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BOUNDED AND UNBOUNDED BERGMAN

TYPE PROJECTIONS ON THE BLOCH SPACE

KAREN AVETISYAN

Abstract. We prove that harmonic Bergman projection is unbounded on the Bloch space B over
the unit ball in R

n . Another family of Bergman type operators is found whose members con-
tinuously project the Bloch space of smooth functions B onto its harmonic subspace hB . A
generalization with more general indices is also given. Our method is mainly based on the tech-
niques of a modified fractional integro-differentiation and two-sided estimates of the reproducing
kernels and integrals.

1. Introduction and main result

Let B be the open unit ball in R
n, n � 2, and S = ∂B be its boundary, the unit

sphere. The set of all (real) harmonic functions in the unit ball B is denoted by h(B) .
As is well known, Bergman projection operator Tβ (see (2) below) continuously

maps weighted Lebesgue space Lp
α(B) := Lp

(
B;(1− |x|)α dV (x)

)
onto its harmonic

(Bergman) subspace hp
α(B) := Lp

α(B)∩h(B) for suitable indices, Tβ : Lp
α (B) onto−−→ hp

α(B) ,
e.g. [6, 8, 11, 12, 14]. It is also familiar that operator Tβ continuouslymaps L∞(B) onto

the harmonic Bloch space hB , that is, Tβ : L∞(B) onto−−→ hB , see e.g. [7, 11, 15]. How-
ever, very little information is known about the action of the Bergman type projections
on the Bloch space. In this paper, we prove (in Section 5) that Bergman projection Tβ
is unbounded on the Bloch space B , that is, Tβ (B) �⊂ B . That’s why we construct
another family of Bergman type operators Φ that continuously project the Bloch space
of smooth functions B onto the harmonic Bloch space hB over the ball B ⊂ R

n , that

is, Φ : B
onto−−→ hB , see Theorem 1 below.

We write T : X −→ Y if T is a bounded operator mapping X to Y , i.e. ‖T f‖Y �
C‖ f‖X for every f ∈ X . The letters C(α,β ),Cα etc. stand for various positive con-
stants depending only on the parameters indicated. Sometimes we will not express
the dependence on the parameters explicitly. For some real-valued quantities A and
B , A ≈ B stands for the two-sided estimate c1|A| � |B| � c2|A| with some inessen-
tial positive constants c1 and c2 independent of variable involved. For typical points
in R

n we always write x = rζ , y = ρη or x = rx′, y = ρy′ with |x| = r, |y| = ρ and
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ζ , η , x′, y′ ∈ S . The notation dV means the Lebesgue volume measure on B normal-
ized to have total mass 1. In polar coordinates, we have dV(x) = nrn−1drdσ(ζ ) ,
where dσ is the (n− 1)-dimensional area-surface measure on S normalized so that
σ(S) = 1.

DEFINITION 1. For functions f given in B , we define L∞
α to be a Banach space

under the norm

‖ f‖L∞
α := esssup

x∈B
(1−|x|)α | f (x)|, α � 0.

The subspace consisting of harmonic functions is denoted by h∞
α , i.e. h∞

α := h(B)∩L∞
α .

This norm may be expressed in polar coordinates:

‖ f‖L∞
α = sup

0�r<1
(1− r)αM∞( f ;r),

where

M∞( f ;r) := ‖ f (r·)‖L∞(S), 0 � r < 1.

DEFINITION 2. A function f smooth enough in B is said to be in the Lipschitz
space Λα (α � 0) , if

‖ f‖Λα :=
∥∥D [α ]+1 f

∥∥
L∞

[α]+1−α
= esssup

x∈B
(1−|x|)[α ]+1−α ∣∣D [α ]+1 f (x)

∣∣
is finite. Here [α] stands for the largest integer less than or equal to α , while D γ

is the fractional differentiation operator of order γ > 0 which will be defined exactly
in Section 2. Denote by hΛα the subspace consisting of harmonic functions, hΛα :=
h(B)∩Λα .

Note that for f ∈ hΛα , the index [α]+1 can be replaced by any γ > α , and equiv-
alent norms appear: ‖ f‖Λα ≈ ‖D γ

n,λ f‖L∞
γ−α . For α = 0, the limit space Λ0 coincides

with the well-known Bloch space of smooth or harmonic functions,

B := Λ0 , hB := hΛ0 , ‖ f‖B :=
∥∥D1 f

∥∥
L∞

1
.

The functions u1(x) := log(1−|x|) ∈ B \ hB and u2(x) := log
[
(1− x1)2 + x2

2

] ∈ hB
provide typical examples of unbounded non-harmonic and harmonic Bloch functions,
respectively. Bloch spaces of holomorphic or harmonic functions are widely known
([8, 9, 11, 16, 18, 19, 20, 21]), while some information about smooth Bloch functions
is contained in [17].

