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TOWARDS A WELL–DEFINED MEDIAN

AHMAD AL-SALMAN AND MOWAFFAQ HAJJA

(communicated by J. Pečarić)

Abstract. The diagonal Δ of R
n is Chebeshev with respect to the p -norm for every p ∈ (1,∞]

but not for p = 1 . As a result, the median is multi-valued, since the median of a data set
{a1, · · · , an} can be thought of as the number(s) μ for which the point (μ, · · · ,μ) is a point
on Δ that best approximates the point (a1, · · · , an) with respect to the �1 -norm. In this
note, it is proved that if (μp, · · · ,μp) is the unique point on Δ that best approximates a fixed
point (a1, · · · , an) with respect to the �p -norm for p ∈ (1,∞] , then as p decreases to 1, μp
converges, and its limit is proposed to be called the median of {a1, · · · , an} . Along the way,
μp is shown to be continuous in p for all p ∈ (1,∞] in the sense that μp converges to μq as
p goes to q for every q ∈ (0,∞] .

1. Preliminaries

We fix n � 1 , and we let Δ stand for the diagonal of R
n . Thus

Δ = {x = (x1, · · · , xn) ∈ R
n : x1 = · · · = xn}.

For p ∈ [1,∞] , the �p -norm on R
n is defined by

‖x‖p =

{ (∑n
j=1 |xj|p

)1/p
, if p ∈ [1,∞)

max{|xj| : j = 1, · · · , n}, if p = ∞ ,

where x = (x1, · · · , xn) . Note that ‖x‖∞ = limp→∞ ‖x‖p.
It is easy to see that Δ is Chebeshev in R

n with respect to the �p -norm for all
p ∈ (1,∞] . In other words, given any a = (a1, · · · , an) ∈ R

n and any p ∈ (1,∞] ,
there is a unique point (μp, · · · ,μp) in Δ whose �p -distance from a is minimal.
This must be well-known, but it also follows from the discussion below. We keep
a = (a1, · · · , an) fixed throughout, and we let (μp, · · · ,μp) be its best approximant in
Δ with respect to the �p -norm.

It is clear that μ∞ is the mid-point of the range of the data set {a1, · · · , an} , i.e.,

μ∞ =
max{a1, · · · , an} + min{a1, · · · , an}

2
. (1)
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Here, a data set is any set with possible repetitions. If p ∈ (1,∞) , then μp is the
unique point x for which the function f p : R

n −→ R defined by

f p(x) = ‖(x, · · · , x) − (a1, · · · , an)‖p
p =

n∑
j=1

|x − aj|p (2)

attains its minimum. In other words, μp is the unique zero of

f ′
p(x) = p

n∑
j=1

sign(x − aj)|x − aj|p−1, (3)

where sign(t) is defined to be 1 if t � 0 and −1 otherwise. The existence and
uniqueness of μp follow from the strict convexity of f p which in turn follows from the
fact that

f ′′
p (x) = p(p − 1)

n∑
j=1

|x − aj|p−2 > 0.

The number μp may be called the �p -best-approximation mean of a , or rather of
the correspomding data set {a1, · · · , an} . It is clear that μp is strictly internal in the
sense that

min{a1, · · · , an} � μp � max{a1, · · · , an},
with strict inequality except in the case when a1 = · · · = an . In fact, if a1 � · · · � an

and if they are not all equal, then (3) shows that f ′
p(a1) < 0 and f ′

p(an) > 0 .

2. Continuity of the �p -best-approximation mean for p ∈ (1,∞]

In this section, we establish the continuity of μp for p ∈ (1,∞] .

THEOREM 1. For a fixed point a = (a1, · · · , an) , let μp , 1 < p < ∞ , be the
unique value that minimizes the function f defined in (2), and let μ∞ be defined by
(1). Then μp is continuous for p ∈ (1,∞] . In other words,

lim
p→q

μp = μq ∀ q ∈ (1,∞].

Proof. Let q ∈ (1,∞] be given, and let pk be any sequence that converges to q
such that μpk converges to t , necessarily finite since μp is internal. We are to show
that t = μq . For simplicity, set tk = μpk . In view of (3), μp is defined by

n∑
j=1

sign(μp − aj)|μp − aj|p−1 = 0.

Then
n∑

j=1

sign(tk − aj)|tk − aj|pk−1 = 0. (4)
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If q < ∞ , we take limits as k goes to infinity and we obtain

n∑
j=1

sign(t − aj)|t − aj|q−1 = 0.

