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BOUNDED AND UNBOUNDED BERGMAN
TYPE PROJECTIONS ON THE BLOCH SPACE

KAREN AVETISYAN

Abstract. We prove that harmonic Bergman projection is unbounded on the Bloch space % over
the unit ball in R"”. Another family of Bergman type operators is found whose members con-
tinuously project the Bloch space of smooth functions % onto its harmonic subspace h%. A
generalization with more general indices is also given. Our method is mainly based on the tech-
niques of a modified fractional integro-differentiation and two-sided estimates of the reproducing
kernels and integrals.

1. Introduction and main result

Let B be the open unit ball in R", n > 2, and S = dB be its boundary, the unit
sphere. The set of all (real) harmonic functions in the unit ball B is denoted by h(B).

As is well known, Bergman projection operator Tp (see (2) below) continuously
maps weighted Lebesgue space Lf(B) := L? (B; (1 — |x|)*dV (x)) onto its harmonic

onto

(Bergman) subspace hiy(B) := L, (B)Nh(B) for suitable indices, Tj : L, (B) — hg,(B),
e.g. [6,8, 11,12, 14]. Itis also familiar that operator Ty continuously maps L* (B) onto

the harmonic Bloch space 74, that is, Tp :L”(B) onto, h#B,seee.g. [7,11,15]. How-
ever, very little information is known about the action of the Bergman type projections
on the Bloch space. In this paper, we prove (in Section 5) that Bergman projection 7j
is unbounded on the Bloch space 4, that is, Tg (B) ¢ %. That's why we construct
another family of Bergman type operators @ that continuously project the Bloch space
of smooth functions 2 onto the harmonic Bloch space 7% over the ball B C R”, that

onto

is, ®: B —— hA, see Theorem 1 below.

We write T : X — Y if T is a bounded operator mapping X to Y, i.e. ||Tf]ly <
C||fllx forevery f € X. The letters C(c,3),Cq etc. stand for various positive con-
stants depending only on the parameters indicated. Sometimes we will not express
the dependence on the parameters explicitly. For some real-valued quantities A and
B, A =~ B stands for the two-sided estimate c¢;]|A| < |B| < ¢3]A| with some inessen-
tial positive constants ¢; and ¢, independent of variable involved. For typical points
in R" we always write x=r{, y=pn or x=rx', y=py with |x| =r, [y] = p and
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£,m,x',y €S. The notation dV means the Lebesgue volume measure on B normal-
ized to have total mass 1. In polar coordinates, we have dV(x) = nr* 'drdo({),
where do is the (n— 1)-dimensional area-surface measure on S normalized so that
o(S)=1.

DEFINITION 1. For functions f given in B, we define L;; to be a Banach space
under the norm

1£lls :=esssup (1= X)*|f ()], e=0.
XEB
The subspace consisting of harmonic functions is denoted by &3, i.e. hy :=h(B)NL3,.

This norm may be expressed in polar coordinates:

1A lleg = sup (1—r)*Mw(f:r),

0<r<1

where
Moo (fsr) = f(r)ll=s),  O<r<l.

DEFINITION 2. A function f smooth enough in B is said to be in the Lipschitz
space Ay (a0 > 0),if

Illag = |21 f]|, =esssup(1— |x)@ 1| 7l £(x)]
[o]+1-a xeB

is finite. Here [cf] stands for the largest integer less than or equal to o, while 27
is the fractional differentiation operator of order y > 0 which will be defined exactly
in Section 2. Denote by hA, the subspace consisting of harmonic functions, hAy 1=
h(B)NAg.

Note that for f € hA4, the index [o] + 1 can be replaced by any y > o, and equiv-
alent norms appear: ||f]/a, ~ ||@Z_/l £ L3, - For a =0, the limit space A coincides

with the well-known Bloch space of smooth or harmonic functions,

B = A(), hAB = hA(), Hf

2= HQIJCHLT'

The functions u;(x) := log(1 —|x|) € 8\ h#8 and us(x) :=log [(1 —x1)> +x3] € h#
provide typical examples of unbounded non-harmonic and harmonic Bloch functions,
respectively. Bloch spaces of holomorphic or harmonic functions are widely known
(8, 9, 11, 16, 18, 19, 20, 21]), while some information about smooth Bloch functions
is contained in [17].