The following reproducing integral formula (1) is familiar for harmonic Bergman
spaces hp

α(B), 0 < p < ∞, α > −1, see, for example, [8, 11, 12]. For wider weighted
spaces and a wide range of parameters, see also [4].
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THEOREM A. For β > α > 0 , every function u ∈ h∞
α or u ∈ h1

β−1(B) is repre-
sentable in the form

u(x) =
2

nΓ(β )

∫
B
(1−|y|2)β−1 Pβ (x,y)u(y)dV (y), x ∈ B, (1)

where Pβ is the reproducing kernel of Poisson–Bergman type defined in Section 3.

Integral formula (1) induces a family of Bergman projection operators

Tβ (u)(x) :=
2

nΓ(β )

∫
B
(1−|y|2)β−1 Pβ (x,y)u(y)dV (y), x ∈ B. (2)

Theorem A asserts that operator Tβ is the identity map on h∞
α or h1

β−1(B) or hB . Holo-
morphic counterparts of operators Tβ are studied, for example, in [6, 8, 20], while their
harmonic analogues appear in [5, 6, 8, 11, 15, 16]. As already mentioned above, the
operator Tβ continuously projects weighted Lebesgue space Lp

α(B) onto its harmonic

(Bergman) subspace hp
α(B) , i.e. Tβ : Lp

α
onto−−→ hp

α for β > (α +1)/p > 0, 1 � p < ∞ ,
but is unbounded on the Bloch space, Tβ (B) �⊂ B , see Section 5. For that reason, we
are interested in finding a similar projection result for the Bloch space B . In the next
theorem, a family of bounded harmonic projections on the Bloch space is found.

THEOREM 1. For any 0 < δ � 1, 0 < λ � β −δ , s � 1−n/2 , the Bergman type
operator

Φβ ,λ ,δ ( f )(x) :=
2

nΓ(β )

∫
B
(1−|y|2)β−1 Pλ (x,y)Dδ

n,s f (y)dV (y)

boundedly maps the Bloch space of smooth functions B = Λ0 onto the harmonic Lips-

chitz space hΛβ−δ−λ , that is, Φβ ,λ ,δ : Λ0
onto−−→ hΛβ−δ−λ , with the norm inequality∥∥Φβ ,λ ,δ ( f )

∥∥
hΛβ−δ−λ

� C(β ,δ ,λ ,n)‖ f‖Λ0 .

In particular, for β = δ +λ and s = λ , the operator Φβ ,λ ,β−λ is a continuous projec-

tion of the Bloch space Λ0 = B onto its harmonic subspace, Φβ ,λ ,β−λ : B
onto−−→ hB .

REMARK 1. Theorem 1 can be viewed as an extension of [3, Thm 1.3] and [1,
Thm 5] but it cannot be obtained directly from [3] as a limit case α = 0. On the
other hand, in contrast to the recent papers [10], [9], our operators Φβ ,λ ,β−λ are true
projections of the Bloch space of smooth functions B onto its harmonic subspace hB .

REMARK 2. It is well known that there are a large number of various norms for the
Bloch space of harmonic or holomorphic functions, see e.g. [9, 11, 16, 17, 18, 20, 21].
For the Bloch space of smooth functions B , our possibilities are restricted, however we
still can replace the fractional derivative D1 in the Bloch norm ‖ f‖B =

∥∥D1 f
∥∥

L∞
1

by

the gradient ∇ or ∂
∂ r to obtain an equivalent definition of B . In addition, the following

inequalities hold:

C1
∥∥D1 f

∥∥
L∞

1
� | f (0)|+∥∥∇ f

∥∥
L∞

1
� sup

|x|�1/2

∣∣∇ f (x)
∣∣+C2

∥∥D1 f
∥∥

L∞
1
.
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2. Fractional integro-differentiation

In this section we give definitions of the well-known Riemann–Liouville fractional
integro-differentiation operator Dα and its modifications denoted by Dα and Dα

n,λ
introduced in [4], [2]. We also review properties of operators Dα , Dα

n,λ and state some
new ones.

DEFINITION 3. (Classical Riemann–Liouville fractional integral and derivative)
For a function f (r) of a single variable r ∈ [0,1) , formally define the operator

D−α f (r) :=
1

Γ(α)

∫ r

0
(r− t)α−1 f (t)dt =

rα

Γ(α)

∫ 1

0
(1− t)α−1 f (tr)dt,

Dm f (r) :=
(

d
dr

)m

f (r), Dα f (r) := D−(m−α)Dm f (r), D0 f := f ,

where α > 0, m−1 < α � m , m ∈ N , N is the set of all positive integers.

