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ON WEIGHTED SIMPSON TYPE INEQUALITIES AND APPLICATIONS

KUEI-LIN TSENG, GOU-SHENG YANG AND SEVER S. DRAGOMIR

(communicated by J. Pečarić)

Abstract. In this paper we establish some weighted Simpson type inequalities and give several
applications for the r − moments and the expectation of a continuous random variable. An
approximation for Euler’s Beta mapping is given as well.

1. Introduction

The Simpson’s inequality, states that if f (4) exists and is bounded on (a, b) , then∣∣∣∣∣
∫ b

a
f (t)dt − b − a

3

[
f (a) + f (b)

2
+ 2f

(
a + b

2

)]∣∣∣∣∣ � (b − a)5

2880

∥∥∥ f (4)
∥∥∥
∞

, (1.1)

where ∥∥∥ f (4)
∥∥∥
∞

:= sup
t∈(a,b)

∣∣∣ f (4)(t)
∣∣∣ < ∞.

Now if we assume that In : a = x0 < x1 < · · · < xn = b is a partition of the
interval [a, b] and f is as above, then we can approximate the integral

∫ b
a f (t) dt by

the Simpson’s quadrature formula AS (f , In) , having an error given by RS (f , In) , where

AS (f , In) :=
n−1∑
i=0

li
3

[
f (xi) + f (xi+1)

2
+ 2f

(
xi + xi+1

2

)]
, (1.2)

and the remainder RS (f , In) =
∫ b

a f (t) dt − AS (f , In) satisfies the estimation

|RS (f , In)| � 1
2880

∥∥∥ f (4)
∥∥∥
∞

n−1∑
i=0

l5i , (1.3)

with li := xi+1 − xi for i = 0, 1, . . . , n − 1.
For some recent results which generalize, improve and extend this classic inequality

(1.1), see the papers [2] – [7] and [9] – [12].
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Recently, Dragomir [6], (see also the survey paper authored by Dragomir, Agarwal
and Cerone [7]) has proved the following two Simpson type inequalities for functions
of bounded variation:

THEOREM 1. Let f : [a, b] → R be a mapping of bounded variation. Then∣∣∣∣∣
∫ b

a
f (t)dt − b − a

3

[
f (a) + f (b)

2
+ 2f

(
a + b

2

)]∣∣∣∣∣ � 1
3

(b − a)
b∨
a

(f ) , (1.4)

where
∨b

a (f ) denotes the total variation of f on the interval [a, b] . The constant 1
3 is

the best possible.

Let In, li (i = 0, 1, . . . , n − 1), AS (f , In) and RS (f , In) be as above. We have
the following result concerning the approximation of the integral

∫ b
a f (t)dt in terms of

AS (f , In) .

THEOREM 2. Let f be defined as in Theorem 1. Then the remainder

RS (f , In) =
∫ b

a
f (x)dx − AS (f , In) (1.5)

satisfies the estimate

|RS (f , In)| � 1
3
ν (l)

b∨
a

(f ) , (1.6)

where ν (l) := max{li |i = 0, 1, . . . , n − 1} . The constant 1
3 is best posible in (1.6).

In this paper, we establish some generalizations of Theorems 1–2, and give several
applications for the r − moments and expectation of a continuous random variable.
Approximations for Euler’s Beta mapping are also provided.

2. Some Integral Inequalities

We may state and prove the following main result:

THEOREM 3. Let g : [a, b] → R be positive and continuous and let h(x) =∫ x
a g(t)dt, x ∈ [a, b] . Let f be as in Theorem 3. Then∣∣∣∣∣

∫ b

a
f (t)g (t) dt − 1

3

[
f (a) + f (b)

2
+ 2f

(
h−1(x)

)] ∫ b

a
g (t) dt

∣∣∣∣∣
�
[
1
3
h(b) +

∣∣∣∣x − h (b)
2

∣∣∣∣
]
·

b∨
a

(f ) , (2.1)

for all x ∈
[

h(b)
6 , 5h(b)

6

]
, where

∨b
a (f ) denotes the total variation of f on the interval

[a, b] . The constant 1
3 is the best possible.
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Proof. Fix x ∈
[

h(b)
6 , 5h(b)

6

]
. Define

s (t) :=

{
h (t) − h(b)

6 , t ∈ [
a, h−1 (x)

)
h (t) − 5h(b)

6 , t ∈ [
h−1 (x) , b

] .

