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Abstract. Let A and B be strictly positive operators on a Hilbert space H such that 0 < m �
B � M for some scalars 0 < m < M and hB = M

m . We prove a norm inequality for the

chaotically geometric mean A♦αB = e(1−α) log A+α log B and its reverse: For each real number
α ∈ R

S(hαB )−1
∥∥∥∥A

1−α
2 BαA

1−α
2

∥∥∥∥ � ‖A ♦α B‖ �
∥∥∥∥A

1−α
2 BαA

1−α
2

∥∥∥∥
where the constant S(h) is the Specht ratio and ‖ · ‖ is the operator norm.

1. Introduction

A (bounded linear) operator A on a Hilbert space H is said to be positive (in
symbol: A � 0 ) if (Ax, x) � 0 for all x ∈ H and strictly positive (in symbol: A > 0 )
if A is positive and invertible. Let A and B be two strictly positive operators on a
Hilbert space H . In [6], the chaotically geometric mean A ♦α B is defined by

A ♦α B = exp((1 − α) log A + α logB) for all α ∈ R .

If A and B commute, then A ♦α B = A1−αBα for all α ∈ R .
In the preceding paper [10, 11], Nakamoto and the author obtained the following

norm inequality and its reverse for the chaotically geometric mean: Let A and B be
strictly positive operators such that 0 < m � A, B � M for some scalars 0 < m < M
and h = M

m . Then

K(h2,α)‖A1−αBα‖ � ‖A ♦α B‖ � ‖A1−αBα‖ for all α ∈ [0, 1] , (1)

where K(h,α) is a generalized Kantorovich constant.
In this paper, we show a slight improvement of the norm inequality (1) for the

chaotically geometric mean and its reverse: Let A and B be strictly positive operators
such that 0 < m � B � M for some scalars 0 < m < M and hB = M

m . Then

S(hα)−1
∥∥∥A

1−α
2 BαA

1−α
2

∥∥∥ � ‖A ♦α B‖ �
∥∥∥A

1−α
2 BαA

1−α
2

∥∥∥ for all α ∈ R ,

where the constant S(h) is the Specht ratio. Our main tools are Araki’s inequality and
its reverse.
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2. Results

First of all, we cite Araki’s inequality [1] and its reverse [7]:

THEOREM A. If A and B are positive operators such that 0 < m � A � M for
some scalars 0 < m < M , then

K(hA, p) ‖BAB‖p � ‖BpApBp‖ � ‖BAB‖p for all p ∈ [0, 1] ,

where hA = M
m is a generalized condition number of A in the sense of Turing [13] and

a generalized Kantorovich constant K(h, p) [9, Definition 2.2] is defined by

K(h, p) =
hp − h

(p − 1)(h − 1)

(
p − 1

p
· hp − 1
hp − h

)p

for any real number p ∈ R .

We state some properties of K(h, p) [9, Theorem 2.54]:

LEMMA 1. Let h > 0 be given. Then a generalized Kantorovich constant K(h, p)
has the following properties.
( i ) K(h, p) = K(h−1, p) for all p ∈ R .
( ii ) K(h, p) = K(h, 1 − p) for all p ∈ R .
( iii ) K(h, 0) = K(h, 1) = 1 and K(1, p) = 1 for all p ∈ R .

( iv ) K(hr, p
r )

1
p = K(hp, r

p )
− 1

r for pr �= 0 .

Also, Specht [12] estimated the upper bound of the arithmetic mean by the geo-
metric one for positive numbers: For x1, · · · , xn ∈ [m, M] with 0 < m � M

x1 + · · · + xn

n
� S(h) n

√
x1 · · · xn,

where h = M
m (� 1) and the Specht ratio S(h) [9, page 71] is defined by

S(h) =
(h − 1)h

1
h−1

e log h
(h �= 1) and S(1) = 1. (2)

Yamazaki and Yanagida [14] showed the following close relation between the
Specht ratio and a generalized Kantorovich constant, also see [4, 8].

LEMMA 2. Let h > 0 be given. Then

K

(
hr,

r + p
r

)
� S(hp) for all p > 0 and r > 0 (3)

and

K

(
hp,

1
p

)
→ S(h) as p → 0 . (4)
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The following lemma shows the Golden-Thompson type inequality for the operator
norm and its reverse, also see [3, 2].

LEMMA 3. Let A and B be selfadjoint operators such that m � B � M for some
scalars m < M . Then

S(eM−m)−1
∥∥∥e

A
2 eBe

A
2

∥∥∥ � ‖eA+B‖ �
∥∥∥e

A
2 eBe

A
2

∥∥∥ ,

where S(eM−m) is the Specht ratio defined by (2).