DEFINITION 4. (Fractional integral and derivative over R
n, n � 2)

Given a function f in the unit ball B and α > 0, λ ∈ R , let

D−α
n,λ f (x) :=r−(α+λ+n/2−1)D−α

{
rλ+n/2−1 f (x)

}
=

1
Γ(α)

∫ 1

0
(1− t)α−1 f (tx)tλ+n/2−1 dt,

Dα
n,λ f (x) :=r−(λ+n/2−1)Dα

{
rα+λ+n/2−1 f (x)

}
, r = |x|.

Actually the role of the subscript λ is not essential. For λ = 0, we will write
simply Dβ := Dβ

n,0, β ∈ R . The general formula for Dm
n,λ f implies an explicit form

for fractional derivatives of lower orders

D1
n,λ f (x) =

(
λ +

n
2

)
f + r

∂ f
∂ r

= λ f (x)+D1 f (x), (3)

D2
n,λ f (x) =

(
λ +1+

n
2

) (
λ +

n
2

)
f (x)+2

(
λ +1+

n
2

)
r

∂ f
∂ r

+ r2 ∂ 2 f
∂ r2

= λ (λ +1) f (x)+2λ D1 f (x)+D2 f (x). (4)

Definition 4 leads to the inversion formula for sufficiently smooth functions f

Dα
n,λ D−α

n,λ f (x) = D−α
n,λ Dα

n,λ f (x) = f (x), x ∈ B, α > 0, λ � 1− n
2
. (5)

Some other basic properties of the fractional operators such as semigroup and commu-
tation relations are established in [4], [2] and also in the next two lemmas.
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LEMMA 1. For sufficiently smooth function f in the unit ball B, there hold the
following semigroup and commutation relations (λ ,s � 1−n/2):

D
−(β−α)
n,α+λ f (x) = D

−β
n,λ Dα

n,λ f (x), β > α > 0, (6)

Dβ
n,sD

−α
n,λ f (x) = D−α

n,λ Dβ
n,s f (x), α,β > 0, (7)

Dα
n,λ f (x) = D

−(β−α)
n,α+λ Dβ

n,λ f (x), β > α > 0, (8)

D
α+β
n,λ f (x) = D

β
n,α+λ Dα

n,λ f (x), α,β > 0. (9)

Proof. Definitions 3-4 together with the inversion formula (5) lead to

D
−β
n,λ Dα

n,λ f = r−(β+λ+n/2−1)D−(β−α)
[
rα+λ+n/2−1r−(α+λ+n/2−1)

×D−α{rλ+n/2−1Dα
n,λ f (x)

}]
= r−(β+λ+n/2−1)D−(β−α)

[
rα+λ+n/2−1D−α

n,λ Dα
n,λ f (x)

]
= r−α r−(β−α+λ+n/2−1)D−(β−α)

[
rλ+n/2−1rα f (x)

]
= r−α D

−(β−α)
n,λ

[
rα f (x)

]
= r−αrα 1

Γ(β −α)

∫ 1

0
(1− t)β−α−1 f (tx)tα+λ+n/2−1dt

= D
−(β−α)
n,α+λ f (x),

for β > α > 0. This proves formula (6). Now, assume β = m is an integer and show
that

Dm
n,sD

−α
n,λ f (x) = D−α

n,λ Dm
n,s f (x), m ∈ N. (10)

Indeed, first we show a simpler commutation formula

rmDmD−α
n,λ f (x) = D−α

n,λ
{
rmDm f (x)

}
, x = rζ . (11)

To this end, we expand it by using the obvious formula ∂m

∂ rm f (trζ ) = tm ∂m f
∂ (tr)m ,

rmDmD−α
n,λ f (x) = rm ∂m

∂ rm

[
1

Γ(α)

∫ 1

0
(1− t)α−1 f (tx)tλ+n/2−1dt

]

=
1

Γ(α)

∫ 1

0
(1− t)α−1

[
(tr)m ∂m

∂ (tr)m f (tx)
]

tλ+n/2−1dt

= D−α
n,λ
{
rmDm f (x)

}
,

which coincides with (11). For any m ∈ N there exist constants ck = ck(m,n) > 0
(k = 0,1,2, . . . ,m−1) with cm = 1 such that

Dm
n,s f (x) = r−(s+n/2−1)Dm{rm+s+n/2−1 f (x)

}
=

m

∑
k=0

ck rk Dk f (x). (12)



52 K. AVETISYAN

On account of (11) and (12), we obtain (10):

Dm
n,sD

−α
n,λ f (x) =

n

∑
k=0

ck rk DkD−α
n,λ f (x) = D−α

n,λ

{
m

∑
k=0

ck rk Dk f (x)

}
= D−α

n,λ Dm
n,s f (x).