By integration by parts, we have the following identity

∫ b

a
s (t) df (t) =

[(
h (t) − h (b)

6

)
f (t) |h−1(x)

a −
∫ h−1(x)

a
f (t)g (t) dt

]

+

[(
h (t) − 5h (b)

6

)
f (t) |bh−1(x) −

∫ b

h−1(x)
f (t)g (t) dt

]

=
1
3
h (b)

[
f (a) + f (b)

2
+ 2f

(
h−1 (x)

)]− ∫ b

a
f (t)g (t) dt

=
1
3

[
f (a) + f (b)

2
+ 2f

(
h−1 (x)

)] ∫ b

a
g (t) dt −

∫ b

a
f (t)g (t) dt.

(2.2)

It is well known (see for instance [1, p. 159]) that, if μ, ν : [a, b] → R are such that
μ is continuous on [a, b] and ν is of bounded variation on [a, b] , then

∫ b
a μ (t) dν (t)

exists and [1, p. 177]

∣∣∣∣∣
∫ b

a
μ (t) dν (t)

∣∣∣∣∣ � sup
t∈[a,b]

|μ (t)|
b∨
a

(ν) . (2.3)

Now, using (2.2) and (2.3), we have

∣∣∣∣∣
∫ b

a
f (t)g (t) dt − 1

3

[
f (a) + f (b)

2
+ 2f

(
h−1 (x)

)] ∫ b

a
g (t) dt

∣∣∣∣∣
� sup

t∈[a,b]
|s (t)|

b∨
a

(f ) . (2.4)

Since h (t)− h(b)
6 is increasing on

[
a, h−1 (x)

)
, h (t)− 5h(b)

6 is increasing on
[
h−1 (x) , b

]
and the fact that max{c, d} = c+d

2 + 1
2 |c − d| for any real c and d , hence we have

sup
t∈[a,b]

|s (t)| = max

{
h (b)

6
, x − h (b)

6
,
5h (b)

6
− x

}
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and

sup
t∈[a,b]

|s (t)| = max

{
h (b)

6
, x − h (b)

6
,
5h (b)

6
− x

}

= max

{
x − h (b)

6
,
5h (b)

6
− x

}

=
1
2

[(
x−h (b)

6

)
+
(

5h (b)
6

−x

)]
+

1
2

∣∣∣∣
(

x−h (b)
6

)
−
(

5h (b)
6

−x

)∣∣∣∣
=

h (b)
3

+
∣∣∣∣x − h(b)

2

∣∣∣∣
=

1
3

∫ b

a
g (t) dt +

∣∣∣∣∣x − 1
2

∫ b

a
g(t)dt

∣∣∣∣∣ . (2.5)

Thus, by (2.4) and (2.5), we obtain the desired inequality (2.1).
Let us consider the particular functions:

g (t) ≡ 1, t ∈ [a, b] ,
h (t) = t − a, t ∈ [a, b] ,

f (t) =
{

1 as t ∈ [
a, a+b

2

) ∪ (
a+b

2 , b
]

−1 as t = a+b
2

and x = b−a
2 . Since for these choices we get equality in (2.1), it is easy to see that the

constant 1
3 is the best possible constant in (2.1). This completes the proof. �

REMARK 1.
(1) If we choose g (t) ≡ 1, h (t) = t− a on [a, b] and x = b−a

2 , then the inequality
(2.1) reduces to (1.4).

(2) If we choose x = h(b)
2 , then we get∣∣∣∣∣

∫ b

a
f (t)g (t) dt − 1

3

[
f (a) + f (b)

2
+ 2f

(
h−1

(
h(b)
2

))]∫ b

a
g (t) dt

∣∣∣∣∣
� 1

3

∫ b

a
g (t) dt ·

b∨
a

(f ) . (2.6)

Under the conditions of Theorem 3, we have the following corollaries.

