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Abstract. In this paper, we consider a new system of quasi variational inequalities involving
two different operators. Using the projection technique, we suggest and analyze a new iterative
method for solving this system of quasi variational inequalities. We also prove the convergence
of this iterative method under some mild conditions. As a special case, our results include the
results of Huang and Noor [6] for solving system of variational inequalities.

1. Introduction

Variational inequalities theory has emerged as a fascinating branch of applicable
mathematics with a wide range of applications in industry, finance and applied sciences.
Variational inequalities have been generalized and extended in several directions using
some novel and innovative techniques. A useful and significant generalization of the
variational inequalities is called the quasi variational inequality where the underlying
convex set also depends upon the solution implicitly or explicitly. It is well known that
a wide class of problems arising in pure and applied sciences can be studied by quasi
variational inequalities, see [1–14,16] and the references therein.

Inspired and motivated by the ongoing research in this field, Huang and Noor
[6] have considered and studied a system of variational inequalities involving two
different nonlinear operators. In this paper, we introduce a system of quasi variational
inequalities involving two different operators and study the convergence analysis of the
iterative method under some mild conditions. Since the system of quasi variational
inequalities includes the system of variational inequalities, quasi variational inequality
and variational inequalities as special cases, results proved in this paper continue to
hold for these problems. In this respect, our results can be viewed as a refinement of
the previous known results.
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2. Basic Results

Let K be a nonempty closed and convex set in a real Hilbert space, whose inner
product and norm are denoted by 〈 ·, ·〉 and ‖.‖ respectively. Let T1, T2 : K −→ K be
nonlinear operators. Let K(x, y) be a nonempty closed convex-valued set in H.

We consider the problem of finding x∗, y∗ ∈ K(x∗, y∗) such that

〈 ρT1(y∗, x∗) + x∗ − y∗, x − x∗〉 � 0, ∀x ∈ K(y∗, x∗) (1)
〈ηT2(x∗, y∗) + y∗ − x∗, x − y∗〉 � 0, ∀x ∈ K(x∗, y∗) (2)

which is called the system of quasi variational inequalities (SQVID), where ρ >
0, η > 0 are constants.

For T1 = T2 = T, SQVID is equivalent to finding x∗, y∗ ∈ K(x∗, y∗) such that

〈 ρT(y∗, x∗) + x∗ − y∗, x − x∗〉 � 0, ∀x ∈ K(y∗, x∗)
〈ηT(x∗, y∗) + y∗ − x∗, x − y∗〉 � 0, ∀x ∈ K(x∗, y∗)

which is called the system of quasi variational inequalities(SQVI) and appears to be a
new one.

Note that, if K(x∗, y∗) = K(y∗, x∗) = K, the nonempty closed and convex set in
H, then SQVID reduces to the following system of variational inequalities of finding
x∗, y∗ ∈ K such that

〈 ρT1(y∗, x∗) + x∗ − y∗, x − x∗〉 � 0, x ∈ K,

〈ηT2(x∗, y∗) + y∗ − x∗, x − y∗〉 � 0, x ∈ K,

which is known as the systemof variational inequalities involving two different nonlinear
operators (SVID). This system of variational inequalities (SVID) was considered and
introduced by Huang and Noor [6].

In brief, for appropriate and suitable choice of the operators T1, T2 and the convex-
valued set K, one can obtain a number of new and previous known problems from the
SQVID as special cases, which have been considered in [1-14,16]. This clearly shows
that the SQVID is quite general and unifying one and has important applications in
various branches of pure and applied sciences.

LEMMA 2.1. For a given z ∈ H, u ∈ K satisfies the inequality

〈 u − z, v − u〉 � 0, ∀v ∈ K,

if and only if u ∈ K satisfies the relation u = PKz, where PK is a projection from K
onto H.

Lemma 2.1 plays an important role in obtaining our results. Using Lemma 2.1,
one can easily know that finding the solution (x∗, y∗) of the system of quasi variational
inequalities (SQVID) is equivalent to find x∗, y∗ such that

x∗ = PK(y∗,x∗)[y∗ − ρT1(y∗, x∗)],
y∗ = PK(x∗,y∗)[x∗ − ηT2(x∗, y∗)].
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DEFINITION 2.1. A mapping T : K → H is called r -strongly monotonic if for all
x, y ∈ K , there exists a constant r > 0 , such that

〈Tx − Ty, x − y〉 � r||x − y||2.

DEFINITION 2.2. A mapping T : K → H is called γ -cocoercive if for all x, y ∈ K ,
there exists a constant γ > 0 , such that

〈Tx − Ty, x − y〉 � γ ||Tx − Ty||2.