Now by using (6), (10) and Fubini’s theorem we have, with m > β ,

D−α
n,λ Dβ

n,s f (x) = D−α
n,λ Dm

n,s D
−(m−β )
n,β+s f (x) = Dm

n,s D
−(m−β )
n,β+s D−α

n,λ f (x) = Dβ
n,sD

−α
n,λ f (x).

This completes the proof of (7). Formulas (8) and (9) are combinations of (6) and (7)
together with the inversion formula (5). �

Formulas (9) and (3) immediately imply the next recurrence relation for deriva-
tives.

LEMMA 2. For m � 0, m ∈ Z , and all sufficiently smooth functions, there holds
the recurrence relation

Dm+1 f =
(
m+D1)Dm f = Dm(m+D1) f = D1

n,mDm f = DmD1
n,m f . (13)

Notice formula (13) is a generalization of that with the Poisson kernel P0 in place
of the general function f , see [15, p. 91], [16, p. 238]. We next need some standard
asymptotic relations (β > α > 0):∫

S

dσ(ξ )
|ξ − x|α+n−1 ≈ 1

(1−|x|)α , x ∈ B, (14)

∫ 1

0

(1− t)α−1

(1− rt)β dt ≈ 1

(1− r)β−α , 0 � r < 1, (15)

∫ 1

0

(1− t)α−1

|η − tx|β dt ≈ 1

|η − x|β−α , η ∈ S, x ∈ B. (16)

The estimates in (14)–(16) are well known and can be found, for example, in [5, 10, 11,
12, 15, 16].

3. Poisson-Bergman kernel Pα and upper estimates

The extended Poisson kernel P ≡ P0 over the unit ball is given by

P(x,y) ≡ P0(x,y) :=
1−|x|2|y|2

(1−2x · y+ |x|2|y|2)n/2
=

1−|x|2|y|2
[x,y]n

, x ∈ B, y ∈ B.

Here and afterward, we use the notation [x,y] :=
√

1−2x · y+ |x|2|y|2 , where x · y
stands for the inner product in R

n .

DEFINITION 5. (Harmonic Poisson–Bergman kernel in B , [4])

Pα(x,y) := DαP(x,y), x,y ∈ B, α � 0,

where the differentiation Dα is understood with respect to either of x or y since
Dα

x P(x,y) = Dα
y P(x,y) .
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Equivalent or similar kernels mostly defined by means of series expansion in zonal
and spherical harmonics can be found in [4, 5, 6, 8, 10, 11, 12, 15, 16]. Note that
Poisson–Bergman type kernel Pα(x,y) is a harmonic function in B with respect to both
x and y , Pα(x,y) = Pα(y,x) , and also continuously extendable to B in one variable
whenever the second is fixed in B . A derivation of the first order Poisson–Bergman
kernel P1 = D1P0 by a direct differentiation via (3) gives us a closed explicit form of
P1 ,

P1(x,y) = D1P0(x,y) =
n
2

P0 + r
∂P0

∂ r
=

1
2 [x,y]n

⎡
⎢⎣n
(
1−|x|2|y|2

)2

[x,y]2
−4|x|2|y|2

⎤
⎥⎦ .

An application of formulas (8)–(9) in Lemma 1 to the extended Poisson kernel P0 leads
to the useful formulas for the kernels Pα = DαP0 :

Pα(x,y) = D
−(β−α)
n,α Pβ (x,y), β > α > 0, (17)

Pα+β (x,y) = D
β
n,αPα(x,y), α,β > 0. (18)

The growth rate of the Poisson-Bergman kernel and its derivatives/gradients are
well known since 1980s, see [6, 8, 11, 12, 16],

|Pα(x,y)| � C(α,n)
[x,y]α+n−1 and

∣∣∇xPα(x,y)
∣∣� C(α,n)

[x,y]α+n , x,y ∈ B. (19)

Although estimates (19) are well known, we give below a direct proof for them in-
cluding higher-order gradients and fractional derivatives based on our Definitions 4 and
5.

LEMMA 3. For k > 0, m ∈ N , and for all x,y ∈ B,∣∣∣∣ ∂
∂ r

[x,y]−k

∣∣∣∣� k
[x,y]k+1 and

∣∣∣∣
(

∂
∂ r

)m

[x,y]−k

∣∣∣∣� C(k,m)
[x,y]k+m . (20)

Proof. Since [x,y] = [y,x] =
∣∣y′ − x|y|∣∣= ∣∣x′ − y|x|∣∣, x,y �= 0, first we compute

∂
∂ r

[x,y]2 =
∂
∂ r

∣∣x′ − yr
∣∣2 = −2y · (x′ − yr),

∂
∂ r

[x,y]−k = − k
2

(∣∣x′ − yr
∣∣2)−k/2−1 ∂

∂ r

∣∣x′ − yr
∣∣2 =

k y · (x′ − yr)∣∣x′ − yr
∣∣k+2 .

