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LARS-ERIK PERSSON c AND FRANCIS K. A. ALLOTEY d

(communicated by A. Čižmešija)

Abstract. In this paper we establish some new multidimensional Hardy type inequalities for the
cases p < 0 and 0 < p < 1 . These inequalities complement, generalize and unify most of the
existing results of this type in the literature e.g. those in [4] and [9]. Some of the results are new
also for the one dimensional case.

1. Introduction

In [5] Hardy announced and proved in [6] the following integral inequality (see

also [8, Chapter 9, Theorem 328]): If p > 1, f (x) � 0, and F(x) =
x∫
0

f (t)dt, then

∞∫
0

(
F
x

)p

dx �
(

p
p − 1

)p ∞∫
0

f pdx. (1.1)

The constant
(

p
p−1

)p
is the best possible.

Moreover, in 1928 Hardy [7] (see also [8, Chapter 9, Theorem 330, p. 245]) proved
a generalized form of (1.1), namely that if p > 1, m �= 1, and F(x) is defined by

F(x) =

⎧⎪⎪⎨
⎪⎪⎩

x∫
0

f (t)dt, m > 1,

∞∫
x

f (t)dt m < 1,
(1.2)

then
∞∫
0

x−mFpdx �
(

p
|m − 1|

)p ∞∫
0

x−m(xf )pdx. (1.3)

The constant is the best possible.
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Furthermore, Hardy [7] (see also [8, Chapter 9, Theorem 347, p. 256]) pointed out
that if m and F satisfy the conditions of the above result, but 0 < p < 1, then

∞∫
0

x−mFpdx �
(

p
|m − 1|

)p ∞∫
0

x−m(xf )pdx. (1.4)

For further remarks concerning the history, development, generalizations and ap-
plications of inequalities (1.1) and (1.3) see for instance, [1], [2], [8], [11], [12], [15] and
the references cited therein.

The first result for the unweighted one dimensional Hardy’s inequality in the
discrete case for p < 0 was obtained in 1928 by Knopp [10] (see also [12] and the
references cited therein). TheweightedHardy inequalities for negative powers appeared
in the papers of Beesack and Heinig [1] and Heinig [2] where the cases p, q < 0 and
0 < p, q < 1 are considered. They studied the reverse Hardy inequality

⎛
⎝ ∞∫

0

[f (x)v(x)]p dx

⎞
⎠

1
p

� C

⎛
⎝ ∞∫

0

⎡
⎣u(x)

x∫
0

f (t)dt

⎤
⎦

q

dx

⎞
⎠

1
q

(1.5)

and its dual version by deriving some necessary as well as some sufficient conditions
for their validity.

The unweightedmultidimensionalHardy-type inequalities for the cases p < 0 and
0 < p < 1 were studied in [9] by using a convexity argument.

In this paper we prove and discuss some weighted multidimensional Hardy type
inequalities for the cases p < 0 and 0 < p < 1 of the type (1.3) for different values of
m . Some results are new also for the one dimensional case. The techniques that will
be used in the proofs are mainly a convexity argument, which is very different from the
classical methods used e.g. by Beesack and Heinig [1], Heinig [2] and Hardy [8].

The paper is organized as follows: In order not to disturb our discussions later on
we use Section 2 to present some preliminaries, including some convexity results from
the paper [14]. The main results are given in Section 3, while our concluding examples
and remarks are presented in Section 4.

2. Preliminaries

Throughout the paper all functions are assumed to be measurable. Here and in
the sequel the notations b, x, (0, b) , (b,∞], [b,∞∞∞) as usual means b = (b1, ..., bn) ,
x = (x1, ..., xn) , (000, bbb) = {xxx ∈ R

n : 0 < xj < bj, j = 1, 2, ..., n} , (bbb,∞∞∞] = {xxx ∈ R
n :

bj < xj � ∞, j = 1, 2, ..., n} , [bbb,∞∞∞) = {xxx ∈ R
n : bj � xj < ∞, j = 1, 2, ..., n} and

b < x means that bj < xj, j = 1, 2, ..., n. (n ∈ Z+) .

We now present some results in the recent paper [14], which are crucial to the
proofs of our main results.
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LEMMA 2.1. Let b ∈ (0,∞∞∞], −∞ � a < c � ∞ and let Φ be a positive
function on [a, c] . Suppose that the weight function u defined on (0, b) is nonnegative
such that u(x1,...,xn)

x2
1...x

2
n

is locally integrable on (0, b) and the weight function v is defined

by

v(t1, ..., tn) = t1...tn

b1∫
t1

...

bn∫
tn

u(x1, ..., xn)
x2
1...x

2
n

dx1...dxn, ttt ∈ (0, b) .