DEFINITION 2.3. A mapping T : K → H is called relaxed (γ , r) -cocoercive if for
all x, y ∈ K , there exists constants γ > 0, r > 0 , such that

〈Tx − Ty, x − y〉 � −γ ||Tx − Ty||2 + r||x − y||2.
Clearly the class of the relaxed (γ , r) -cocoercive mappings in Definition 2.3 is the

most general class than the class of r -strongly monotonic mappings in Definition 2.1
and γ -cocoercive mappings in Definition 2.2.

DEFINITION 2.4. A mapping T : K → H is called μ -Lipschitzian if for all
x, y ∈ K , there exists a constant μ > 0 , such that

||Tx − Ty|| � μ||x − y||.

LEMMA 2.2. (see [15]). Suppose {δn}∞n=0 is a nonnegative sequence satisfying
the following inequality:

δn+1 � (1 − λn)δn + σn, for all n � 0,

with λn ∈ [0, 1] ,
∑∞

n=0 λn = ∞ , and σn = o(λn) . Then limn→∞ δn = 0 .

In order to consider the convergence analysis of the iterative methods, we need the
following assumption, which is mainly due to Noor [9,10].

ASSUMPTION 2.1. The projection operator PK(x,y) satisfies the following condition

‖PK(x,y)(w) − PK(u,v)(w)‖ � ν‖x − u‖, ∀x, y, u, v, w ∈ H,

where ν > 0 is a constant.

REMARK 2.1. We remark that Assumption 2.1 is true for the special case, K(x, y) =
m(x) + K, which appears in many important applications (see [7]), where m is a point-
to-point mapping and K is a closed convex set in H. It is well known that

PK(x,y)(w) = m(x) + PK [w − m(x)].

If m is a Lipschitz continuous with a constant ν̃ > 0, then

‖PK(x,y)(w) − PK(u,v)(w)‖
= ‖m(x) − m(u) + PK [w − m(x)] − PK[w − m(u)]‖
� ‖m(x) − m(u)‖ + ‖PK [w − m(x)] − PK[w − m(u)]‖
� 2‖m(x) − m(u)‖ � 2ν̃‖x − u‖,

which shows that Assumption 2.1 is true for ν = 2ν̃ > 0.
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3. Iterative Algorithms and Convergence

In this section, we suggest and investigate a class of iterative methods for solving
the system of quasi variational inequalities(SQVID) using the projection technique.
We also consider the convergence analysis of the iterative method under some mild and
suitable conditions.

Using Lemma 2.1, we can suggest the following iterative method for SQVID.

ALGORITHM 3.1. For arbitrarily chosen initial points x0, y0, compute the sequence
{xn} and {yn} by

xn+1 = (1 − an)xn + anPK(yn,xn)[yn − ρT1(yn, xn)], (3)

yn+1 = (1 − bn)xn+1 + bnPK(xn+1,yn)[xn+1 − ηT2(xn+1, yn)], (4)

where an, bn ∈ [0, 1] for all n � 0 and ρ > 0, η > 0 are constants.

For an ≡ 1 = bn for all n � 0 , then Algorithm 3.1 reduces to the following
iterative algorithm.

ALGORITHM 3.2. For arbitrarily chosen initial points x0, y0, compute the sequence
{xn} and {yn} by

xn+1 = PK(yn,xn)[yn − ρT1(yn, xn)],
yn+1 = PK(xn+1,yn)[xn+1 − ηT2(xn+1, yn)],

For K(y, x) = K(x, y) ≡ K, the convex set, Algorithm 3.1 reduces to the following
iterative method for solving SVID, which is mainly due to Huang and Noor [6].

ALGORITHM 3.3. For arbitrarily chosen initial points x0, y0, compute the sequence
{xn} and {yn} by

xn+1 = (1 − an)xn + anPK[yn − ρT1(yn, xn)],
yn+1 = (1 − bn)xn+1 + bnPK [xn+1 − ηT2(xn+1, yn)],

where an, bn ∈ [0, 1] for all n � 0.

For T1 = T2 = T, Algorithm 3.1 reduces to:

ALGORITHM 3.4. For arbitrarily chosen initial points x0, y0, compute the sequence
{xn} and {yn} by

xn+1 = (1 − an)xn + anPK(yn,xn)[yn − ρT(yn, xn)],

yn+1 = (1 − bn)xn+1 + bnPK(xn+1,yn)[xn+1 − ηT(xn+1, yn)],

where an, bn ∈ [0, 1] for all n � 0. Algorithm 3.4 appears to be new one for SQVI.