From this, the first estimate in (20) follows immediately. Assuming the last inequality
in (20) holds for all derivatives of order 1,2, . . . ,m−1, the m th order case follows by
induction. Indeed, by the Leibniz rule

∂m

∂ rm [x,y]−k =
∂m−1

∂ rm−1

k y · (x′ − yr)
[x,y]k+2

= k y · (x′ − yr)
∂m−1

∂ rm−1 [x,y]−k−2− (m−1)k|y|2 ∂m−2

∂ rm−2 [x,y]−k−2.
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So, by the induction assumption,∣∣∣∣
(

∂
∂ r

)m

[x,y]−k

∣∣∣∣� k
∣∣x′ − yr

∣∣ C(k,m)
[x,y]k+m+1 +

C(k,m)
[x,y]k+m � C(k,m)

[x,y]k+m ,

as desired. �

LEMMA 4. Let U denote either of the following four differential operators ∂
∂ r ,

r ∂
∂ r , ∇, D1 . Then

∣∣UmP0(x,y)
∣∣� C(m,n)

[x,y]m+n−1 and
∣∣Pm(x,y)

∣∣� C(m,n)
[x,y]m+n−1 , (21)

for x,y ∈ B, m ∈ Z, m � 0 . In the latter inequality (21), actually we have taken Um =
Dm . Moreover, for general α � 0, γ > 0, λ � 1−n/2 ,

∣∣Pα(x,y)
∣∣� C(α,n)

[x,y]α+n−1 and
∣∣D γ

n,λ Pα(x,y)
∣∣� C(α,γ,λ ,n)

[x,y]α+γ+n−1 , (22)

x,y ∈ B. The differential operator D γ
n,λ in (22) can be replaced by any higher-order

gradient ∇m .

Proof. By the Leibniz rule and Lemma 3, we get

∂m

∂ rm P0(x,y) = (1−|x|2|y|2) ∂m

∂ rm [x,y]−n−2m|y|2 r
∂m−1

∂ rm−1 [x,y]−n

− m(m−1)
2

2m|y|2 ∂m−2

∂ rm−2 [x,y]−n,∣∣∣∣
(

∂
∂ r

)m

P0(x,y)
∣∣∣∣� (1−|x|2|y|2) C(m,n)

[x,y]m+n +
C(m,n)

[x,y]m+n−1 +
C(m,n)

[x,y]m+n−2 � C(m,n)
[x,y]m+n−1 .

Remaining three inequalities in (21) can be proved similarly taking into account the
definition Pm = DmP0 .

For non-integer α > 0, m−1 < α < m(m ∈ N) , by (17), (21), (16) and Definition
4, we get

∣∣Pα(x,y)
∣∣= ∣∣D−(m−α)

n,α Pm(x,y)
∣∣� 1

Γ(m−α)

∫ 1

0
tα+n/2−1(1− t)m−α−1

∣∣Pm(tx,y)
∣∣dt

� C(α,m)
∫ 1

0

tα+n/2−1 (1− t)m−α−1∣∣x′ − y|x|∣∣m+n−1 dt � C(α,n)∣∣x′ − y|x|∣∣α+n−1 ,

which is precisely the first inequality in (22). Further, the second inequality in (22) can
be proved in much the same way by using the recurrence formula (13) or (18). We omit
the details. �
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4. Proof of Theorem 1

We need a modification of a fractional integration inequality in the weighted spaces
L∞

α , see e.g. [2],

∥∥D−β
n,λ f

∥∥
L∞

α−β
� C(α,β ,λ )‖ f‖L∞

α , α > β > 0, λ > −n
2

. (23)

LEMMA 5. For 0 < s = λ < β , any harmonic Bloch function u(x) ∈ hB can be
represented in the form (x ∈ B)

u(x) = Φβ ,λ ,β−λ(u)(x) =
2

nΓ(β )

∫
B
(1−|y|2)β−1 Pλ (x,y)Dβ−λ

n,λ u(y)dV (y),

that is, Φβ ,λ ,β−λ is the identity operator on hB .

Proof. Any harmonicBloch function u(x)∈ hB can be characterized by Dβ−λ
n,λ u∈

h∞
β−λ , see, for example, [13], [11], [9]. Elementary embedding h∞

β−λ ⊂ h1
β−1 and The-

orem A enable us to provide the Bergman representation

Dβ−λ
n,λ u(x) = Tβ

(
Dβ−λ

n,λ u
)
(x) =

2
nΓ(β )

∫
B
(1−|y|2)β−1 Dβ P0(x,y)D

β−λ
n,λ u(y)dV (y).

Applying here the integral D
−(β−λ )
n,λ , we deduce that

u(x) = D
−(β−λ )
n,λ D

β−λ
n,λ u(x)

=
2

nΓ(β )

∫
B
(1−|y|2)β−1 D

−(β−λ )
n,λ Dβ P0(x,y)D

β−λ
n,λ u(y)dV (y).

