
Journal of
Classical

Analysis

Volume 22, Number 2 (2023), 135–148 doi:10.7153/jca-2023-22-09

OCTONION WINDOWED LINEAR CANONICAL TRANSFORM

ARSHAD AHMAD KHAN ∗ AND K. RAVIKUMAR

Abstract. The Linear Canonical Transform (LCT) is a mathematical transform that generalizes
several well-known transforms, including the Fourier transform, the fractional Fourier transform,
and the Fresnel transform. It provides a unified framework for understanding and representing
a wide range of linear and linear-like transforms, allowing for the analysis and manipulation
of signals in various domains. Recently, Gao et al. extended the notion of LCT to octonion
domains and showed its efficacy in precisely representing the non-transient octonion-valued sig-
nals. However, the octonion LCT exhibits limitations in effectively localizing the frequency
characteristics of non-transient octonion-valued signals. As such, it is imperative to introduce
the Octonion Windowed Linear Canonical Transform (OCWLCT) and explore its fundamental
characteristics. We delve into the inversion formula and the orthogonality relation for the one-
dimensional OCWLCT. Additionally, we derive the inversion formula for the three-dimensional
Octonion Windowed Linear Canonical Transform (OCWLCT).
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