In a similar way, for suitable and appropriate choice of the operators T1, T2 and
the convex-valued set K(x, y), one can obtain several new and known algorithms from
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Algorithm 3.1. This clearly shows that Algorithm 3.1 is quite general and includes the
previous methods as special cases.

We now consider the convergence criteria of Algorithm 3.1 and this is the main
motivation of our main result.

THEOREM 3.1. Let K(x, y) be a nonempty closed convex subset of a real Hilbert
space H and let (x∗ , y∗) be the solution of SQVID. Let T1 : K × K → H be relaxed
(γ1, r1) -cocoercive and μ1 -Lipschitzian in the first variable, and T2 : K × K → H be
relaxed (γ2, r2) -cocoercive and μ2 -Lipschitzian in the first variable with conditions

∣∣∣∣ρ − r1 − γ1μ2
1

μ2
1

∣∣∣∣ <

√
(r1 − γ1μ2

1 )2 − μ2
1 (2ν − ν2)

μ2
1

(5)

r1 > γ1μ2
1 + μ1

√
ν(2 − ν), ν ∈ (0, 1), (6)

and
∣∣∣∣η− r2 − γ2μ2

2

μ2
2

∣∣∣∣ <

√
(r2 − γ1μ2

2 )2 − μ2
2 (2ν − ν2)

μ2
2

(7)

r2 > γ2μ2
2 + μ2

√
ν(2 − ν), ν ∈ (0, 1). (8)

Let an, bn ∈ [0, 1] ,
∑∞

n=0 an = ∞ , and limn→∞ bn = 1 . If Assumption 2.1 holds
with a constant ν ∈ (0, 1) , then for arbitrarily chosen initial points x0, y0 ∈ K , xn

and yn obtained from Algorithm 3.1 converge strongly to x∗ and y∗ respectively.

Proof. Let x∗, y∗ be a solution of the SQVID. Then

x∗ = (1 − an)x∗ + anPK(y∗,x∗)[y∗ − ρT1(y∗, x∗)] (9)
y∗ = (1 − bn)y∗ + bnPK(x∗,y∗)[x∗ − ηT2(x∗, y∗)] (10)

From (3), (9), and Assumption 2.1, we have

||xn+1 − x∗||
= ||(1 − an)xn + anPK(yn,xn)[yn − ρT1(yn, xn)]

−(1 − an)x∗ − anPK(y∗,x∗)[y∗ − ρT1(y∗, x∗)]||
� (1 − an)||xn − x∗||

+an||PK(yn,xn)[yn − ρT1(yn, xn)] − PK(y∗,x∗)[y∗ − ρT1(y∗, x∗)]||
� (1 − an)||xn − x∗||

+an||PK(y∗,x∗)[yn − ρT1(yn, xn)] − PK(y∗,x∗)[y∗ − ρT1(y∗, x∗)]||
+an||PK(yn,xn)[yn − ρT1(yn, xn)] − PK(y∗,x∗)[yn − ρT1(yn, xn)]||

� (1 − an)||xn − x∗|| + an||[yn − ρT1(yn, xn)] − [y∗ − ρT1(y∗, x∗)]||
+ν‖yn − y∗‖

= (1 − an)||xn − x∗|| + an||yn − y∗ − ρ[T1(yn, xn) − T1(y∗, x∗)]||
+ν‖yn − y∗‖. (11)
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From the relaxed (γ1, r1) -cocoercive and μ1 -Lipschitzian definition in the first variable
on T1 , we have

||yn − y∗ − ρ[T1(yn, xn) − T1(y∗, x∗)]||2
= ||yn − y∗||2 − 2ρ〈T1(yn, xn) − T1(y∗, x∗), yn − y∗〉 + ρ2||T1(yn, xn) − T1(y∗, x∗)||2
� ||yn − y∗||2 − 2ρ[−γ1||T1(yn, xn) − T1(y∗, x∗)||2 + r1||yn − y∗||2]

+ρ2||T1(yn, xn) − T1(y∗, x∗)||2
� ||yn − y∗||2 + 2ργ1μ2

1 ||yn − y∗||2 − 2ρr1||yn − y∗||2 + ρ2μ2
1 ||yn − y∗||2

= [1 + 2ργ1μ2
1 − 2ρr1 + ρ2μ2

1 ]||yn − y∗||2. (12)

From (11) and (12), it follows that

‖xn+1 − x∗‖ � (1 − an)‖xn − x∗‖
+an

{√
1 + 2ργ1μ2

1 − 2ρr1 + ρ2μ2
1 + ν

}
‖yn − y∗‖

= (1 − an)‖xn − x∗‖ + anθ1‖yn − y∗‖, (13)

where

θ1 =
√

1 + 2ργ1μ2
1 − 2ρr1 + ρ2μ2

1 ]1/2 + ν.