In view of the identity (8) or (17), D
−(β−λ )
n,λ Dβ P0 = Dλ P0 = Pλ . Thus, u(x) =

Φβ ,λ ,β−λ(u)(x) , and the lemma follows. �

Proof of Theorem 1. It suffices to prove∥∥D γΦβ ,λ ,δ ( f )
∥∥

L∞
γ−β+δ+λ

� C
∥∥D1 f

∥∥
L∞

1

for a given function f ∈ Λ0(B) and some γ > β −δ −λ � 0. Since f ∈ Λ0 and D1 f ∈
L∞

1 , formula (8) in Lemma 1 in the form Dδ
n,s f (x) = D

−(1−δ )
n,δ+s D1

n,s f (x), 0 < δ � 1,
makes it possible to estimate the norm by using (23) and (3):

∥∥Dδ
n,s f
∥∥

L∞
δ

=
∥∥∥D−(1−δ )

n,δ+s D1
n,s f
∥∥∥

L∞
δ

� C
∥∥D1

n,s f
∥∥

L∞
1

� C
∥∥D1 f

∥∥
L∞

1
.

Therefore Dδ f (x) ∈ L∞
δ and (1− r)δ M∞(Dδ

n,s f ;r) � C‖D1 f‖L∞
1
.
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Differentiation of Φβ ,λ ,δ ( f ) with D γ together with the kernel estimates (22)
yields

∣∣D γΦβ ,λ ,δ ( f )(x)
∣∣ � C

∫
B

(1−ρ2)β−1

|ρx−η |γ+λ+n−1

∣∣Dδ
n,s f (ρη)

∣∣ρn−1dρ dσ(η)

for some γ > β − δ − λ � 0 and a constant C = C(β ,γ,λ ,n) . Replace here x by
Qx , where Q is an arbitrary orthogonal linear transformation Q : R

n −→ R
n , that is,

|Qx| = |x| for all x ∈ R
n . Applying also the change η �→ Qη , we find that

∣∣D γ Φβ ,λ ,δ ( f )(Qx)
∣∣� C

∫
B

(1−ρ2)β−1

|ρQx−Qη |γ+λ+n−1

∣∣Dδ
n,s f (ρQη)

∣∣ρn−1dρ dσ(η)

= C
∫

B

(1−ρ2)β−1

|ρx−η |γ+λ+n−1

∣∣Dδ
n,s f (ρQη)

∣∣ρn−1dρ dσ(η).

Hence, for γ > β − δ −λ � 0, we obtain

M∞
(
D γΦβ ,λ ,δ ( f );r

)
� C(β ,γ,λ ,n)

∫ 1

0

(1−ρ)β−1

(1− rρ)λ+γ M∞(Dδ
n,s f ;ρ)dρ

� C(β ,γ,λ ,n)
∫ 1

0

(1−ρ)β−1

(1− rρ)λ+γ

‖D1 f‖L∞
1

(1−ρ)δ dρ

� C(β ,γ,δ ,λ ,n)
‖D1 f‖L∞

1

(1− r)λ+γ−β+δ .

Therefore, (1− r)γ−β+δ+λ M∞
(
D γ Φβ ,λ ,δ ( f );r

)
� C
∥∥D1 f

∥∥
L∞

1
, or

∥∥D γΦβ ,λ ,δ ( f )
∥∥

L∞
γ−β+δ+λ

� C
∥∥D1 f

∥∥
L∞

1
and

∥∥Φβ ,λ ,δ ( f )
∥∥

Λβ−δ−λ
� C‖ f‖Λ0 .

Thus, the operator Φβ ,λ ,δ boundedly maps Λ0 into hΛβ−δ−λ , that is, Φβ ,λ ,δ : Λ0
into−−→

hΛβ−δ−λ , 0 < λ � β − δ . It remains to prove this map is onto as well. To this

end, we take arbitrary harmonic function g ∈ hΛβ−δ−λ , so D
β−λ
n,λ g ∈ h∞

δ ⊂ h1
β−1 since

β > δ > 0. By Theorem A, D
β−λ
n,λ g(x) = Tβ

(
D

β−λ
n,λ g

)
(x) , and then taking the inverse

operator D
−(β−λ )
n,λ , we obtain

g(x) =
2

nΓ(β )

∫
B
(1−|y|2)β−1

[
D

−(β−λ )
n,λ Dβ P0(x,y)

]
D

β−λ
n,λ g(y)dV (y)

=
2

nΓ(β )

∫
B
(1−|y|2)β−1 Pλ (x,y)Dδ

n,s

[
D−δ

n,s D
β−λ
n,λ g(y)