The following reproducing integral formula (1) is familiar for harmonic Bergman
spaces hb(B),0 < p < oo, o0 > —1, see, for example, [8, 11, 12]. For wider weighted
spaces and a wide range of parameters, see also [4].
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THEOREM A. For B > o> 0, every function u € hi, or u € hllyl(B) is repre-

sentable in the form
2
)= gy LB BV, xeB )

where Py is the reproducing kernel of Poisson—Bergman type defined in Section 3.

Integral formula (1) induces a family of Bergman projection operators

2

Tux::—/l— BBl pg(x,y)u(y)dv(y), x€B. 2

p(u)(x) "TB) (L= )7 P (x,y) u(y)dv (y) 2)
Theorem A asserts that operator 7 is the identity map on Ay, or hl _,(B) or h#. Holo-
morphic counterparts of operators Tﬁ are studied, for example, in [0, 8, 20], while their
harmonic analogues appear in [5, 6, 8, 11, 15, 16]. As already mentioned above, the
operator T continuously projects weighted Lebesgue space L5 (B) onto its harmonic
(Bergman) subspace /g(B), i.e. T : Ly — OO BE for B> (a+1)/p>0, 1< p<eo,

but is unbounded on the Bloch space, Tﬁ( ) ¢ A, see Section 5. For that reason, we
are interested in finding a similar projection result for the Bloch space Z. In the next
theorem, a family of bounded harmonic projections on the Bloch space is found.

THEOREM 1. Forany0< 38 <1,0<A < B -0, s> 1—n/2, the Bergman type
operator

%(ﬁ) /B (1= [y~ Py (x,y) 22, £ (v)dV (3)

boundedly maps the Bloch space of smooth functions 8 = Ay onto the harmonic Lips-

g5 5(f)(x) =

chitz space hAg_g5_; , thatis, ®@g; 5: Ao omo, hAg_s_j, , with the norm inequality
Hq)ﬁvlvé(f)HhAﬁ,,;,;L < C(ﬁ767l7n) HfHAO

In particular, for B = 6+ A and s = A, the operator ®g ; g_; is a continuous projec-

onto

tion of the Bloch space Ao = % onto its harmonic subspace, g ; g_; : B — hH.

REMARK 1. Theorem 1 can be viewed as an extension of [3, Thm 1.3] and [1,
Thm 5] but it cannot be obtained directly from [3] as a limit case o« = 0. On the
other hand, in contrast to the recent papers [10], [9], our operators ®p ; g, are true
projections of the Bloch space of smooth functions Z onto its harmonic subspace h%.

REMARK 2. Itis well known that there are a large number of various norms for the
Bloch space of harmonic or holomorphic functions, see e.g. [9, 11, 16, 17, 18, 20, 21].
For the Bloch space of smooth functions Z, our possibilities are restricted, however we
still can replace the fractional derivative 2! in the Bloch norm || || = || 2" f| = b

the gradient V or % to obtain an equivalent definition of . In addition, the following
inequalities hold:

CllZ iy <FOI+ VAl < sup [V10] +Co| 271 -
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2. Fractional integro-differentiation

In this section we give definitions of the well-known Riemann-Liouville fractional
integro-differentiation operator D% and its modifications denoted by % and 2%,
introduced in [4], [2]. We also review properties of operators 2%, 9}?‘1 and state some
new ones.

DEFINITION 3. (Classical Riemann-Liouville fractional integral and derivative)
For a function f(r) of a single variable r € [0,1), formally define the operator

r o 1
D0 =g =0 0= s [T
D" f(r) = (%) f(r),  DUf(r):=D""Npry(r),  DOf:=f,

where o >0, m—1<a<m, meN, N isthe set of all positive integers.

