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STATISTICAL CONVERGENCE AND CESÀRO SUMMABILITY OF

DIFFERENCE SEQUENCES RELATIVE TO MODULUS FUNCTION

NAVEEN SHARMA AND SANDEEP KUMAR ∗

Abstract. In the present paper, we introduce and study the strong Cesàro summability of differ-
ence sequence spaces through fusion of modulus function. On the newly established sequence
space, linear structure is imposed and a paranorm is established. Apart from various inclusion
relations, a new variant of statistical convergence is investigated.

1. Introduction

Kizmaz [23] in 1981, initiated the theory of difference sequence spaces E(Δ) as
follows

E(Δ) = {(ξk) ∈ s : (Δξk) = (ξk − ξk+1) ∈ E}, E ∈ {�∞,c,c0}
where s, c0, c and �∞ denotes the spaces of all, null, convergent and bounded scalar
sequences.

Since 1981 to till date, a huge amount of research work has been performed by
many more mathematicians with reference to various extensions/generalizations of dif-
ference sequence spaces.

Bhardwaj and Gupta [5] investigated a new difference sequence space with C1 as
a underlying space in the following ways:

C1(Δ) = {(ξk) ∈ s : (Δξk) = (ξk − ξk+1) ∈C1}

=

{
(ξk) ∈ s :

〈1
k

k

∑
i=1

Δξi

〉
∈ c

}

where C1 is a space of Cesàro summable sequence of order 1, i.e.,

C1 =
{

(ξk) ∈ s : lim
k→∞

ξ1 + ξ2 + . . .+ ξk

k
exists

}
.
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Pictorial inclusions among various well known sequence spaces �∞, c, c0, C1 , �∞(Δ) ,
c(Δ),c0(Δ) and C1(Δ) is shown as:

C1 ⊂ C1(Δ)
∪ ∪

c0 ⊂ c ⊂ �∞
∩ ∩ ∩

c0(Δ) ⊂ c(Δ) ⊂ �∞(Δ)
∩

C1(Δ)

Figure 1.

Thus the space of Cesàro summable difference sequences, i.e., C1(Δ) space turned out
be much wider space than these spaces.

In order to generalize the notion of usual convergence, the concept of statistical
convergence come into existence, the credit of which goes to Fast [15]. The notion of
statistical convergence relies upon the natural density δ (M) , (M ⊆ N) and defined as
(see, [30])

δ (M) = lim
n→∞

1
n
card({k ∈ M : k � n})

provided the limit exists, where card(·) means numbers of elements in the enclosed set.
It is observed that

(i) δ (M) = 0 for M ⊆ N finite.

(ii) δ (M)+ δ (N−M) = 1 for all M ⊆ N .

A sequence 〈ξk〉 is statistically convergent to � if for every ε � 0, δ ({k � n :

|ξk−�|� ε}) = 0, “i.e., |ξk−�|� ε a.a. k. i.e., lim
n→∞

1
n
card({k � n : |ξk−�|> ε}) = 0.”

And � is referred as statistical limit of 〈ξk〉 . By S we will refer the collection of all
statistically convergent sequences.

For more insight into sequence spaces/difference sequence spaces and statistical
convergence one may peep into [3–12, 14, 16, 17, 20,22, 24,27, 28, 31–33, 35–41].

The study of sequence spaces is considered to be incomplete without computation
of duals. The stepping or introduction of dual spaces is due to Köthe and Toeplitz [25]
and for a sequence space E , the following

Eα =

{
〈ak〉 ∈ s :

∞

∑
k=1

|akξk| < ∞ ∀ ξ = 〈ξk〉 ∈ E

}

and

Eβ =

{
〈ak〉 ∈ s :

∞

∑
k=1

akξk < ∞ ∀ ξ = 〈ξk〉 ∈ E

}

are called α - and β -duals spaces of E respectively. Also for E ⊆F , we have FΘ ⊆ EΘ

for Θ ∈ {α,β} .
We recall [13, 21, 26], a sequence space E is
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(i) perfect if Eαα = E .