]
dV (y)

=: Φβ ,λ ,δ (ψ)(x),

where we have used Lemma 1 and the inversion formula (5). Now it suffices to show
that the function ψ := D−δ

n,s Dβ−λ
n,λ g is in hΛ0 . For 0 < δ � 1, we apply Hardy–

Littlewood type theorems on (fractional) integro-differentiation in harmonic spaces h∞
α ,
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see [13]. Also, by using the commutation formula (7), we consecutively obtain the fol-
lowing chain of implications:

g ∈ hΛβ−δ−λ =⇒ D
β−λ
n,λ g ∈ h∞

δ

=⇒ D1Dβ−λ
n,λ g ∈ h∞

δ+1

=⇒ D1D−δ
n,s Dβ−λ

n,λ g ∈ h∞
1

=⇒ D1ψ = D1(D−δ
n,s Dβ−λ

n,λ g
) ∈ h∞

1

=⇒ ψ ∈ hΛ0.

In particular, for β = δ +λ and s = λ , by Lemma 5, the operator Φ := Φβ ,λ ,β−λ is the
identity operator on the harmonic Bloch space hB , so Φ2 = Φ , and indeed a bounded
projection from the Bloch space Λ0 = B onto hΛ0 = hB . The same reasoning shows
that more general mapping Φβ ,λ ,δ is still a bounded projection from B onto hΛβ−δ−λ .

This completes the proof of Theorem 1. �

5. Bergman projection is unbounded on the Bloch space

In this section we show there exists a Bloch function u0 ∈ B whose Bergman
projection is not Bloch, Tβ (u0) �∈ hB . To this end, we need some preliminary integral
estimates.

LEMMA 6. For α,λ > 0 and γ ∈ R , the following asymptotic relations hold,

∫ 1

r
tλ−1 (1− t)α−1

(
log

2
1− t

)−γ
dt ∼ 1

α
(1− r)α

(
log

2
1− r

)−γ
, (24)

∫ r

0

tλ−1

(1− t)1+α

(
log

2
1− t

)−γ
dt ∼ 1

α
1

(1− r)α

(
log

2
1− r

)−γ
, (25)

and

∫ r

0

tλ−1

1− t

(
log

2
1− t

)−γ
dt ∼ 1

1− γ

(
log

2
1− r

)1−γ
, γ < 1, (26)

∫ r

0

tλ−1

1− t

(
log

2
1− t

)−1

dt ∼ log

(
2log

2
1− r

)
, γ = 1, (27)

∫ r

0

tλ−1

1− t

(
log

2
1− t

)−γ
dt ∼C(λ ,γ) > 0, γ > 1, (28)

as r → 1− .

All the asymptotic relations except (28) can easily be proved by L’Hôpital’s rule.
Also, we need sharp estimates of an integral of hypergeometric type that generalizes
(15).
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LEMMA 7. Suppose α,λ > 0 and β ,γ ∈ R . Then the integral

J = Jα ,β ,γ,λ (r) :=
∫ 1

0

tλ−1 (1− t)α−1

(1− rt)β

(
log

2
1− t

)−γ
dt

has the following two-sided estimates for all 0 � r < 1 :

J = Jα ,β ,γ,λ (r) ≈

⎧⎪⎨
⎪⎩

1

(1− r)β−α

(
log

2
1− r

)−γ
, β > α,

1, β < α,

(29)

and for α = β ,

J = Jα ,α ,γ,λ (r) ≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
log

2
1− r

)1−γ
, γ < 1,

1, γ > 1,

log

(
2log

2
1− r

)
, γ = 1.

(30)

Everywhere here all the constants C =C(α,β ,γ,λ ) implicitly involved depend only on
α,β ,γ,λ .

Proof. All the inequalities in (29)–(30) are trivial for 0 � r � 1
2 . So, it suffices to

prove (29)–(30) only for 1
2 � r < 1 or r → 1− . First, assuming β > α > 0, we will

estimate the integral (29) from above,

J =
∫ r

0
+
∫ 1

r
�
∫ r

0

tλ−1

(1− t)1+β−α

(
log

2
1− t

)−γ
dt

+
1

(1− r)β

∫ 1

r
tλ−1 (1− t)α−1

(
log

2
1− t

)−γ
dt

� C(α,β ,γ,λ )
1

(1− r)β−α

(
log

2
1− r

)−γ
,

by virtue of two asymptotic relations (24) and (25). Conversely, again by (24), we
obtain