DEFINITION 4. (Fractional integral and derivative over R”, n > 2)
Given a function f in the unitball B and o > 0,1 € R, let

@r:)? ()C) ::rf(a+l+n/2fl)Dfa{rl+n/2flf(x)}
_ 1 ! a1 A+n/2—1
_m/o (L—=0)*""f(tx)t drt,

@;:)Lf(x) ::r—(l-‘rn/Z—l)Da{ra+l+n/2—1f(x)}, ;= |x|
Actually the role of the subscript A is not essential. For A = 0, we will write

simply 2P := :@f_ o> B € R. The general formula for 2", f implies an explicit form
for fractional derivatives of lower orders /

)
Tnaf () = (AJ“g) f+’a_{ =Af()+2'f(x), 3)
af  ,9*f
Tnaf () = (A+1+g> <A+g> f(X)+2<7L+1+g> rE-l-rzW
=AA+1)f(x)+22. 2" f(x) + D7 f (). @

Definition 4 leads to the inversion formula for sufficiently smooth functions f

94,9, f(x) = 2, ¢ 9% f(x) = f(x), xEB, a>o,x>1—g. 5)

Some other basic properties of the fractional operators such as semigroup and commu-
tation relations are established in [4], [2] and also in the next two lemmas.
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LEMMA 1. For sufficiently smooth function f in the unit ball B, there hold the
Sollowing semigroup and commutation relations (A,s > 1—n/2):

7, 501 = 2,0 9% ), B>oa>0, ©6)
D89, 5 f(x) = “9’3 f( ), o,B >0, (7
()C) n O£+)L }Lf( ) ﬁ > o> 07 (8)

"‘*ﬁ @) =90 ., 741 ), a,B>0. ©)

Proof. Definitions 3-4 together with the inversion formula (5) lead to

7 ﬁ:@“,lf—r (B+A+n/2-1)py~(B—a) {ra+l+n/271r7(a+l+n/2fl)
% Dfa{rl+n/271@r(lxlf(x)}:|
— —(B+2+n/2-1) y— (B~ )[ o+ A+n/2— 1@ a@alf( )}
— 0 (BratAtn/2-1) p—(B-0) [rl+n/2flraf(x):|

=r ¢ @};}(Lﬁ—a) [ f(x)]
1 1
_ 0 1—¢ B—a—1 t toc+7L+n/2—1dt
o —m_m)/0 (1=0f = p(ex)
= n, oc+7L f(x)’
for B > o > 0. This proves formula (6). Now, assume f3 =m is an integer and show
that

Dns Dy f(x) =2, 7D f(x),  meN. (10)

Indeed, first we show a simpler commutation formula
D", T f(x) = @njg{ﬂ“Dm fx)}, x=r(. (11)
To this end, we expand it by using the obvious formula £ a = f(r) =" aa(")fm ,
D" g~ f( ) am ;/1(1_t)a—lf(tx)tl-&-n/Z—ldt
A 8r’” I'(a) Jo

_ 1 ! o—1 m " A+n/2—-1

= m/(; (1 —t) [(tr) Wf(tx)} t dl

=7, "D f(x)},

which coincides with (11). For any m € N there exist constants ¢; = cx(m,n) > 0
(k=0,1,2,...,m—1) with ¢,, = 1 such that

@r’znsf( ) (s+n/2 le{rJn+S+n/2 1f } chr Dkf ) (12)
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On account of (11) and (12), we obtain (10):

n\ naf Eckr Dkg af( {chrka )} a-@nmsf()

k=0

Now by using (6), (10) and Fubini’s theorem we have, with m > 3,

a@ﬁ f( ) a@m @n ﬁ’isﬁ)f( ) @m @rz_ﬁﬁ;ﬁ)@n—k ( ) @/3 @ oc ( )
This completes the proof of (7). Formulas (8) and (9) are combinations of (6) and (7)
together with the inversion formula (5). [

Formulas (9) and (3) immediately imply the next recurrence relation for deriva-
tives.

LEMMA 2. For m > 0,m € Z, and all sufficiently smooth functions, there holds
the recurrence relation

" f=(m+ D)D" f =D (m+ D) f =D D" f = D" Dy f- (13)

Notice formula (13) is a generalization of that with the Poisson kernel Py in place
of the general function f, see [15, p. 911, [16, p. 238]. We next need some standard
asymptotic relations ( > o0 > 0):

do(§) 1
= e reb, (9

(-] 1

/0 (1—rt)B dt“(l_,»)ﬁ—w O<r<l, (15)
(-« ! 1
A m—mwd““m—mmu’ nes, xeB. (16)

The estimates in (14)—(16) are well known and can be found, for example, in [5, 10, 11,
12, 15, 16].