COROLLARY 1. Let f ∈ C(1) [a, b] . Then we have the inequality∣∣∣∣∣
∫ b

a
f (t)g (t) dt − 1

3

[
f (a) + f (b)

2
+ 2f

(
h−1(x)

)] ∫ b

a
g (t) dt

∣∣∣∣∣
�
[

1
3

∫ b

a
g (t) dt +

∣∣∣∣x − h(b)
2

∣∣∣∣
]
‖ f ′‖1 , (2.7)



SIMPSON TYPE INEQUALITIES 17

for all x ∈
[

h(b)
6 , 5h(b)

6

]
, where ‖·‖1 is the L1−norm, namely

‖ f ′‖1 :=
∫ b

a
|f ′ (t)| dt.

COROLLARY 2. Let f : [a, b] → R be a Lipschitzian mapping with the constant
M > 0 . Then we have the inequality∣∣∣∣∣

∫ b

a
f (t)g (t) dt − 1

3

[
f (a) + f (b)

2
+ 2f

(
h−1(x)

)] ∫ b

a
g (t) dt

∣∣∣∣∣
�
[

1
3

∫ b

a
g (t) dt +

∣∣∣∣x − h(b)
2

∣∣∣∣
]

(b − a)M, (2.8)

for all x ∈
[

h(b)
6 , 5h(b)

6

]
.

COROLLARY 3. Let f : [a, b] → R be a monotonic mapping. Then we have the
inequality ∣∣∣∣∣

∫ b

a
f (t)g (t) dt − 1

3

[
f (a) + f (b)

2
+ 2f

(
h−1(x)

)] ∫ b

a
g (t) dt

∣∣∣∣∣
�
[

1
3

∫ b

a
g (t) dt +

∣∣∣∣x − h(b)
2

∣∣∣∣
]
· | f (b) − f (a)| (2.9)

for all x ∈
[

h(b)
6 , 5h(b)

6

]
.

3. Applications for Quadrature Formulae

Throughout this section, let g, h be as in Theorem 3, f : [a, b] → R, and let
In : a = x0 < x1 < · · · < xn = b be a partition of [a, b] , and hi(x) =

∫ x
xi

g(t)dt,

x ∈ [xi, xi+1], ξi ∈
[

h(xi+1)
6 , 5h(xi+1)

6

]
(i = 0, 1, . . . , n − 1) are intermediate points. Put

Li := hi(xi+1) =
∫ xi+1

xi
g (t) dt and define the sum

AS (f , g, In, ξ) :=
n−1∑
i=0

Li

3

[
f (xi) + f (xi+1)

2
+ 2f

(
h−1 (ξi)

)]

and

RS (f , g, In, ξ) =
∫ b

a
f (t)g(t)dx − AS (f , g, In, ξ) .

We have the following approximation of the integral
∫ b

a f (t)g (t) dt .

THEOREM 4. Let f be defined as in Theorem 3 and let∫ b

a
f (t)g (t) dt = AS (f , g, In, ξ) + RS (f , g, In, ξ) . (3.1)
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Then, the remainder term RS (f , g, h, In, ξ) satisfies the estimate

|RS (f , g, h, In, ξ)| �
[
1
3
ν (L) + max

i=0,1,...,n−1

∣∣∣∣ξi − hi(xi+1)
2

∣∣∣∣
] b∨

a

(f )

� 2
3
ν (L)

b∨
a

(f ) , (3.2)

where ν (L) := max {Li |i = 0, 1, . . . , n − 1} . The constant 1
3 in the first inequality of

(3.2) is the best possible.

Proof. Apply Theorem 3 on the intervals [xi, xi+1] (i = 0, 1, . . . , n − 1) to get∣∣∣∣
∫ xi+1

xi

f (t)g (t) dt − li
3

[
f (xi) + f (xi+1)

2
+ 2f

(
h−1

i (ξi)
)]∣∣∣∣

�
[
1
3
Li +

∣∣∣∣ξi − hi(xi+1)
2

∣∣∣∣
] xi+1∨

xi

(f ) ,

for all i = 0, 1, . . . , n − 1. Using this and the generalized triangle inequality, we have

|RS (f , g, In, ξ)| �
n−1∑
i=0

∣∣∣∣
∫ xi+1

xi

f (t)g (t) dt − Li

3

[
f (xi) + f (xi+1)