(ii) Solid (normal) if 〈ηk〉 ∈ E whenever |ηk| � |ξk| , k � 1, for 〈ξk〉 ∈ E .

(iii) Monotone if it contains the canonical pre-image of all its stepspaces.

(iv) Convergence free if 〈ξk〉 ∈ E and ηk = 0 whenever ξk = 0 implies 〈ηk〉 ∈ E .

Motivating from the definition of absolute value function, i.e., |a| ; a ∈ R

|a| =
{

a, if a � 0,

−a, if a < 0.

Nakano [29] in 1953, structured the image of modulus function. By Ruckle [34] and
Maddox [26], a modulus function is a map φ : [0,∞) → [0,∞) such that the following
holds

(M1) φ(ξ ) = 0 iff ξ = 0.

(M2) φ(ξ + η) � φ(ξ )+ φ(η) for all ξ � 0, η � 0.

(M3) φ is monotonically increasing.

(M4) lim
ξ→0+

φ(ξ ) = φ(0) .

As an example, φ1(ξ ) =
ξ

1+ ξ
and φ2(ξ ) = ξ p, (0 < p � 1) are modulus func-

tions where φ1 is bounded and φ2 is unbounded. It is observed that sum of two modulus
functions is again a modulus function. Moreover, composition of a modulus function
over itself is also a modulus function.

Aizpuru et al. [1], Altin [2], Connor [12], Ghosh and Srivastva [18], Gupta and
Bhardwaj [19], Şengül and Et [36], Verma and Singh [40] and some others have used the
idea of modulus function to enrich the theory of statistical convergence and structured
some significant sequence spaces.

We here in this paper appeal the approach of statistical convergence to the newly
introduced space C1(Δ) and have the concept of Cesàro summabilty of difference se-
quences with the aid of modulus function.

Throughout the paper, let λ = 〈λk〉 is a bounded sequence of positive real numbers
with τ = infk�1 λk , Ω = supk�1 λk and C = max{1,2Ω−1} . Also for ak,bk ∈ C , we
have |ak +bk|λk �C[|ak|λk + |bk|λk ] ∀ k ∈ N , and for any μ ∈ C , |μ |λk � max{1, |μ |Ω}
(see, for instance, Maddox [26]).

2. Statistical convergence of Cesàro means of difference sequences

We begin this section by extending the notion of statistical convergence for Cesàro
means of difference sequences of scalars and hence having the concept of C1(Δ)-
statistical convergence. Apart from this, the dual spaces of new originated sequence
spaces are computed.
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DEFINITION 1. A sequence ξ = 〈ξk〉 is said to be C1(Δ)-statistically convergent
to � if for any ε > 0,

lim
n→∞

1
n
card({1 � k � n : |μk − �|� ε}) = 0

where μk = 1
k ∑k

i=1 Δξi is a sequence of Cesàro means for difference sequence of 〈ξk〉 .
In this case we write ξk

SC1(Δ)−−−−→ � . By SC1(Δ) we will notate the class of all C1(Δ)-
statistically convergent sequences.

THEOREM 1. C1(Δ) ⊂ SC1(Δ) , inclusion is proper.

Proof. Let 〈ξk〉 ∈ C1(Δ) with μk = 1
k ∑k

i=1 Δξi → � , for some � ∈ C . Then for
ε > 0, {k ∈ N : |μk− �|� ε} is a finite set. As every finite set is of zero natural density,
so 〈ξk〉 ∈ SC1(Δ) .

For proper inclusion, consider the following example:
Let 〈ξk〉 = {0,−1,−2,−3,−16,−5,−6,−7,−8,−81,−10,−11, . . .} , i.e.,

〈ξk〉 =

⎧⎪⎪⎨
⎪⎪⎩

0, if k = 1

−(k−1)2, if k = n2 +1, n � 1

−(k−1), if k �= n2 +1, n � 1.

Then 〈μk〉 = 〈 1
k ∑k

i=1 Δξi〉 = {1,1,1,4,1,1,1,1,9, . . .} /∈ c but 〈μk〉 ∈ S .
Hence 〈ξk〉 /∈C1(Δ) although it is a member of SC1(Δ) . �

REMARK 1. It is to be noted that not all the sequences are C1(Δ)-statistically
convergent, i.e., SC1(Δ) � s .