(i) If Φ is convex, then

b1∫
0

...

bn∫
0

u(x1, ..., xn)Φ

⎛
⎝ 1

x1...xn

x1∫
0

...

xn∫
0

f (t1, ..., tn) dt1...dtn

⎞
⎠ dx1...dxn

x1...xn

�
b1∫

0

...

bn∫
0

v (x1, ..., xn)Φ (f (x1, ..., xn))
dx1...dxn

x1...xn
(2.1)

holds for every function f on (0, b) such that a < f (x1, ..., xn) < c.
(ii) If Φ is concave, then

b1∫
0

...

bn∫
0

u(x1, ..., xn)Φ

⎛
⎝ 1

x1...xn

x1∫
0

...

xn∫
0

f (t1, ..., tn) dt1...tn

⎞
⎠ dx1...dxn

x1...xn

�
b1∫

0

...

bn∫
0

v (x1, ..., xn)Φ (f (x1, ..., xn))
dx1...dxn

x1...xn
(2.2)

holds for every function f on (0, b) such that a < f (x1, ..., xn) < c.

Proof. The proof is easy and just a consequence of Jensen’s inequality and Fubini’s
theorem (for details see [14]). �

LEMMA 2.2. Let b ∈ [0,∞)∞)∞), −∞ � a < c � ∞ and Φ be a positive function
on [a, c] . Assume that the weight function u defined on [b,∞∞∞) is nonnegative such
that u(x1,...,xn)

x2
1...x

2
n

is locally integrable on [b,∞∞∞) and the weight function v is defined by

v(t1, ..., tn) =
1

t1...tn

t1∫
b1

...

tn∫
bn

u(x1, ..., xn)dx1...dxn < ∞, ttt ∈ (b,∞∞∞) .
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(i) If Φ is convex, then

∞∫
b1

...

∞∫
bn

u(x1, ..., xn)Φ

⎛
⎝x1...xn

∞∫
x1

...

∞∫
xn

f (t1, ..., tn)
dt1...dtn
t21...t

2
n

⎞
⎠ dx1...dxn

x1...xn

�
∞∫

b1

...

∞∫
bn

v (x1, ..., xn)Φ (f (x1, ..., xn))
dx1...dxn

x1...xn
(2.3)

holds for every function f on [b,∞∞∞) such that a < f (x1, ..., xn) < c.
(ii) If Φ is concave, then

∞∫
b1

...

∞∫
bn

u(x1, ..., xn)Φ

⎛
⎝x1...xn

∞∫
x1

...

∞∫
xn

f (t1, ..., tn)
dt1...dtn
t21...t

2
n

⎞
⎠ dx1...dxn

x1...xn

�
∞∫

b1

...

∞∫
bn

v (x1, ..., xn)Φ (f (x1, ..., xn))
dx1...dxn

x1...xn
(2.4)

holds for every function f on [b,∞∞∞) such that a < f (x1, ..., xn) < c.

Proof. The proof follows by applying Jensen’s inequality and Fubini’s theorem
(for details see [14]). �

3. Main results

Our first result reads:

THEOREM 3.1. Let p < 0, b ∈ (0,∞∞∞], and let f be a nontrival and nonnegative
function on (0, b) and assume that

0 <

b1∫
0

...

bn∫
0

xp−m
1 ...xp−m

n f p(x1, ..., xn)dx1...dxn < ∞.

If m < 1, then

b1∫
0

...

bn∫
0

x−m
1 ...x−m

n

⎛
⎝ x1∫

0

...

xn∫
0

f (t1, ..., tn) dt1...dtn

⎞
⎠

p

dx1...dxn

�
(

p
m − 1

)pn b1∫
0

...

bn∫
0

[
1 −

(
x1

b1

)m−1
p

]
...

[
1 −

(
xn

bn

)m−1
p

]
×

x
p−m

1 ...x
p−m

n f p(x1, ..., xn)dx1...dxn. (3.1)
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Proof. We use Lemma 2.1 (i) with the convex function Φ(x) = xp and the

weight function u(x1,..., xn) ≡ 1 (so that v(x1,..., xn) =
(
1 − x1

b1

)
...

(
1 − xn

bn

)
). Then

inequality (2.1) yields

b1∫
0

...

bn∫
0

⎛
⎝ 1

x1...xn

x1∫
0

...

xn∫
0

f (t1, ..., tn) dt1...dtn

⎞
⎠

p

dx1...dxn

x1...xn

�
b1∫

0

...

bn∫
0

(
1 − x1

b1

)
...