J �
∫ 1

r
� Cλ

(1− r2)β

∫ 1

r
(1− t)α−1

(
log

2
1− t

)−γ
dt

� C(α,β ,γ,λ )
(1− r)β−α

(
log

2
1− r

)−γ
,

so the case β > α > 0 is proved. Assume 0 < β < α to estimate

J �
∫ 1

0
tλ−1 (1− t)α−1

(
log

2
1− t

)−γ
dt = C1(α,γ,λ ) > 0,

J �
∫ 1

0

tλ−1 (1− t)α−1

(1− t)β

(
log

2
1− t

)−γ
dt = C2(α,β ,γ,λ ).
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For β � 0 < α , the proof is similar. Thus, the proof of relation (29) is complete.
Proceeding to (30) notice that the integral J converges as r → 1− when β = α

and γ > 1.
For the case γ < 1, we split the integral into two parts and then apply asymptotic

relations (24) and (26) to obtain

J �
∫ r

0

tλ−1

1− t

(
log

2
1− t

)−γ
dt +

1
(1− r)α

∫ 1

r
tλ−1 (1− t)α−1

(
log

2
1− t

)−γ
dt

� Cγ

(
log

2
1− r

)1−γ
+Cα

(
log

2
1− r

)−γ

� C(α,γ)
(

log
2

1− r

)1−γ
.

For the lower estimate, notice that the function 1−t
1−rt is decreasing in t and bounded

away from zero on (0,r) ,

J �
∫ r

0
tλ−1

(
1− t
1− rt

)α (
log

2
1− t

)−γ dt
1− t

�
∫ r

0
tλ−1

(
1− r
1− r2

)α (
log

2
1− t

)−γ dt
1− t

� 1
2α

∫ r

0

tλ−1

1− t

(
log

2
1− t

)−γ
dt

� C(α,γ)
(

log
2

1− r

)1−γ
,

by asymptotic relation (26). This proves the estimates for γ < 1.
Finally, both inequalities in the case γ = 1 can be proved similarly by employing

asymptotic relation (27). This completes the proof of Lemma 7. �

Actually in this section we need only lower estimates in (29). However, we have
established two-sided estimates and covered all possible values of the indices in Lemma
7, for completeness.

One more lower estimate for the reproducing kernels Pα is borrowed from [3].

LEMMA 8. For any α > 0, γ � 0 and x, 1
2 � |x| < 1 , there exist a small neigh-

borhood Uε (x′) := {y ∈ B : |y− x′| < ε}, ε > 0 , and a constant C(α,γ,n) > 0 such
that

D γPα(x,y) � C(α,γ,n)
[x,y]γ+α+n−1 , y ∈ Uε(x′). (31)

Although Lemma 8 is proved in [3, Corollary 4.3] only for γ = 0, the same method
is applicable for the derivative D γPα (γ > 0) . Besides, the additive property (18),
D

γ
n,αPα = Pα+γ , allows us to reduce the proof of (31) to that with γ = 0.
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THEOREM 2. Bergman projection Tβ is unbounded on the Bloch space.

Proof. We have to find a Bloch function u0(x) ∈ B such that Tβ (u0) �∈ hB . In-
troduce a smooth (and superharmonic) Bloch function

u0(x) := log
1−|x|

2
∈ B \ hB.

It is easy to calculate (1−|x|)|∇u0(x)| = 1, x ∈ B . On the other hand, by the triangle
inequality and Lemma 8,

∣∣D1Tβ (u0)(x)
∣∣= Cβ

∣∣∣∣
∫

B
(1−|y|2)β−1 D1Pβ (x,y) log

2
1−|y| dV (y)

∣∣∣∣
= Cβ

∣∣∣∣
∫

Uε (x′)
+
∫

B\Uε(x′)

∣∣∣∣� Cβ

∣∣∣∣
∫

Uε (x′)

∣∣∣∣−Cβ

∣∣∣∣
∫

B\Uε(x′)

∣∣∣∣
� C(β ,n)

∫
Uε (x′)

(1−|y|2)β−1

[x,y]β+n
log

2
1−|y| dV (y)

−Cβ

∣∣∣∣
∫

B\Uε(x′)
(1−|y|2)β−1 D1Pβ (x,y) log

2
1−|y| dV (y)

∣∣∣∣ .
It suffices to estimate the integral over the whole ball from below,

Iβ (x) :=
∫

B

(1−|y|2)β−1

[x,y]β+n
log

2
1−|y| dV (y).

By (14) and (29) in Lemma 7,

Iβ (x) =
∫

B

(1−|y|2)β−1∣∣y′ − |y|x∣∣β+n
log

2
1−|y| dV (y)

≈
∫ 1

0

ρn−1 (1−ρ)β−1

(1− rρ)β+1
log

2
1−ρ

dρ

≈ 1
1− r

log
2

1− r

as r → 1− . Hence,

(1−|x|)∣∣D1Tβ (u0)(x)
∣∣� C log

2
1−|x| as |x| → 1−,

thus
∥∥Tβ (u0)

∥∥
B

= +∞ and Tβ (u0) �∈ hB . �
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