Therefore t satisfies the equation that defines μq , and therefore t = μq , as desired.
If q = ∞ , we shall show that t is equal to μ∞ . Thus we assume that t �= μ∞ and

seek a contradiction. Without loss of generality, we assume that a1 � · · · � an and that
t > μ∞ . Then μ∞ = (an +a1)/2 , and our assumption takes the form t > (a1 +an)/2 .
Dividing (4) by the mid-range u = (an − a1)/2 and taking the limit, we see that

lim
k→∞

⎛
⎝ n∑

j=1

sign(tk − aj)
∣∣∣∣ tk − aj

u

∣∣∣∣
pk−1

⎞
⎠ = 0. (5)

Since t > (a1 + an)/2 , then every aj for which t− aj is negative has the property that
|t − aj| is less than |u| . For such an aj ,

lim
k→∞

∣∣∣∣ tk − aj

u

∣∣∣∣
pk−1

= 0.

Therefore we may discard the terms in (5) for which t− aj < 0 or equivalently neglect
their signs. We obtain

lim
n→∞

⎛
⎝ n∑

j=1

∣∣∣∣ tn − aj

u

∣∣∣∣
pn−1

⎞
⎠ = 0.

This contradicts the asumption that |t − a1| > |u| which implies that

lim
k→∞

∣∣∣∣ tk − a1

u

∣∣∣∣
pk−1

= ∞.

Therefore t = (a1 + an)/2 , as desired. �

3. Towards a unique median

We now turn to the case p = 1 . Since the function f 1 defined in (2) attains its
minimum but not necessarily at a unique point, it follows that Δ is proximinal but not
Chebeshev with respect to the �1 -norm. In fact, if a1 � · · · � an , then f 1 attains
its minimum at the unique point a(n+1)/2 if n is odd and at any point in the interval
[an/2, a1+n/2] if n is even. This explains the non-uniqueness of the median as ordinarily
defined in statistics.

In this section, a = (a1, · · · , an) will stand for an arbitrary, but fixed, point in
R

n , and μp = μp(a) , p ∈ (1,∞] , is defined, as above, to be the point at which the
function f p defined in (2) attains its minimum. We shall show that the limit of μp as
p decreases to 1 exists, and we propose to call this limit, that we denote by μ∗ , the
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median of a , or rather of the data set {a1, · · · , an} . It is obvious that if n = 2 , then
μp = (a1 + an)/2 for all p . Also, if all the aj are equal, then μp equals their common
value for all p . Thus we exclude the trivial cases n < 3 and a1 = · · · = an . Also,
there is no loss in generality in assuming that a1 � · · · � an .

It is expectedly impossible to have a closed formula for μp . However, given
w ∈ R , it is easy to decide whether w = μp , w < μp , or w > μp . In fact, having the
parabola-like graph of f p in mind, it is obvious that

w < μp, w = μp, or w > μp according as

f ′
p(w) < 0, f ′

p(w) > 0, or f ′
p(w) = 0, respectively. (6)

We shall freely use this simple, but quite useful, observation.

We start with a simple lemma that will be used in proving the key Lemma 3. This
in turn will be used in proving our main Theorem 4.

LEMMA 2. Let α1, · · · ,αn , n � 1 , be non-zero real numbers, and let r1, · · · , rn

be distinct real numbers. Then the function

F(x) = α1e
r1x + · · · + αne

rnx

has finitely many zeros in R . The same holds for the function

α1c
x
1 + · · · + αnc

x
n,

where c1, · · · , cn are any distinct positive real numbers.

Proof. Without loss of generality, assume that r1 < · · · < rn , and let

g(x) = e−r1xf (x) and h(x) = e−rnxf (x).

Then
lim

x→−∞ g(x) = α1 and lim
x→+∞ h(x) = αn.

Therefore g has no zeros near −∞ and h has no zeros near ∞ . Since F , g , and h
have the same zeros, it follows that the zeros of F all lie in some compact interval. If
the set of zeros of F is infinite, it has an accumulation point and F would have to be
identically zero. This follows because F , as a function of the complex variable x , is
entire. Therefore F has finitely many zeros, as claimed.

The last statement follows by setting cj = e
rj

. �

LEMMA 3. For p > 1 , let f p : R → R be defined as in (2) and let μp be the
unique point at which f p(x) attains its minimum. Let w be any real number. Then
there exists δ > 0 such that either μp � w for all p ∈ (1, 1 + δ) , or μp � w for all
p ∈ (1, 1 + δ) .