(
1 − xn

bn

)
f p(x1, ..., xn)

dx1...dxn

x1...xn
. (3.2)

Now, replace bj by aj = b
m−1

p
j and choose for f the function

x �→ f

(
x

p
m−1

1 , ..., x
p

m−1
n

)
x

p
m−1−1
1 ...x

p
m−1−1
n . Thereafter, by using the substitutions

sj = t
p

m−1
j and yj = x

p
m−1
j , respectively, the left hand side of (3.2) becomes

a1∫
0

...

an∫
0

⎛
⎝ 1

x1...xn

x1∫
0

...

xn∫
0

f

(
t

p
m−1

1 , ..., t
p

m−1
n

)
t

p
m−1−1

1 ...t
p

m−1−1
n dt1...dtn

⎞
⎠

p

dx1...dxn

x1...xn

=
(

m − 1
p

)pn a1∫
0

...

an∫
0

⎛
⎜⎝ 1

x1...xn

∫ x
p

m−1
1

0
...

∫ x
p

m−1
n

0
f (s1, ..., sn) ds1...dsn

⎞
⎟⎠

p

dx1...dxn

x1...xn

=
(

m−1
p

)pn+n b1∫
0

...

bn∫
0

⎛
⎝ y1∫

0

...

yn∫
0

f (s1, ..., sn) ds1...dsn

⎞
⎠

p

y
−(m−1

p )p

1 ...y
−(m−1

p )p
n

dy1...dyn

y1...yn

=
(

m − 1
p

)pn+n b1∫
0

...

bn∫
0

⎛
⎝ y1∫

0

...

yn∫
0

g (s1, ..., sn) ds1...dsn

⎞
⎠

p

y−m
1 ...y−m

n dy1...dyn.

(3.3)

Similarly, the right hand side of (3.2) yields

a1∫
0

...

an∫
0

(
1 − x1

a1

)
...

(
1 − xn

an

)
f p(x

p
m−1

1 , ..., x
p

m−1
n )x

p( p
m−1−1)

1 ...x
p( p

m−1−1)
n

dx1...dxn

x1...xn

=
(

m − 1
p

)n b1∫
0

...

bn∫
0

[
1 −

(
y1

b1

)m−1
p

]
...

[
1 −

(
yn

bn

)m−1
p

]
×

f p(y1, ..., yn)y
p−m+1
1 ...yp−m+1

n
dy1...dyn

y1, ..., yn
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=
(

m − 1
p

)n b1∫
0

...

bn∫
0

[
1 −

(
y1

b1

)m−1
p

]
...

[
1 −

(
yn

bn

)m−1
p

]
×

yp−m
1 ...yp−m

n f p(y1, ..., yn)dy1...dyn. (3.4)

(3.1) follows by just combining (3.3) and (3.4). The proof is complete. �

In the next theorem we state the dual of Theorem 3.1.

THEOREM 3.2. Let p < 0, b ∈ [0,∞∞∞), let f be a nontrival and nonnegative
function on (b,∞∞∞). If m > 1 and

0 <

∞∫
b1

...

∞∫
bn

xp−m
1 ...xp−m

n f p(x1, ..., xn)dx1...dxn < ∞,

then

∞∫
b1

...

∞∫
bn

x−m
1 ...x−m

n

⎛
⎝ ∞∫

x1

...

∞∫
xn

f (t1, ..., tn) dt1...dtn

⎞
⎠

p

dx1...dxn

�
(

p
1 − m

)pn ∞∫
b1

...

∞∫
bn

[
1 −

(
b1

x1

) 1−m
p

]
...

[
1 −

(
bn

xn

) 1−m
p

]
×

x
p−m

1 ...x
p−m

n f p(x1, ..., xn)dx1...dxn. (3.5)

Proof. We use Lemma 2.2 (i) with the convex function Φ(x) = xp and the

weight function u(x1,..., xn) ≡ 1 (so that v(x1,..., xn) =
(
1 − b1

x1

)
...

(
1 − bn

xn

)
) . Then

inequality (2.3) becomes

∞∫
b1

...

∞∫
bn

⎛
⎝x1...xn

∞∫
x1

...

∞∫
xn

f (t1, ..., tn)
dt1...dtn
t21...t

2
n

⎞
⎠

p

dx1...dxn

x1...xn

�
∞∫

b1

...

∞∫
bn

(
1 − b1

x1

)
...