3. Poisson-Bergman kernel P, and upper estimates

The extended Poisson kernel P = Py over the unit ball is given by

1— xPlyP? 1— x> =
P(x,y) = Py(x,y) := = , XEB,yeB.
(1= 2xy+ [x2|y[2)"/2 e,y
Here and afterward, we use the notation [x,y] := /1 —2x-y+ [x[2[y]?, where x-y

stands for the inner product in R".

DEFINITION 5. (Harmonic Poisson—-Bergman kernel in B, [4])
Py(x,y) == 2%P(x,y), x,y€B, a=0,

where the differentiation 2% is understood with respect to either of x or y since
DP(x,y) = ' P(x.y).
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Equivalent or similar kernels mostly defined by means of series expansion in zonal
and spherical harmonics can be found in [4, 5, 6, 8, 10, 11, 12, 15, 16]. Note that
Poisson—-Bergman type kernel Py (x,y) is a harmonic function in B with respect to both
x and y, Py(x,y) = Py(y,x), and also continuously extendable to B in one variable
whenever the second is fixed in B. A derivation of the first order Poisson—-Bergman
kernel P, = 2'P, by a direct differentiation via (3) gives us a closed explicit form of
Py,

2
2|2
n IPy 1 n<1—\X\ I )
Pl(x7y):@1P0(x7y):§P0+r or ZZ[Xy}" [xy]z _4|x|2|y|2 :

An application of formulas (8)—(9) in Lemma 1 to the extended Poisson kernel Py leads
to the useful formulas for the kernels Py, = 2%P, :

Po(x,y) = Znd " Ps(x,), B>a>0, (17)
Poip (%) = Db o Pa(x,y), o, >0. (18)

The growth rate of the Poisson-Bergman kernel and its derivatives/gradients are
well known since 1980s, see [6, 8, 11, 12, 16],
C(o,n)
[x,y|e+n=1
Although estimates (19) are well known, we give below a direct proof for them in-

cluding higher-order gradients and fractional derivatives based on our Definitions 4 and
5.

and |V Py(x,y)| < [i'(a,n)

|Po(x,y)| < Toy]er x,yeB. (19

LEMMA 3. For k>0, meN, and forall x,y € B,

2 el (5) ol < S

Eofen @Y

and

S fyf

Proof. Since [x,y] = [y,x] = |y —x|y|| = |¥ — y|x||, x,y #0, first we compute

0 0

ool = ooy =2y (),

dJ —k__k - —k/2—li r 2_ky'(x/_yr)
E[x’y} - 2 (| yr’ ) 8r’x r| - |x/_yr’k+2 :

From this, the first estimate in (20) follows immediately. Assuming the last inequality
in (20) holds for all derivatives of order 1,2,...,m — 1, the mth order case follows by
induction. Indeed, by the Leibniz rule

Ik M ky (W —yr)
W[x,y} = g1 [x, y[F+2

am—l m—2

d
— (A —k—=2 _ _ 2 —k—2
- ky (x yr) 8rm,1 [x,y} (m 1)k|y| 5rm,2 [x,y} .
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So, by the induction assumption,

(3o

as desired. [

C(k,m) C(k,m) . C(k,m)

S|y —yr | YT T ylkm S Ty

LEMMA 4. Let U denote either of the following four differential operators %,
r%, V, 2. Then

C(m,n)
[x’y]ernfl

C(m,n)

|U™Py(x,y)| < Te =T

and  |Py(x,y)| < (21)

for x,y € Bym € Z,m > 0. In the latter inequality (21), actually we have taken U™ =
P™. Moreover, for general o0 >0,y >0,A>1—n/2,

C(o,n)

A,
}Pa(X,y)}gm and |@ Paxy|\ (OC’)/ n)

Toyla 71 (22)

x,y € B. The differential operator 93 5 in (22) can be replaced by any higher-order
gradient V",

Proof. By the Leibniz rule and Lemma 3, we get

2 p Py(x,y) = (1—\\\\)—8 [,y " —2mly|*r 8m71[ 1"
o MW G Y YT ST Y
_mm=), \y\2 o e, y] ™"
2 3 m—2 )

or

(3) o] < -ty St o Sy Lo o O

[x, y]mn - P, yJrtn=1 0 [y, y]mtn=2 = [ y]mtn=17

Remaining three inequalities in (21) can be proved similarly taking into account the
definition P, = 2"P,.

