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ON WEIGHTED SIMPSON TYPE INEQUALITIES AND APPLICATIONS

KUEI-LIN TSENG, GOU-SHENG YANG AND SEVER S. DRAGOMIR

(communicated by J. Pecaric)

Abstract. In this paper we establish some weighted Simpson type inequalities and give several
applications for the r — moments and the expectation of a continuous random variable. An
approximation for Euler’s Beta mapping is given as well.

1. Introduction

The Simpson’s inequality, states that if f(*) exists and is bounded on (a, b) , then

b
b—a [f(a)+f(b) a+b
di — 42 < H H (11
[ 7war= 252 LTI O]
where
7] = s [0 \ .
o0 t€(a,b)
Now if we assume that I, : a = xg < x1 < --- < Xx, =D isapartition of the

interval [a,b] and f is as above, then we can approximate the integral f f (¢)dt by
the Simpson’s quadrature formula As (f, I,) , having an error given by Rs (f, 1,,), Where

As (f.1,) i L [—x’ Hf Gin) oy (%)] : (1.2)

i=

and the remainder Rs (f,1,) = | by (t)dt — As (f, I,,) satisfies the estimation

a

n—1
1
Rs (1)) < 5o [ £9] D2, (13)
i=0

with [; ;= xj41 —x; for i=0,1,...,n— 1.
For some recent results which generalize, improve and extend this classic inequality
(1.1), see the papers [2] — [7] and [9] - [12].
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Recently, Dragomir [6], (see also the survey paper authored by Dragomir, Agarwal
and Cerone [7]) has proved the following two Simpson type inequalities for functions
of bounded variation:

THEOREM 1. Let f : [a,b] — R be a mapping of bounded variation. Then
b
b— b b
R CEUREL)

where \/z (f) denotes the total variation of f on the interval [a,b]. The constant  is
the best possible.

Let I,, I; (i=0,1,...,n—1), As(f,I,) and Rs(f,I,) be as above. We have
the following result concerning the approximation of the integral f f(¢)dt in terms of

As (f 1) -

THEOREM 2. Let f be defined as in Theorem 1. Then the remainder

b

<s6-a\ @), (14

a

Rttt = [0 asgn) (1.9
satisfies the estimate
Rs (f, In) \/ (), (1.6)
where v (I) := max {l;|[i =0,1,...,n— 1}. The constant % is best posible in (1.6).

In this paper, we establish some generalizations of Theorems 1-2, and give several
applications for the r — moments and expectation of a continuous random variable.
Approximations for Euler’s Beta mapping are also provided.

2. Some Integral Inequalities

We may state and prove the following main result:

THEOREM 3. Let g : [a,b] — R be positive and continuous and let h(x) =
[ g(t)dt,x € [a,b]. Let f be as in Theorem 3. Then

pa- L L9 o oty [ e

< Bh(b)—k‘ _(TH \/(f (2.1)

Sforall x € [h%—b), %(b)} , where \/z (f) denotes the total variation of f on the interval

la,b]. The constant % is the best possible.
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Proof. Fix x € {@, #} . Define

=

S() = h(t) =" re a,n " (x))
Tl () -2 e [ (v), )]

By integration by parts, we have the following identity

b » ()
/ s(0df (1) = [(h(r)—%”))m) o @ - / f(r)g(r)dt]

b
(s -T2 0 - [ sswa ]

h—

= o O o0 )] - [rws
u b b
— M )] [ewa- [roewa
(2.2)
It is well known (see for instance [1, p. 159]) that, if u, v : [a,b] — R are such that

W is continuous on [a, b] and v is of bounded variation on [a, b], then f w(r)dv(e)

exists and [1, p. 177]
b
[ uwave

Now, using (2.2) and (2.3), we have

b

< sup ()] (). 23)

t€(a,b)

1 b b
— g |:f((1) ;f( ) +2f (h71 (x)):| L g(t) dt
b
< sup Is()]\/ (). (2.4)
t€(a,b] a
Since h (t)f@ isincreasingon [a,h™" (x)), h(1)— Shﬁ(b) isincreasingon [h~! (x),b]

and the fact that max{c,d} = %< + 1 |c — d| for any real ¢ and d, hence we have

h(b)  h(b) Sh(b)
6 " 6 6 _x}

sup [5(0)] = max {

t€(a,b]