From (5) and (6), we see that θ1 < 1.

Similarly, from the relaxed (γ2, r2) -cocoercive and μ2 -Lipschitzian definition in
the first variable on T2 , we obtain

||xn+1 − x∗ − η[T2(xn+1, yn) − T2(x∗, y∗)]||2
= ||xn+1 − x∗||2 − 2η〈T2(xn+1, yn) − T2(x∗, y∗), xn+1 − x∗〉

+η2||T2(xn+1, yn) − T2(x∗, y∗)||2
� ||xn+1 − x∗||2 − 2η[−γ2||T2(xn+1, yn) − T2(x∗, y∗)||2 + r2||xn+1 − x∗||2]

+η2||T2(xn+1, yn) − T2(x∗, y∗)||2
= ||xn+1 − x∗||2 + 2ηγ2||T2(xn+1, yn) − T2(x∗, y∗)||2 − 2ηr2||xn+1 − x∗||2

+η2||T2(xn+1, yn) − T2(x∗, y∗)||2
� ||xn+1 − x∗||2 + 2ηγ2μ2

2 ||xn+1 − x∗||2 − 2ηr2||xn+1 − x∗||2
+η2μ2

2 ||xn+1 − x∗||2
= [1 + 2ηγ2μ2

2 − 2ηr2 + η2
2μ

2]||xn+1 − x∗||2. (14)
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Hence from (4), (10), (14), and Assumption 2.1, it yields that

||yn+1 − y∗||
� (1 − bn)‖xn+1 − x∗‖ + (1 − bn)||y∗ − x∗||

+bn‖PK(xn+1,yn)[xn+1 − ηT2(xn+1, yn)] − PK(x∗,y∗)[x∗ − ηT2(x∗, y∗)]||
� (1 − bn)‖xn+1 − x∗‖ + (1 − bn)||y∗ − x∗||

+bn||PK(xn+1,yn)[xn+1 − ηT2(xn+1, yn)] − PK(xn+1,yn)[x∗ − ηT2(x∗, y∗)]||
+bn||PK(xn+1,yn)[x∗ − ηT2(x∗, y∗)] − PK(x∗,y∗)[x∗ − ηT2(x∗, y∗)]||

= (1 − bn)‖xn+1 − x∗‖ + (1 − bn)||y∗ − x∗||
+bn||xn+1 − x∗ − η[T2(xn+1, yn) − T2(x∗, y∗)]||
+bnν‖xn+1 − x∗‖

� (1 − bn)‖ xn+1 − x∗‖ + bnθ2‖xn+1 − x∗‖ + (1 − bn)||y∗ − x∗||
= (1 − bn(1 − θ2)) ‖xn+1 − x∗‖ + (1 − bn)||y∗ − x∗||
� ‖xn+1 − x∗‖ + (1 − bn)||y∗ − x∗||, (15)

where

θ2 =
[√

1 + 2ηγ2μ2
2 − 2ηr2 + η2μ2

2 + ν
]

.

From (7) and (8), we know that θ2 < 1.
Combining (13)-(15), we have

||xn+1 − x∗|| � (1 − an)||xn − x∗|| + anθ1||yn − y∗||
� (1 − an)||xn − x∗|| + anθ1[||xn − x∗|| + (1 − bn−1)||y∗ − x∗||]
= [1 − an(1 − θ1)]||xn − x∗|| + anθ1(1 − bn−1)||y∗ − x∗||.

Since (1−θ1) ∈ (0, 1] ,
∑∞

n=0 an(1−θ1) = ∞ , and anθ1(1−bn−1)||y∗−x∗|| = o(an) ,
then by Lemma 2.2, limn→∞ ||xn − x∗|| = 0 . The result limn→∞ ||yn − y∗|| = 0 is
from (15). This completes the proof. �

REMARK. Algorithm 3.1 extends the main results of [6] from the solvability of the
system of variational inequalities (SVID) to the solvability of the system of quasi varia-
tional inequalities (SQVID). Moreover, since SQVID includes SVID, quasi variational
inequality and variational inequalities as special cases, results proved in this paper hold
for these problems and give a refinement of the previous results [6,8,9,10,11,14,16] to
the more general relaxed (γ , r) -cocoercive mappings.
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