Proof. For this, let 〈ξk〉 = 〈k2〉 = {12,22,32, . . .} .
Then 〈μk〉 = 〈 1

k ∑k
i=1 Δξi〉 = 〈−k− 2〉 = 〈−3,−4,−5,−6, . . .〉 /∈ S , implies that

〈ξk〉 /∈ SC1(Δ) . �

DEFINITION 2. A sequence ξ = 〈ξk〉 is said to be C1(Δ)-statistically bounded if
there exists M > 0 such that

lim
n→∞

1
n
card({1 � k � n : |μk| � M}) = 0,

and by SC1(Δ,b) , we have the space of all C1(Δ)-statistically bounded sequences.
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THEOREM 2. Every C1(Δ)-statistically convergent sequence is C1(Δ)-statistically
bounded, but not conversely, i.e., SC1(Δ) � SC1(Δ,b) .

Proof. Let 〈ξk〉 ∈ SC1(Δ) with ξk
SC1(Δ)−−−−→ � . Then for ε > 0, we have

lim
n→∞

1
n
card({k � n : |μk − �|� ε}) = 0, where μk =

1
k

k

∑
i=1

Δξi.

Using the inclusion {k : |μk| � ε + |�|} ⊂ {k : |μk − �|� ε} , the result follows.
For proper inclusion, consider the sequence 〈ξk〉 = 〈0,−1,2,−3,4,−5,6,−7,

8,−9, . . .〉 . Then 〈μk〉 = 〈 1
k ∑k

i=1 Δξi〉 = 〈(−1)k−1〉 /∈ c but 〈μk〉 ∈ �∞ . Thus 〈ξk〉 /∈
SC1(Δ) but 〈ξk〉 ∈ SC1(Δ,b) . �

In view of Theorem 1 and Theorem 2, the pictorial representation (shown in Fig-
ure 1) takes the form as

C1 ⊂ C1(Δ) ⊂ SC1(Δ) ⊂ SC1(Δ,b)
∪ ∪

c0 ⊂ c ⊂ �∞
∩ ∩ ∩

c0(Δ) ⊂ c(Δ) ⊂ �∞(Δ)
∩

C1(Δ) ⊂ SC1(Δ) ⊂ SC1(Δ,b)

Figure 2.

Here from Figure 2, there is no doubt in declaring that SC1(Δ,b) are much wider
spaces than most of the already existing spaces.

THEOREM 3. [SC1(Δ)]β = [SC1(Δ)]α = Γ , the space of finitely non-zero scalar
sequences.

Proof. Obviously Γ ⊂ [SC1(Δ)]β . Let, if possible [SC1(Δ)]β � Γ . Then there
exist some 〈ak〉 ∈ [SC1(Δ)]β such that 〈ak〉 /∈ Γ , i.e., 〈ak〉 has infinitely many non-zero
terms. Then it is easy to construct an increasing sequence 〈ki〉 of natural numbers such
that ki > i2 , i ∈ N , such that aki �= 0. Consider a sequence 〈ξk〉 as follows

ξk =

⎧⎨
⎩

1
aki

, if k = ki

0, if k �= ki

k ∈ N, i ∈ N .

Then

μk =
1
k

k

∑
i=1

Δξi =

⎧⎨
⎩

−1
k

1
aki

, if k = ki

0, if k �= ki
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and lim
n→∞

1
n
card({1 � k � n : |μk−0|> M}) �

√
n

n
= 0 so 〈ξk〉 ∈ SC1(Δ) . But ∑

i
akiξki =

∑
i
1 = ∞ , a contradiction to the fact that 〈ak〉 ∈ [SC1(Δ)]β . Thus [SC1(Δ)]β = Γ . As

Γ ⊆ [SC1(Δ)]α and [SC1(Δ)]α ⊂ [SC1(Δ)]β , hence [SC1(Δ)]α = Γ . �

In view of the fact SC1(Δ) ⊂ SC1(Δ,b) and YΘ ⊂ XΘ for (Θ = α,β ) for X ⊂ Y
we have the following

COROLLARY 1. [SC1(Δ,b)]α = [SC1(Δ,b)]β = Γ .