16 KUEI-LIN TSENG, GOU-SHENG YANG AND SEVER S. DRAGOMIR

and
wn [5(0] = me{hgﬁJF_hgﬁ7ﬂﬁb)_x}
1€]ab] ) " h) )
e 10 30
[ (2] () - (22
3 2
- %/abg(t)dt+ x%/abg(t)dt. (2.5)

Thus, by (2.4) and (2.5), we obtain the desired inequality (2.1).
Let us consider the particular functions:

g()=1, te€ab],
h(t)y=t—a, t€]a,b],

atb atb
f([):{l aStEElC:bT)U(Z,b]

—1 aSt:T

and x = ’% Since for these choices we get equality in (2.1), it is easy to see that the
constant % is the best possible constant in (2.1). This completes the proof. [

REMARK 1.
(1) If we choose g (f) = 1, h(f) =t—a on [a,b] and x = 52 then the inequality

(2.1) reduces to (1 4)

(2) If we choose x = @ , then we get

[ i [HOE (12 (B2))] [Cetoa

b b
<%/g(t)dt~\/(f). (2.6)

Under the conditions of Theorem 3, we have the following corollaries.

COROLLARY 1. Let f € CWV [a,b]. Then we have the inequality

1) di — < {’% 2f (w(x))] /abgo) di

b
<[§Lg@m+x$?ﬂwwp @7)
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forall x € [@, %b)} , where ||-||, is the Li— norm, namely

b
£l = [ @lar

COROLLARY 2. Let f : [a,b] — R be a Lipschitzian mapping with the constant
M > 0. Then we have the inequality

/f 1) dt — {JM +2f (hl(x))] /abg(t)dt

h(b)
X — TH (b—a)M, (2.3)

h(b) Sh(b)
forall x € [T’ T} .

COROLLARY 3. Let f : [a,b] — R be a monotonic mapping. Then we have the
inequality
b b
1) dt — {M +2f (hl(x))] / g(t)dt

b
< E/ g(t)dtJr‘x@H Af @) =f ] (29)

h(b) Sh(b)
forall x € [T’ T} .

3. Applications for Quadrature Formulae

Throughout this section, let g, A be as in Theorem 3, f : [a, ] — R, and let
I, :a=x) <x <+ <Xx,=>b be a partition of [a,b], and h;(x f g(t)dt,
X € [xi,xin], & € [ dipt) Sh('g”‘)} (i=0,1,...,n— 1) are intermediate points. Put
Li = hi(xi11) = [ g (1) dt and define the sum

— 3 2
i=0

a5 = 3 5 (LG o o1 )

and
R (f 8,10, ) /f (0)dx — As (f 8,1 E).

We have the following approximation of the integral |, bf (t)g (r)dt.

THEOREM 4. Let f be defined as in Theorem 3 and let

b
/f@gmm:Aﬂﬂ&m@+Rﬂﬂ&m§% (3.1)
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Then, the remainder term Rs (f, g, h, I, &) satisfies the estimate

1 x1+1
< —
|RS(f7g>h7In7é)| =X |:3V(L)+i_0,1}}?t§t—l :|\/(f
) b
< Vo). (32)
where v (L) := max {L;|i = 0,1,...,n — 1}. The constant 1 in the first inequality of

(3.2) is the best possible.
Proof. Apply Theorem 3 on the intervals [x;,x;11] (i=0,1,...,n—1) to get

xi+1f(t)g ([) di — é—l {fw + 2f (hl_l (51)):| ‘

Xi

1 .ler] Xit+1
[3L + & - ] \/ ),
forall i=0,1,...,n— 1. Using this and the generalized triangle inequality, we have
n—1 Xit1
" Li |f (%) +f (xiga _
ks &1 <3| [ g a5 |EEELE) o )|
=0 VX

n—1 Xit
<ZBL+ x’“ }\/(f
i=0

1 x n—1 Xi+1
1)
< max |=L+ |&— =Y
=01, =1 {3 ' Z(; \/ )
i=0 xi
xz+1

iz

a

and the first inequality in (3.2) is proved.
For the second inequality in (3.2), we observe that

hi(x; | S
5,-7% <3Li(i=01,...n—1);
and then () ( )
h(x;) + h(xi1 1
RS e VAL N e VY
,-:O.T?’,i_l & 2 = 3V(L)

Thus the theorem is proved. [

REMARK 2. Ifwechoose g (f) = 1, then i (1) = t—a on [a,b], § = 5 (i =
0,1,...,n— 1), and the first inequality in (3.2) reduces to (1.6).
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The following corollaries are useful in practice.