Proof. Since 0 < em � eB � eM and a generalized condition number of eB is
eM−m , it follows from Theorem A that

K(eM−m, p)
∥∥∥e

A
2 eBe

A
2

∥∥∥p
�

∥∥∥e
pA
2 epBe

pA
2

∥∥∥ �
∥∥∥e

A
2 eBe

A
2

∥∥∥p
for all p ∈ [0, 1] .

Taking 1
p -th power of both sides, we have

K(eM−m, p)
1
p

∥∥∥e
A
2 eBe

A
2

∥∥∥ �
∥∥∥e

pA
2 epBe

pA
2

∥∥∥
1
p �

∥∥∥e
A
2 eBe

A
2

∥∥∥ . (5)

It follows from (iv) of Lemma 1 and (4) of Lemma 2 that

K(eM−m, p)
1
p = K

(
epM−pm,

1
p

)−1

→ S(eM−m)−1 as p → 0 .

By the Lie-Trotter formula, we have
∥∥∥e

pA
2 epBe

pA
2

∥∥∥
1
p → ‖eA+B‖ as p → 0 and hence by

(5) it follows that

S(eM−m)−1
∥∥∥e

A
2 eBe

A
2

∥∥∥ � ‖eA+B‖ �
∥∥∥e

A
2 eBe

A
2

∥∥∥ ,

as desired. �
By Lemma 3, we have the following theorem which is a slight improvement of

(1):

THEOREM 4. Let A and B be strictly positive operators such that 0 < m � B �
M for some scalars 0 < m < M , hB = M

m . Then for each real number α ∈ R

S(hαB)−1
∥∥∥A

1−α
2 BαA

1−α
2

∥∥∥ � ‖A ♦α B‖ �
∥∥∥A

1−α
2 BαA

1−α
2

∥∥∥ ,

where S(h) is the Specht ratio defined by (2).

Proof. For each α > 0 , replacing A and B by (1 − α) log A and α logB
in Lemma 3 respectively, we have the desired inequality since α logm � α logB �
α logM and eα log M−α log m = hαB . In the case of α < 0 , we have α logM � α logB �
α logm and eα log m−α log M = h−α

B . By the property of the Specht ratio [9, Lemma
2.47], it follows that S(h−α

B ) = S(hαB) and hence we have this theorem. �
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The following corollary is a complementary result for Theorem 4:

COROLLARY 5. Let A and B be strictly positive operators such that 0 < m �
A � M for some scalars 0 < m < M , hA = M

m . Then for each real number α ∈ R

S(h1−α
A )−1

∥∥∥A
1−α

2 BαA
1−α

2

∥∥∥ � ‖A ♦α B‖ �
∥∥∥A

1−α
2 BαA

1−α
2

∥∥∥ .

Proof. If we apply B ♦1−α A to Theorem 4, then it follows that

S(h1−α
A )−1

∥∥∥B
α
2 A1−αB

α
2

∥∥∥ � ‖B ♦1−α A‖

and hence we have this corollary. �

REMARK. Let A and B be strictly positive operators such that 0 < m � A, B �
M for some scalars 0 < m < M , h = M

m . Since
∥∥∥A

1−α
2 BαA

1−α
2

∥∥∥ � ‖A1−αBα‖ , the

expression (1) in §1 implies

K(h2,α)
∥∥∥A

1−α
2 BαA

1−α
2

∥∥∥ � ‖A ♦α B‖ for all α ∈ [0, 1] . (6)

By combining Theorem 4 and Corollary 5, we have

max{S(hα)−1, S(h1−α)−1}
∥∥∥A

1−α
2 BαA

1−α
2

∥∥∥ � ‖A ♦α B‖ for all α ∈ R . (7)

Then (7) is an improvement of (6). As a matter of fact, we have

K(h2,α) � S(hα)−1 for all 0 � α � 1
2 . (i)

K(h2,α) � S(h1−α)−1 for all 1
2 � α � 1 . (ii)

To prove (i), it is sufficient to show K(h,α)−1 � S(h
α
2 ) for all 0 � α � 1

2 . By
Lemma 1 and (3) of Lemma 2, we have

K(h,α)−1 = K(h, 1 − α)−1 = K

(
h1−α ,

1
1 − α

)1−α

= K

(
h1−α ,

α + 1 − α
1 − α

)1−α

� S(hα)1−α .

Since S(hs)
1
s is increasing for 0 � s � 1 by [5, Lemma 9], it follows that S(hα) �

S(h
α
2 )2 and hence we have

S(hα)1−α � S(h
α
2 )2(1−α) � S(h

α
2 )

since 0 � α � 1
2 . Therefore, it follows that K(h2,α) � S(hα)−1 for all 0 � α � 1

2 .
Similarly, we have (ii). Therefore we have

K(h2,α) � max{S(hα)−1, S(h1−α)−1} for all α ∈ [0, 1] .
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