2
+ 2f

(
h−1

i (ξi)
)]∣∣∣∣

�
n−1∑
i=0

[
1
3
Li +

∣∣∣∣ξi − hi(xi+1)
2

∣∣∣∣
] xi+1∨

xi

(f )

� max
i=0,1,...,n−1

[
1
3
Li +

∣∣∣∣ξi − hi(xi+1)
2

∣∣∣∣
] n−1∑

i=0

xi+1∨
xi

(f )

�
[
1
3
ν (L) + max

i=0,1,...,n−1

∣∣∣∣ξi − hi(xi+1)
2

∣∣∣∣
] b∨

a

(f )

and the first inequality in (3.2) is proved.
For the second inequality in (3.2), we observe that∣∣∣∣ξi − hi(xi+1)

2

∣∣∣∣ � 1
3
Li (i = 0, 1, . . . , n − 1);

and then

max
i=0,1,...,n−1

∣∣∣∣ξi − h(xi) + h(xi+1)
2

∣∣∣∣ � 1
3
ν (L) .

Thus the theorem is proved. �

REMARK 2. If we choose g (t) ≡ 1, then h (t) = t−a on [a, b] , ξi = xi+1−xi
2 (i =

0, 1, . . . , n − 1) , and the first inequality in (3.2) reduces to (1.6).
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The following corollaries are useful in practice.

COROLLARY 4. Let f : [a, b] → R be a Lipschitzian mapping with the constant
M > 0 , In be defined as above and choose ξi = hi(xi+1)

2 (i = 0, 1, . . . , n − 1) . Then
we have the formula∫ b

a
f (t)g (t) dt = AS (f , g, In, ξ) + RS (f , g, In, ξ) (3.3)

=
n−1∑
i=0

Li

3

[
f (xi) + f (xi+1)

2
+ 2f

(
h−1

i (ξi)
)]

+ RS (f , g, In, ξ)

and the remainder satisfies the estimate

|RS (f , g, In, ξ)| � ν (L) · M · (b − a)
3

. (3.4)

COROLLARY 5. Let f : [a, b] → R be a monotonic mapping and let ξi

(i = 0, 1, . . . , n − 1) be defined as in Corollary 4. Then we have the formula (3.3)
and the remainder satisfies the estimate

|RS (f , g, In, ξ)| � ν (L)
3

· | f (b) − f (a)| . (3.5)

The case of equidistant division is embodied in the following corollary and remark:

COROLLARY 6. Suppose that G(x) =
∫ x

a g(t)dt, x ∈ [a, b],

xi = G−1

(
i
n

∫ b

a
g(t)dt

)
(i = 0, 1, . . . , n),

hi(x) =
∫ x

xi

g(t)dt, x ∈ [xi, xi+1], (i = 0, 1, . . . , n − 1),

and

Li := hi(xi+1) = G(xi+1) − G(xi) =
1
n

∫ b

a
g (t) dt (i = 0, 1, . . . , n − 1) .

Let f be defined as in Theorem 4 and choose ξi = hi(xi+1)
2 (i = 0, 1, . . . , n − 1) . Then

we have the formula∫ b

a
f (t)g (t) dt = AS (f , g, h, In, ξ) + RS (f , g, h, In, ξ)

=
1
3n

n−1∑
i=0

[
f (xi) + f (xi+1)

2
+ 2f

(
h−1

i

(
hi(xi+1)

2

))]∫ b

a
g (t) dt

+RS (f , g, h, In, ξ) (3.6)

and the remainder satisfies the estimate

|RS (f , g, h, In, ξ)| � 1
3n

b∨
a

(f )
∫ b

a
g (t) dt. (3.7)



20 KUEI-LIN TSENG, GOU-SHENG YANG AND SEVER S. DRAGOMIR

REMARK3. Ifwewant to approximate the integral
∫ b

a f (t) g (t) dt by AS (f , g, h, In, ξ)
with an error less that ε > 0 , then we need at least nε ∈ N points for the partition In ,
where

nε :=

[
1
3ε

∫ b

a
g (t) dt ·

b∨
a

(f )

]
+ 1

and [r] denotes the Gaussian integer of r ∈ R.