COROLLARY 4. Let f : [a,b] — R be a Lipschitzian mapping with the constant
M > 0, I, be defined as above and choose & = w (i=0,1,...,n—1). Then
we have the formula

b
/ﬂ%mmzAmgw@+&m&m@ (33)
= 3% L) o @) + s (ot
i=0

and the remainder satisfies the estimate
v(L)-M-(b—a)
|RS(f7g,In7é)|< 3 :
COROLLARY 5. Let f : [a,b] — R be a monotonic mapping and let &
(i=0,1,...,n—1) be defined as in Corollary 4. Then we have the formula (3.3)
and the remainder satisfies the estimate

(3.4)

R (g8 < Y217 ) (@) (5

The case of equidistant division is embodied in the following corollary and remark:

COROLLARY 6. Suppose that G(x) = [ g(t)dt,x € [a, D],

xi=G! (%/bg(t)dt> (i=0,1,...,n),

hi(x) = / g(ndt,x € [x;,xi11],(i=0,1,...,n—1),

and
1 b
L ::hi(x,-H):G(xi+1)—G(x,-):—/ e()dr (i=0,1,....n—1).
n a

Let f be defined as in Theorem 4 and choose & = h’(xz—’“) (i=0,1,...,n—1). Then
we have the formula

b
/f(t)g(t)dt = AS(f7g>h7In7é)+RS(f7g7h7In7é)

i=0
+RS (f>g7h>ln>€) (36)
and the remainder satisfies the estimate
b

1 b
IRs (F 8. I €)] < 3—n\/(f)/ g (1) d. (3.7)

a
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REMARK 3. If we want to approximate the integral j;bf (t) g (t) dt by As (f, g, h, 1, &)
with an error less that € > 0, then we need at least n, € N points for the partition I,

where
b

b
ne = [31—5/ g(de-\/ (f)

a

+1

and [r] denotes the Gaussian integer of r € R.

4. Some Inequalities for Random Variables

Throughout this section, let 0 < a < b, r € R, and let X be a continuous random
variable having the continuous probability density function g : [a,b] — [0,00) and
assume the r-moment, defined by

E. (X) = /b 1'g (1) dt,

is finite.

THEOREM 5. The inequality

1 1 1
E,(X)——|d+4 = | <=0 —d" 4.1
<>6[a+( (3)) +]|<sw-a1 @
holds, where h (t f g(x € [a,b)).
Proof. If we put f () = ¢ and x = T) = 1 in Corollary 3, then we obtain the
inequality
b 1 b
m——i@iﬁl+% [ /g@m
2 2 g
1
<3lfe sl [ (42)
Since

/f E (X), /abg(t)dt—h

bi"
fa s :‘j Cand |f (B)—f (@) = ' — ],

(4.1) follows from (4.2). O

If we choose r =1 in Theorem 5, then we have the following remark:

REMARK 4. If E(X) is the expectation of random variable X, then

‘E(X)Hm%l (%)w”gbf. (4.3)
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5. Inequality for the Beta Mapping

The following mapping is well-known in the literature as the Beta mapping:

1
Bia)= [ P 10" d p>0,q >0,
0

The following result may be stated:

THEOREM 6. Let p > 0, q > 1. Then the inequality

1 ins]"! i+ 1\
Bira =02 15 G (5
2 2ir 1\ 1
*51—(2,1) <3 (5.1)
holds for any positive integer n.
Proof. Ifweput a=0,b=1,f()=(1—-0)"", gt) =" and G(1) = 2

(t €10, 1]) in Corollary 6, then,

nx? — i
hi = € X, Xi 7.20717"'7 _1>
=" (e . ne1)

1
hi(x; 2i4+1\7
h! <(XT“)):( l2+ )I i=0,1,...,n—1)
n

and \/z(f ) = 1, so that the inequality (5.1) holds. O
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