For non-integer oc >0, m— 1 < oc <m(m € N), by (17), (21), (16) and Definition
4, we get

1
Paln)| = | 70 Pl < s [0 =0 By )

(m—a)
1 s04n/2—1 (1 _ ;\m—o—1
/ t (1—1) g < C(o,n)
0

|x’—y|x|’ a+n—1"

< C((X,m) m+n—1 = |

x =yl
which is precisely the first inequality in (22). Further, the second inequality in (22) can
be proved in much the same way by using the recurrence formula (13) or (18). We omit
the details. [
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4. Proof of Theorem 1

We need a modification of a fractional integration inequality in the weighted spaces
Ly, seee.g. [2],

12,21,z <C@pi)iflz:  «>p>0. i> -2 23)

LEMMA 5. For 0<s=A <3, any harmonic Bloch function u(x) € h9 can be
represented in the form (x € B)

nrz(m LA=bPP P 2 u)av ),

that is, ®g ; g5 is the identity operator on h%.

u(x) =®pg 3 -2 (u)(x) =

Proof. Any harmonic Bloch function u(x) € h%8 can be characterized by @f ;Au €

hﬁ 5> S€e, for example, [13], [11], [9]. Elementary embedding hﬁ 3 C h[%i , and The-
orem A enable us to provide the Bergman representation

@;?,ZA”(’C) =Tp (-@f;%‘) (x) = : /(1 —yP)P 2P Py(x,y) .@,ﬁ;ku(y)dV(y).

n(B) /b

(ﬁl

Applying here the integral :@ , we deduce that

u(x) = Qniiﬂfl).@f’;)tu(x)

- nl"z(ﬂ) /B(l — PP g P PPy (xy) 2P uly)av ().

In view of the identity (8) or (17), 7, P"Y PP, = 9Py = P,. Thus, u(x) =
@ 5 p—2(u)(x), and the lemma follows. [J

Proof of Theorem 1. It suffices to prove

|75, . <€l ]z

for a given function f € Ag(B) and some y> 3 —8 —A > 0. Since f € Ag and 2'f €

L7, formula (8) in Lemma 1 in the form _@,ﬁsf(x) =9, 51+S5 PV f(x),0<8<1,

makes it possible to estimate the norm by using (23) and (3)

H-@rﬁsfuq = H-@ o~ @nlsf

n,6+s

1o SCIZnstllz <2 fl -
3

Therefore 2° f(x) €Ly and (1 —r)OM..( ,“f r) < C||-@1fHL‘]°-
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Differentiation of ®pg 3 5(f) with 27 together with the kernel estimates (22)
yields

(1 _Pz)ﬁ_l |

Y _G=p)
|2 q>,37175(f)(x)| <C B |px— n|rAn1

Wf(pm)|p" dpda(n)

for some y > 3 —0 —A >0 and a constant C = C(f,y,A,n). Replace here x by
Ox, where Q is an arbitrary orthogonal linear transformation Q : R — R”, that is,
|Ox| = |x| for all x € R". Applying also the change 1 — Q1 , we find that

2)p
7701 a(/)(00)] < C [ o Q”n’mﬂ (78, (pem) o dpdat)

/ |px— np/+)t+n 1| nsf(PQTl)|p"71dpdo(n).
Hence, for y > 8 —6 — A > 0, we obtain

1 (1—p)B-!
M(970y5(5r) < CB1 ) | P M0, rip)dp

L(1-p)t |2 fIIL

12" fle
<C(ﬁ,%5,%n)(l_r)k—+y_lm~
Therefore, (1—r)7 P32 M. (270 ; 5(f);r) < C|| 2! fHL‘”’
||97q>,37m(f);|Lh+M<C||91f||LT and Hd)/;,;L’g(f)HAﬁiéik\C“fHAO.