(
1 − bn

xn

)
f p(x1, ..., xn)

dx1...dxn

x1...xn
. (3.6)

Now, replace bj by aj = b
1−m

p
j and choose for f the function

x �→ f

(
x

p
1−m
1 , ..., x

p
1−m
n

)
x

p
1−m +1
1 ...x

p
1−m +1
n . Thereafter, use the substitutions sj = t

p
1−m
j
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and yj = x
p

1−m
j , respectively. Then the left hand side of (3.6) yields

∞∫
a1

...

∞∫
an

⎛
⎜⎝x1...xn

∞∫
x1

...

∞∫
xn

f

(
t

p
1−m
1 , ..., t

p
1−m
n

)
t

p
1−m +1

1 ...t
p

1−m +1
n

dt1...dtn
t21...t

2
n

⎞
⎟⎠

p

dx1...dxn

x1...xn

=
(

1 − m
p

)pn ∞∫
a1

...

∞∫
an

⎛
⎜⎜⎜⎝

∞∫
x

p
1−m
1

...

∞∫
x

p
1−m
n

f (s1, ..., sn) ds1...dsn

⎞
⎟⎟⎟⎠

p

xp
1...x

p
n
dx1...dxn

x1...xn

=
(

1 − m
p

)pn+n ∞∫
b1

...

∞∫
bn

⎛
⎜⎝

∞∫
y1

...

∞∫
yn

f (s1, ..., sn) ds1...dsn

⎞
⎟⎠

p

×

y
p( 1−m

p )−1

1 ...y
p( 1−m

p )−1
n dy1...dyn

=
(

1 − m
p

)pn+n ∞∫
b1

...

∞∫
bn

⎛
⎜⎝

∞∫
y1

...

∞∫
yn

f (s1, ..., sn) ds1...dsn

⎞
⎟⎠

p

y−m
1 ...y−m

n dy1...dyn.

(3.7)
Similarly, the right hand side of (3.6) reads

∞∫
a1

...

∞∫
an

(
1 − a1

x1

)
...

(
1 − an

xn

)
f p(x

p
1−m
1 , ..., x

p
1−m
n )x

p( p
1−m +1)

1 ...x
p( p

1−m +1)
n

dx1...dxn

x1...xn

=
(

1 − m
p

)n ∞∫
b1

...

∞∫
bn

[
1 −

(
b1

y1

) 1−m
p

]
...

[
1 −

(
bn

yn

) 1−m
p

]
×

yp−m
1 ...yp−m

n f p(y1, ..., yn)dy1...dyn. (3.8)

Inequality (3.5) follows by combining (3.7) and (3.8). The proof is complete. �

Our next result, which deals with the case 0 < p < 1, is the following:

THEOREM 3.3. Let 0 < p < 1, b ∈ (0,∞∞∞], and let f be a nontrival and
nonnegative function on (0, b) and assume that

0 <

b1∫
0

...

bn∫
0

xp−m
1 ...xp−m

n f p(x1, ..., xn)dx1...dxn < ∞.
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If m > 1, then

b1∫
0

...

bn∫
0

x−m
1 ...x−m

n

⎛
⎝ x1∫

0

...

xn∫
0

f (t1, ..., tn) dt1...dtn

⎞
⎠

p

dx1...dxn

�
(

p
m − 1

)pn b1∫
0

...

bn∫
0

[
1 −

(
x1

b1

)m−1
p

]
...

[
1 −

(
xn

bn

)m−1
p

]
×

x
p−m

1 ...x
p−m

n f p(x1, ..., xn)dx1...dxn. (3.9)

Proof. The proof is completely similar to that of Theorem 3.1 and, hence, the
details are omitted. In this case we note that the function Φ(x) = xp, for 0 < p < 1 is
concave and thus only the inequality signs are reversed. �

Our final result in this section is the following:

THEOREM 3.4. Let 0 < p < 1, b ∈ [0,∞∞∞), let f be a nontrival and nonnegative
function on (b,∞∞∞), and let m < 1, and

0 <

∞∫
b1

...

∞∫
bn

xp−m
1 ...xp−m

n f p(x1, ..., xn)dx1...dxn < ∞.

Then

∞∫
b1

...

∞∫
bn

x−m
1 ...x−m

n

⎛
⎝ ∞∫

x1

...

∞∫
xn

f (t1, ..., tn) dt1...dtn

⎞
⎠

p

dx1...dxn

�
(

p
1 − m

)pn ∞∫
b1

...

∞∫
bn

[
1 −

(
b1

x1

) 1−m
p

]
...