COROLLARY 2. SC1(Δ) and SC1(Δ,b) are not perfect spaces.

Proof. As (Γ)α = s so we have [SC1(Δ)]αα = (Γ)α = s �= SC1(Δ) .
Similarly we have [SC1(Δ,b)]αα �= SC1(Δ,b) . �

THEOREM 4. SC1(Δ) is not normal (solid) space.

Proof. Let 〈ξk〉 = 〈k〉 = 〈1,2,3, . . .〉 then μk = 1
k ∑k

i=1 Δξi = −1 and so 〈μk〉 ∈ S

and this implies 〈ξk〉 ∈ SC1(Δ) . Now if we take 〈ξ ′
k〉= 〈(−1)k−1k〉= 〈1,−2,3,−4, . . .〉 .

Then

μ
′
k =

1
k

k

∑
i=1

Δξ
′
i =

⎧⎨
⎩

k+2
k

, if k is odd

−1, if k is even

and so 〈μ ′
k〉 /∈ S , i.e., 〈ξ ′

k〉 /∈ SC1(Δ) although |ξ ′
k| � |ξk| ∀ k . �

COROLLARY 3. SC1(Δ) is not convergence free space.

Proof. The result follows from the fact that every convergence free space is nor-
mal. �

THEOREM 5. SC1(Δ) is not monotone space.

Proof. Let 〈ξk〉 = 〈k〉 . Then as in Theorem 4, 〈ξk〉 ∈ SC1(Δ) . Now take 〈ξ ′
k〉 =

〈1,0,3,0,5, . . .〉 . Then

μ
′
k =

1
k

k

∑
i=1

Δξ
′
i =

{
1
k , if k is odd

−1, if k is even.

As 〈μ ′
k〉 /∈ S so 〈ξ ′

k〉 /∈ SC1(Δ). �
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3. Cesàro summability of difference sequences via modulus function

It is well known that for a bounded scalar sequences, both the concepts, i.e., statis-
tical convergence and strongly Cesàro summability coincide. In the present section, we
introduce and study the concept of (φ ,λ )-Cesàro summability of difference sequences
where φ is a modulus function and have the following sequence space

C1(Δ,φ ,λ ) =

{
(ξk) ∈ s : lim

n→∞

1
n

n

∑
k=1

[φ(|μk − �|)]λk = 0

for some �, where μk =
1
k

k

∑
i=1

Δξi

}
.

Here we investigate that for bounded modulus function φ , again both the concepts, i.e.,
C1(Δ)-statistical convergence (introduced in section-2) and (φ ,λ )-Cesàro summability
coincide.

THEOREM 6. C1(Δ,φ ,λ ) has linear structure when equipped with operation of
coordinate wise addition and scalar multiplication over complex field.

Proof. For 〈ξk〉 , 〈ξ ′
k〉 ∈C1(Δ,φ ,λ ) , there exists �, �

′ ∈ C such that

lim
n→∞

1
n

n

∑
k=1

[φ(|μk − �|)]λk = 0 = lim
n→∞

1
n

n

∑
k=1

[φ(|μ ′
k − �

′ |)]λk (1)

where μk = 1
k ∑k

i=1 Δξi and μ ′
k = 1

k ∑k
i=1 Δξ ′

i .
Now for a,b ∈ C

[
φ

(∣∣∣∣∣1k
k

∑
i=1

Δ(aξi +bξ
′
i )− (a.�+b.�

′
)

∣∣∣∣∣
)]λk

=
[
φ
(∣∣∣a(μk − �)+b(μ

′
k− �

′
)
∣∣∣)]λk

� C[φ(|a||μk − �|)]λk

+C[φ(|b||μ ′
k − �

′ |)]λk

� ([|a|]+1)ΩC(φ(|μk − �|))λk

+([|b|]+1)ΩC(φ(|μ ′
k − �

′ |))λk .