into

Thus, the operator ®@p ; 5 boundedly maps Ag into hAg_5_; , thatis, ®g; 5: A0 —
hAg_s5_3, 0<A< [3 0. It remains to prove this map is onto as well. To this

end, we take arbitrary harmonic function g € hAg_5_;, so P+ i &€ hy C hﬁ | since

B > 6 >0. By Theorem A, _@f;lg(x) =Tp (_@f;lg) (x), and then taking the inverse

(B=2)

operator @;./1 , we obtain

g(x) = n—l“z(ﬁ) /(1 —‘ ‘ )ﬁ 1 [@ (B-2 @ﬁpo(x y)} @/3 (y)dV(y)
- nrz(ﬁ) /B(l ~ P Py) 20 [%}5 @filg(y)} v (y)
=: @5 s(¥)(x),

where we have used Lemma 1 and the inversion formula (5). Now it suffices to show
that the function y := 9, agﬁ & is in hAg. For 0 < & < 1, we apply Hardy—
Littlewood type theorems on (fractlonal) integro-differentiationin harmomc spaces hy,



BOUNDED AND UNBOUNDED BERGMAN TYPE PROJECTIONS 57

see [13]. Also, by using the commutation formula (7), we consecutively obtain the fol-
lowing chain of implications:

-A o0
gEhAﬁ_g_)L ‘grljl g€h5
@1-@2/{% S
29,290 e eny

P'w=2Y (2,290 g) ey

S n

el

l//EhA().

In particular, for =6+ 4 and s = A, by Lemma 5, the operator ®:=®g 3 5_; is the

identity operator on the harmonic Bloch space h%, so ®> = ®, and indeed a bounded

projection from the Bloch space Ay = % onto hAg = h%. The same reasoning shows

that more general mapping ®g 3 s is still a bounded projection from % onto hAg_s_; .
This completes the proof of Theorem 1. [

5. Bergman projection is unbounded on the Bloch space
In this section we show there exists a Bloch function 1y € % whose Bergman

projection is not Bloch, T (uo) ¢ h%. To this end, we need some preliminary integral
estimates.

LEMMA 6. For ot,A > 0 and y € R, the following asymptotic relations hold,

1 2 -Y 1 2 -Y
A—1 o—1 o - 4
1-— 1 ~ 1 1 2
/rt ( 2 <0gl—t) i a( ") <0gl—r> ’ 4

A—1 - -7
ro 2 11 2

1 dt ~ — 1 25
/o(l—t)“‘o‘(()gl—t) a(l—r)o‘<0gl—r> 2

and
A-1 -y -y
rt 2 1 )
T \leeT—; ~— 1 1, @
/()l—t(ogl—t> di 1_y<0g1_r) , <1, (26
A—1 -1
r¢ 2 b
— | log— ~1 2log —— =1 27
/O l—l<0g1—l> di Og( Ogl_r>’ Y ’ ( )
rh=1 2 -y
/ __ log— ) di ~C(4,7)>0, y>1, (28)
o 1—t 1—1¢
asr—1".

All the asymptotic relations except (28) can easily be proved by L'Hopital’s rule.
Also, we need sharp estimates of an integral of hypergeometric type that generalizes
(15).
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LEMMA 7. Suppose ot,A >0 and B,y € R. Then the integral

LAl (1 =)ot 2\
J —Ja.’,;’%;t(r) .—/0 (- rt)ﬁ (log 1 —t) dt

has the following two-sided estimates for all 0 <r < 1:
lo > o,
J:Joc,ﬁ,y,l(r)z l—r ( ) P
B<a,
and for oo =3,
2 \"7
(log I——r) ;o r<l,
J:Ja,a,y,l(r)m L, y>1,

2
log <Zlogm), y=1

(29)

(30)

Everywhere here all the constants C = C(a., B,y,A) implicitly involved depend only on

(xaﬂa/%z’

Proof. All the inequalities in (29)—(30) are trivial for 0 < r < % So, it suffices to
prove (29)—(30) only for % <r<1orr— 1. First, assuming 8 > o > 0, we will

estimate the integral (29) from above,

r 1 r l‘171 2 =Y
J= < 1 dt
[ < L e (o)

+

1 2 \ 7
CloB 1)y (e 1)