Proof. We suppose, by way of contradiction, that there are sequences pi and qi

decreasing to 1 such that μqi < w < μqi . It follows from (6) that

f ′
qi
(w) > 0 > f ′

pi
(w). (7)
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Now let

F(p) =
f ′
p(w)
p

=
n∑

j=1

sign(w − aj)|w − aj|p−1.

Then (7) says that F(qi) > 0 > F(pi) . Since F is continuous as a function of p , it
follows from the intermediate value theorem that F(ξi) = 0 for some ξi between pi and
qi . Also ξi decreases to 1 by the Sandwich theorem. Therefore 1 is an accumulation
point of the set of zeros of F , contradicting Lemma 2 and completing the proof. �

THEOREM 4. For p > 1 , let f p : R → R be defined as in (2) and let μp be
the unique point at which f p(x) attains its minimum. Then as p decreases to 1, μp

converges, say to μ∗ . Also, the convergence is ultimately one-sided in the sense that
there exists δ > 0 such that μp − μ∗ has the same sign for all p ∈ (1, 1 + δ) . If the
number of indices i for which ai is greater than μ∗ is M and the number of indices
i for which ai is less than μ∗ is m , then M � n/2 and m � n/2 . Also, if M > m,
then the convergence is ultimately right-sided, and if M < m, then the convergence is
ultimately left-sided. Consequently μ∗ lies in the traditional median set of a in the
sense that μ∗ equals a(n+1)/2 if n is odd and lies in the interval [an/2, a1+n/2] if n is
even.

Proof. If lim supp→1 μp and lim infp→1 μp are not equal, then any real number w
between them would contradict Lemma 3. Therefore limp→1 μp exists. Let us denote
it by μ∗ . Taking w = μ∗ in Lemma 3, we conclude that the convergence is ultimately
one-sided.

Now let us treat the case when the convergence of μp is ultimately right-sided.
Thus μp � μ∗ for all p close enough to 1. Let m , s , and M be defined by

a1 � · · · � am < am+1 = · · · = am+s = μ∗ < am+s+1 � · · · � am+s+M,

where m, M � 0 , s � 1 , and m + s + M = n . Let a be the common value of
am+1, · · · , am+s . Then in a right neighborhood of μ∗ , we have

f ′
p(x) = p

m∑
j=1

(x − aj)p−1 + ps(x − a)p−1 − p
m+s+M∑

j=m+s+1

(aj − x)p−1.

Therefore,

s(μp − a)p−1 =
m+s+M∑

j=m+s+1

(aj − μp)p−1 −
m∑

j=1

(μp − aj)p−1.

The right-hand side converges, as p decreases to 1 (and consequently μp decreases
to μ∗ ) to M − m . Therefore (the indeterminate form) (μp − a)p−1 converges, as p
decreases to 1 , to some L with sL = M−m . Also, L ∈ [0, 1] , because (μp −a)p−1 ∈
[0, 1] for all p sufficiently close to 1. Therefore 0 � M−m � s . Since s = n−m−M ,
it follows that M − m � n − m − M , and therefore M � n/2 . Hence m � M � n/2 ,
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as claimed. This also shows that if m > M , then the convergence cannot be ultimately
right-sided and therefore it must be left-sided.

The case when the convergence of μp is ultimately left-sided is similar, and the
proof is complete. �

The ultimately left-sidednes of the convergence of μp raises the question whether
the convergence of μp is indeed ultimately momotone. Thus given a1, · · · , an and
letting μp be as defined earlier, does there exist δ > 0 such that the convergence of
μp as p decreases to 1 within the interval (1, 1 + δ) is montone. The next theorem
provides an affirmative answer when n = 3 .

THEOREM 5. If n = 3 , then μp converges monotonically to the median.

Proof. Let a � b � c be given. We are to show that μp = μp(a, b, c) converges
ultimately monotonically. If b− a = c− b , then it follows from symmetry that μp = b
for all p . Therefore assume that b − a > c − b .

Recall that μp is the unique point at which f p(x) = |x − a|p + |x − b|p + |x − c|p
attains its minimum. Since

f ′
p(b) = p(b − a)p−1 − p(c − b)p−1 > 0,

it follows from (6) that μp < b , and therefore μ lies in the open interval (a, b) . For
x ∈ (a, b) ,

f p(x) = (x − a)p + (b − x)p + (c − x)p,

and

f ′
p(x) = p(x − a)p−1 − p(b − x)p−1 − p(c − x)p−1.

Therefore

(μp − a)p−1 − (b − μp)p−1 − p(c − μp)p−1 = 0.