4. Some Inequalities for Random Variables

Throughout this section, let 0 < a < b , r ∈ R , and let X be a continuous random
variable having the continuous probability density function g : [a, b] → [0,∞) and
assume the r -moment, defined by

Er (X) :=
∫ b

a
trg (t) dt,

is finite.

THEOREM 5. The inequality∣∣∣∣Er (X) − 1
6

[
ar + 4

(
h−1

(
1
2

))r

+ br

]∣∣∣∣ � 1
3
|br − ar| (4.1)

holds, where h (t) =
∫ t

a g (x) dx (t ∈ [a, b]) .

Proof. If we put f (t) = tr and x = h(b)
2 = 1

2 in Corollary 3, then we obtain the
inequality ∣∣∣∣∣

∫ b

a
f (t)g (t) dt − 1

3

[
f (a) + f (b)

2
+ 2f

(
h−1

(
1
2

))]∫ b

a
g (t) dt

∣∣∣∣∣
� 1

3
| f (b) − f (a)|

∫ b

a
g (t) dt. (4.2)

Since ∫ b

a
f (t)g (t) dt = Er (X) ,

∫ b

a
g (t) dt = 1,

f (a) + f (b)
2

=
ar + br

2
, and | f (b) − f (a)| = |br − ar| ,

(4.1) follows from (4.2). �
If we choose r = 1 in Theorem 5, then we have the following remark:

REMARK 4. If E(X) is the expectation of random variable X , then∣∣∣∣E (X) − 1
6

[
a + 4h−1

(
1
2

)
+ b

]∣∣∣∣ � b − a
3

. (4.3)
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5. Inequality for the Beta Mapping

The following mapping is well-known in the literature as the Beta mapping:

β (p, q) :=
∫ 1

0
tp−1 (1 − t)q−1 dt, p > 0, q > 0.

The following result may be stated:

THEOREM 6. Let p > 0, q > 1 . Then the inequality∣∣∣∣∣∣β (p, q)− 1
np

n−1∑
i=0

⎧⎨
⎩1

6

⎛
⎝[1 −

( i
n

) 1
p
]q−1

+

[
1 −

(
i + 1

n

) 1
p
]q−1

⎞
⎠

+
2
3

[
1 −

(
2i + 1

2n

) 1
p
]q−1

⎫⎬
⎭
∣∣∣∣∣∣ � 1

3np
(5.1)

holds for any positive integer n .

Proof. If we put a = 0 , b = 1 , f (t) = (1 − t)q−1 , g(t) = tp−1 and G (t) = tp

p

(t ∈ [0, 1]) in Corollary 6, then,∫ b

a
g(t)dt =

1
p
, xi =

( i
n

) 1
p

(i = 0, 1, . . . , n),

hi(x) =
nxp − i

np
(x ∈ [xi, xi+1], i = 0, 1, . . . , n − 1),

h−1
i

(
hi(xi+1)

2

)
=
(

2i + 1
2n

) 1
p

(i = 0, 1, . . . , n − 1)

and
∨b

a(f ) = 1 , so that the inequality (5.1) holds. �
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[3] V. ČULJAK, J. PEČARIĆ AND L. E. PERSSON, A note on Simpson’s type numerical integration, Soochow
J. Math. 29 (2003), no. 2, 191–200.

[4] S. S. DRAGOMIR, On Simpson’s quadrature formula and applications, Mathematica 43 (66) (2001), no.
2, 185–194.

[5] S. S. DRAGOMIR, On Simpson’s quadrature formula for Lipschitzian mappings and applications, Soo-
chow J. Math. 25 (1999), no. 2, 175–180.

[6] S. S. DRAGOMIR, OnSimpson’s quadrature formula for mappings of bounded variation and applications,
Tamkang J. of Math. 30 (1999), no. 1, 53–58.

[7] S. S. DRAGOMIR, R. P. AGARWAL AND P. CERONE, On Simpson’s inequality and applications, J. Inequal.
Appl. 5(2000), no. 6, 533–579.
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