1 ~y
a ! )/3/ A1 =)t (log%) dt
“ B . —

by virtue of two asymptotic relations (24) and (25). Conversely, again by (24), we

obtain

1 C, 1 2 -
= | Z2—"57 1—1) log —
! / (1—r2)ﬁ/r( <°g1—> d

e GO

so the case B > o > 0 is proved. Assume 0 < 8 < o to estimate

1—

ltll l‘al 2 =Y Y
J< | di = Co(a, B,y ).
[ (oer) ar=caepora)

1 2 -Y
J= [ A -n* 1(10g—) dt =Cy(a,y,A) >0,
0
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For 8 < 0 < o, the proof is similar. Thus, the proof of relation (29) is complete.
Proceeding to (30) notice that the integral J converges as r — 1~ when 3 =
and y> 1.

For the case y < 1, we split the integral into two parts and then apply asymptotic
relations (24) and (26) to obtain

rA—1 -7 1 -7
t 2 1 Aol _1 2
J< | —(log— | dt+——- | ¢ 1—0)%"(log— | dt
/ol—t<0gl—t) +(1—r)a/, (=" logg—=;
2 1=y 2 -r
< log — log —
C),(ogl_r) +Ca<ogl_r>

2 \'7
<C(a,y) (log :) :

For the lower estimate, notice that the function f_;t is decreasing in ¢ and bounded

away from zero on (0,r), "
J>/Wﬂ‘1<i:£)a<m
0 1—rt —t
e () () 1
> zia/or% (log%)_ydt

2 \"7
2 C(aJ/) (10g—> )

1—r

('S
—_
E
S~
I
<
‘&
=

by asymptotic relation (26). This proves the estimates for y < 1.
Finally, both inequalities in the case Y = 1 can be proved similarly by employing
asymptotic relation (27). This completes the proof of Lemma 7. [J

Actually in this section we need only lower estimates in (29). However, we have
established two-sided estimates and covered all possible values of the indices in Lemma
7, for completeness.

One more lower estimate for the reproducing kernels Py, is borrowed from [3].

LEMMA 8. Forany o> 0,7 >0 and x, % < |x| < 1, there exist a small neigh-
borhood U:(xX') :={y € B:|y—X| <€}, € >0, and a constant C(a,y,n) > 0 such
that
C(a,y:n)

Y oD
7 Pa(x"y) > [x7y]7+a+n—l’

V€ U (x). 31)

Although Lemma 8 is proved in [3, Corollary 4.3] only for y =0, the same method
is applicable for the derivative 27P, (y > 0). Besides, the additive property (18),
9,7,/7 aPo = Pyyy, allows us to reduce the proof of (31) to that with y=0.
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THEOREM 2. Bergman projection Ty is unbounded on the Bloch space.

Proof. We have to find a Bloch function uo(x) € % such that Tg(uo) ¢ h%. In-
troduce a smooth (and superharmonic) Bloch function

1
up(x) :=log 2‘ Ieﬂ\h%

It is easy to calculate (1 — |x|)|Vup(x)| = 1, x € B. On the other hand, by the triangle
inequality and Lemma 8,

1Ty ) 0)| = G| [ 1~ b 7 ptx) o 2 av )
/B\"//s(x')

%(x’) B\%(X’) ”//g (X’)

(1—|y|?)P-! 2
C(B,n) log
Ze()  [x,y]Ptn 1=yl

2
e / 1— [y 2Py (x,y) log —— dV '
ﬁ' B\%(x,)( vl%) (X, ) 8T »)

> Cp

_Cﬁ

It suffices to estimate the integral over the whole ball from below,

1—[y[?)P~! 2
Ig(x) ::/B ( [x,ggin log =D dv(y).

By (14) and (29) in Lemma 7,

1—[y[?)P~! 2
I/;(x):/( | |)ﬁ+n logl_ dv(y)
By~ IyIX| b
p)f-1
~ [ P 2
/ l—rp ﬁ“ 1Ogl—pdp
2
I—r

~ 1
1—r o8

as r — 17 . Hence,

2 -
(l—|x|)}@lTﬁ(u0)(x)}>Clog1_—|x| as |x|— 17,

thus ||7g(uo)|| , =+ and Tg(uo) ¢ h%. O
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