The result follows in view of (1). �

It is observed that C1(Δ,φ) has paranorm structure q , where

q(ξ ) = q(〈ξk〉) = sup
n

(
1
n

n

∑
i=1

[φ(|μk|)]λk

) 1
M

, where M = max{1,sup
k

λk}.
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THEOREM 7. For any modulus function φ , C1(Δ,φ ,λ ) ⊂ SC1(Δ) , inclusion be-
ing proper for unbounded modulus function φ .

Proof. Let 〈ξk〉 ∈C1(Δ,φ ,λ ) with lim
n→∞

1
n ∑n

k=1[φ(|μk−�|)]λk = 0 for some �∈C .

Then

1
n

n

∑
k=1

[φ(|μk − �|)]λk � 1
n

n

∑
k=1

|μk−�|�ε

[φ(|μk − �|)]λk

� 1
n

min{φ(ε)τ ,φ(ε)Ω}.card({1 � k � n : |μk − �|� ε}).

This implies lim
n→∞

1
n
card({1 � k � n : |μk − �|� ε}) = 0 and hence 〈ξk〉 ∈ SC1(Δ) .

For proper inclusion, let φ be an unbounded modulus function and λk = 1 for
all k ∈ N . Then ∃ a positive integral sequence {t1 < t2 < t3 < .. .} such that φ(tn) =
n3, n = 1,2,3, . . . .

Consider a sequence 〈ξk〉 for which

μk =
1
k

k

∑
i=1

Δξi =

{
tn, if k = n3

0, if k �= n3.

Here μk = {t1,0,0,0,0,0,0,t8,0,0, . . .} .

Then
1
n
card({1 � k � n : φ(|μk − 0|) � ε}) � n

1
3

n
→ 0 as n → ∞ and hence

ξk
SC1(Δ)−−−−→ 0.

Now

1
n3

n3

∑
k=1

[φ(|μk −0|)] = φ(μ1)+ φ(μ2)+ . . .+ φ(μn3)
n3

=
φ(t1)+ φ(t2)+ . . .+ φ(tn)

n3

=
13 +23 + . . .+n3

n3

=
1
n3

n2(n+1)2

4
−→ ∞ as n → ∞.

This implies 〈 1
n3 ∑n3

k=1 [φ(|μk −0|)]〉 is not convergent and so 〈ξk〉 /∈C1(Δ,φ ,λ ) . �
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THEOREM 8. For a bounded modulus function φ , SC1(Δ) ⊂C1(Δ,φ ,λ ) .

Proof. As φ is bounded so ∃ positive integer K such that φ(x) � K ∀ x ∈ [0,∞) .
Let 〈ξk〉 ∈ SC1(Δ) . Now

1
n

n

∑
k=1

[φ(|μk − �|)]λk =
1
n ∑

1�k�n
|μk−�|�ε

[φ(|μk − �|)]λk +
1
n ∑

1�k�n
|μk−�|<ε

[φ(|μk − �|)]λk

� 1
n ∑

1�k�n
|μk−�|�ε

Kλk +
1
n

max{φ(ε)τ ,φ(ε)Ω}.n

� 1
n
KΩcard({1 � k � n : |μk − �|� ε})+max{φ(ε)τ ,φ(ε)Ω}.

Using the facts lim
n→∞

1
ncard({1 � k � n : |μk − �| � ε}) = 0, φ(0) = 0 and continuity of

φ at 0 , we get lim
n→∞

1
n ∑n

k=1 [φ(|μk − �|)]λk = 0. This implies 〈ξk〉 ∈C1(Δ,φ ,λ ) . �

In view of Theorem 7 and Theorem 8, we have

THEOREM 9. SC1(Δ) = C1(Δ,φ ,λ ) iff φ is bounded modulus function.

THEOREM 10. Let φ1 , φ2 are modulus functions. Then

(i) C1(Δ,φ1,λ ) ⊆C1(Δ,φ2 ◦φ1,λ ) .

(ii) C1(Δ,φ1,λ )∩C1(Δ,φ2,λ ) ⊆C1(Δ,φ1 + φ2,λ ) .

