]q o

x Pii—e;(x,059); (51)
111_117,&,[ —ni+ o — oy /
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and taking ¢% = (1 —q)u; and x = ¢° one gets the nearest neighbor recurrence rela-
. . . . L, .
tions for g-Charlier multiple orthogonal polynomials C’ qﬁ(s, q):

4'Chi(5:9) = Cho (5:0) +4" [ 1= (1=q) | g™ + X i (g% —1) | | Chi(s39)
=

F 30 @™ (=) (g (1~ )~ 1)
j=1

r nj+n; n;
=g
x —CHQ_ 519). (52)
,-:11_7,-[# gl —q" J( )

Conclusion

We have studied multiple g-Laguerre orthogonal polynomials starting from a vec-
tor of g-Laguerre weight functions and working out their Rodrigues formulas and their
explicit expressions. We showed that they satisfy an (r+ 1)-order g-difference equa-
tion and an (r+ 2)-term recurrence relation. An interesting fact is that, the explicit
expression of the coefficients of this relation can be used to study some type of asymp-
totic behavior of these polynomials. For instance, in [21] the author used the explicit
expression of the multiple Little g-Jacobi polynomials to study their asymptotic be-
havior. The recurrence relations are used to study the asymptotic behavior of multiple
Meixner polynomials of the first and second kind in [3] and to study the asymptotic
behavior of the ratio of two multiple Charlier polynomials in [17]. The results in this
paper can also be useful to the study of asymptotic distribution of zeros of multiple
q-Laguerre polynomials.
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