Let q > p . To show that μq < μp , it is enough to show that f ′
q(μp) < 0 . In other

words, we are to show that (μp − a)q−1 − (b − μp)q−1 − (c − μp)q−1 < 0.
Let

(μp − a)p−1 = α, (b − μp)p−1 = β , (c − μp)p−1 = γ ,
q − 1
p − 1

= s > 1.

Then α , β , and γ are positive, and α = β + γ . Therefore

αs = (β + γ )s > β s + γ s,

or equivalently

(μp − a)q−1 − (b − μp)q−1 − (c − μp)q−1 > 0.

Thus f ′
q(μp) > 0 , and therefore μq < μp .

Therefore as p decreases to 1, μ increases, necessarily to b . �

The question of montonicity of convergence when n > 3 remnains open.
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4. Relation to distance means and genuine uniqueness of μ∗

It is useful to view the afore-mentioned best approximation means μp from the
perspective of the distance means introduced in [3]. Thus we start with any distance d
on a set X for which the function

f d(x) = d(x, a1) + · · · + d(x, an)

attains its minimum at a unique point ν = νd(a) for every data set a = {a1, · · · , an} in
X , and we call the point νd(a) the distance mean of a associated with d . Obviously,
the �p -best-approximation mean μp , p ∈ (1,∞) , is nothing but the distance mean
associated with the distance dp defined on R by

dp(x, y) = |x − y|p. (8)

Here, a distance on X is a real-valued symmetric positive-definite function on X × X
that does not necessarily satisfy the triangle inequality; see [2]. Note that μ∞ does not
correspond, at least not obviously, to a distance.

This viewpoint has the advantage of allowing one to talk simultaneously about
means of sets of different sizes. More importantly, it allows us to think of several
triangle (and generally simplex) centers as distance means. For example, considering
the Euclidean norm ‖ · · · ‖ on R

n and letting α be the distance defined on R
n by

α(x, y) = ‖x − y‖2, x, y ∈ R
n,

we immediately see that να(x1, · · · , xN) is nothing but the centroid of the points
x1, · · · , xN for every x1, · · · , xN ∈ R

n. Letting β be defined by

β(x, y) = ‖x − y‖, x, y ∈ R
n,

we see that νβ (x1, · · · , xN) exists and is unique only if the points x1, · · · , xN are
non-collinear, and that in this case it is nothing but the Fermat-Torricelli point of these
points; see [4]. To fit these considerations in the context of best approximation means,
one would have to work with unusual spaces of the form (RN)n with

‖(x1, · · · , xn)‖p =

⎛
⎝ n∑

j=1

‖xj‖p
p

⎞
⎠

1/p

, xi ∈ R
N .

The distance-mean approach also raises a question regarding the uniqueness of the
path that we have taken in defining μ∗ . More precisely, it is conceivable that there
exist, beside the distances dp defined in (8), other sequences δp of distances on R that
converge, as p decreases to 1, to the ordinary Euclidean distance and such that the limit
μ† of their associated distance means is not the same as our μ∗ . In this case, μ† would
have as valid a claim as μ∗ to being the median. However, the fact that the distances
dp that we have chosen are highly natural may help us accept μ∗ as a highly legitimate
median.
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Another approach for defining the median of a data set a = {a1, · · · , an} can
be based on the Fermat-Torricelli point described above. As noted then, the function
defined on R

N by

F(x) = ‖x − x1‖ + · · · + ‖x − xn‖ (9)

attains its minimum at a unique point, the so-called Fermat-Torricelli point, if and
only if x1, · · · , xn are non-collinear. This raises the possibility of defining the median
of a1, · · · , an by embedding R in R

N for N � 2 , perturbating the points ai =
(ai, 0, · · · , 0) in such a way that they stop being collinear, finding the Fermat-Torricelli
point of the resulting set of points, and then taking the limit as the ai move back to their
initial collinear position. One wonders whether there are natural ways for performing
the perturbation, and how the resulting limit is related to μ∗ .

It is of course legitimate to question the usefulness of the proposed μ∗ and other
possible definitions of the median, and that can be left to statisticians and workers in
relevant disciplines to decide.

It would also be interesting to investigate whether μp , already proved to be contin-
uous, is differentiable in p , and whether each μp is continuous or even differentiable
in a . One also raises the same question for μ∗ .

Finally, one may consider continuous versions of the above investigation by looking
at spaces of integrable functions on measure spaces. In this case, one would restrict
attention to spaces of finite measure to ensure that diagonal, i.e., constant, functions are
included.
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