Proof.

(i) Let 〈ξk〉 ∈C1(Δ,φ1,λ ) with lim
n→∞

1
n ∑n

k=1 [φ1(|μk − �|)]λk = 0, where μk = 1
k ∑k

i=1 Δξi ,

for some � ∈ C . As φ2 is continuous at 0 , so for given ε > 0 we can choose
0 < δ < 1 such that φ2(x) < ε for all 0 � x � δ . Put tk = φ1(|μk − �|) . Now

1
n

n

∑
k=1

[
φ2

(
φ1

∣∣∣∣∣1k
k

∑
i=1

Δξi− �

∣∣∣∣∣
)]λk

=
1
n ∑

1�k�n

[φ2 (φ1|μk − �|)]λk

=
1
n ∑

1�k�n

[φ2(tk)]
λk

=
1
n ∑

1�k�n
tk�δ

[φ2(tk)]
λk +

1
n ∑

1�k�n
tk>δ

[φ2(tk)]
λk

=
1
n ∑

1�k�n
tk�δ

ελk +
1
n ∑

1�k�n
tk>δ

[φ2(tk)]
λk

< max{ετ ,εΩ}+
1
n ∑

1�k�n
tk>δ

[φ2(tk)]
λk .



60 N. SHARMA AND S. KUMAR

Now for tk > δ , we use the fact tk < tk
δ < 1+

[ tk
δ
]
. As φ2 is increasing function

so

φ2(tk) � φ2

(
1+
[tk

δ

])
�
(
1+
[tk

δ

])
φ2(1)

� 2φ2(1)
tk
δ

.

This implies

1
n ∑

1�k�n
tk>δ

[φ2(tk)]
λk � 1

n ∑
1�k�n
tk>δ

(
2φ2(1)

δ

)λk

tk
λk

� max

{
1,

(
2φ2(1)

δ

)Ω
}

.
1
n ∑

1�k�n
tk>δ

|tk|λk

= max

{
1,

(
2φ2(1)

δ

)Ω
}

.
1
n ∑

1�k�n
tk>δ

[φ1 (|μk − �|)]λk

� max

{
1,

(
2φ2(1)

δ

)Ω
}

.
1
n ∑

1�k�n

[φ1 (|μk − �|)]λk

−→ 0 as n → ∞

and this proves the result.

(ii) Let 〈ξk〉 ∈C1(Δ,φ1,λ )∩C1(Δ,φ2,λ ) . So ∃ � ∈ C such that

lim
n→∞

1
n

n

∑
k=1

[φ1 (|μk − �|)]λk = 0 = lim
n→∞

1
n

n

∑
k=1

[φ2 (|μk − �|)]λk .

Now the result follows in view of the inequality

1
n

n

∑
k=1

[
(φ1 + φ2)

(∣∣∣∣∣1k
k

∑
i=1

Δξi− �

∣∣∣∣∣
)]λk

=
1
n

n

∑
k=1

[(φ1 + φ2)|μk − �|]λk

=
1
n

n

∑
k=1

[φ1|μk − �|+ φ2|μk − �|]λk

� C.
1
n

n

∑
k=1

[φ1|μk − �|]λk

+C.
1
n

n

∑
k=1

[φ2|μk − �|]λk

−→ 0 as n → ∞
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that is,

1
n

n

∑
k=1

[
(φ1 + φ2)

(∣∣∣∣∣1k
k

∑
i=1

Δξi− �

∣∣∣∣∣
)]λk

= 0.

This implies 〈ξk〉 ∈C1(Δ,φ1 + φ2,λ ) . �
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[32] E. ÖZTÜRK AND T. BILGIN, Strongly summable sequence spaces defined by a modulus, Indian J.

Pure Appl. Math., 25, 6 (1994), 621–625.
[33] D. RATH AND B. C. TRIPATHY, On statistically convergent and statistically Cauchy sequences, In-

dian J. Pure Appl. Math., 25, (1994), 381–381.
[34] W. H. RUCKLE, Sequence Spaces, Pitman Advanced Publishing Program, (1981).
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