[
1 −

(
bn

xn

) 1−m
p

]
×

x
p−m

1 ...x
p−m

n f p(x1, ..., xn)dx1...dxn. (3.10)

Proof. The proof is completely similar to the proof of Theorem 3.2. In this case
we note that the function Φ(x) = xp, for 0 < p < 1 is concave and, hence, only the
inequality signs are reversed. �

4. Concluding examples and remarks

By using our Theorems 3.1 and Corollary 2.1 (i) in [14] for the cases bj = ∞,
j = 1, 2, ..., n, and m = p, respectively, we obtain the following multidimensional
Hardy type inequalities:
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EXAMPLE 4.1. If n ∈ Z+ and p < 0, m < 1 or p > 1, m > 1, then

∞∫
0

...

∞∫
0

x−m
1 ...x−m

n

⎛
⎝ x1∫

0

...

xn∫
0

f (t1, ..., tn) dt1...dtn

⎞
⎠

p

dx1...dxn

�
(

p
m − 1

)pn ∞∫
0

...

∞∫
0

x
p−m

1 ...x
p−m

n f p(x1, ..., xn)dx1...dxn. (4.1)

EXAMPLE 4.2. If n ∈ Z+ and p < 0 or p > 1, then

b1∫
0

...

bn∫
0

⎛
⎝ 1

x1...xn

x1∫
0

...

xn∫
0

f (t1, ..., tn) dt1...dtn

⎞
⎠

p

dx1...dxn

�
(

p
p − 1

)pn b1∫
0

...

bn∫
0

⎡
⎣1 −

(
x1

b1

) p−1
p

⎤
⎦ ...

⎡
⎣1 −

(
xn

bn

) p−1
p

⎤
⎦ ×

f p(x1, ..., xn)dx1...dxn. (4.2)

REMARK 4.1. By using Theorem 3.3 we see that if 0 < p < 1, m > 1, then
(4.1) holds in the reversed direction and if 0 < p < 1, then (4.2) holds in the reversed
direction.

By using our Theorem 3.2 and Corollary 2.1 (ii) in [14] for the cases bj = ∞,
j = 1, 2, ..., n, we obtain the following dual version of Example 4.1:

EXAMPLE 4.3. If n ∈ Z+ and p < 0, m > 1 or p > 1, m < 1, then

∞∫
0

...

∞∫
0

x−m
1 ...x−m

n

⎛
⎝ ∞∫

x1

...

∞∫
xn

f (t1, ..., tn) dt1...dtn

⎞
⎠

p

dx1...dxn

�
(

p
1 − m

)pn ∞∫
0

...

∞∫
0

x
p−m

1 ...x
p−m

n f p(x1, ..., xn)dx1...dxn. (4.3)

REMARK 4.2. By using Theorem 3.4 we find that (4.3) holds in the reversed
direction if 0 < p < 1, m < 1.

REMARK 4.3. We remark that for the case n = 1, p > 1 (4.1)-(4.2) coincides
with the weighted Hardy inequality (1.3). Moreover, according to Remarks 4.1 and 4.2,
we obtain the reversed inequality (1.4) for the case n = 1, 0 < p < 1.

REMARK 4.4. For the special case m = p, 0 < p < 1 in Theorem 3.4, the
inequality (3.10) coincides with inequality (2.4) in [9, Corollary 2.2 (b)]. In particular,
for n = 1, b1 = 0 (3.10) reduces to [8, Theorem 337, p. 251].
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We believe that the result in Theorem 3.4 is new also in the case n = 1 :

EXAMPLE 4.4. If 0 � b < ∞, 0 < p < 1 and m < 1, then

∞∫
b

x−m

⎛
⎝ ∞∫

x

f (t) dt

⎞
⎠

p

dx �
(

p
1 − m

)p ∞∫
b

[
1 −

(
b
x

) 1−m
p

]
x

p−m
f p(x)dx. (4.4)

In particular, if m = 0 (4.4) reads:

∞∫
b

⎛
⎝ ∞∫

x

f (t) dt

⎞
⎠

p

dx � pp

∞∫
b

[
1 −

(
b
x

) 1
p
]

x
p
f p(x)dx.

REMARK 4.5. Some complementary results to those obtained in this paper for the
case p > 1 are recently proved and discussed in [14].

REMARK 4.6. For the case p > 1 some multidimensional Hardy type inequalities
were also proved in [3]. They used another mixed mean inequality technique and it may
very well be possible to prove some of the results in this paper by using this technique.
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[4] A. ČIŽMEŠIJA, J. PEČARIĆ AND L.-E. PERSSON, On strengthened Hardy and Pólya-Knopp’s inequalities,
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Hardy and Pólya-Knopp’s type inequalities, Reseach report 15, Department of Mathematics, Luleå
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