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ON OSTROWSKI AND EULER-GRUSS TYPE INEQUALITIES
INVOLVING MEASURES

A. CIVLIAK, L. DEDI¢ AND M. MATIC

(communicated by J. Pecari¢)

Abstract. Some generalizations of weighted Ostrowski and Euler-Griiss type inequalities are
given by using general Euler identities involving real Borel measures.

1. Introduction

For a,b € R, a < b, let w: [a,b] — [0,00) be an integrable function satisfying

/ab w(t)dt > 0

For n > 1, and x,t € [a, b] let

ﬁ/(t_s)n_lw(s)d& a<it<x

Kn(xa t) = 0, r=x

ﬁ/b (t—s)"'w(s)ds, x<t<b

and Ko(x,7) = w(t). Also let

b
en(x,w) = / (t—x)"w(t)dt, n >0

It is easy to see that K,(x, -) is continuous on [a, b]\{x} and has a total jump of

(="

Kn(x>x+0) _K”(x’x_o) - (n - 1)!

en—1(x,w)

at x. It is differentiable on [a, b]\{x} and
K (x,1) = Ku(x,1)
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Let f : [a,b] — R be such that f "~ is a continuous function of bounded variation
on [a,b] for some n > 1. In paper [3] the following identity has been proved:

b nl )y
/af(t)w(t)dt—gf k!()

where x € [a,b] and

er(x,w) + Ry(x) (L.1)

Ry(x) = (=1)" | Kulx,0)df "D (2) (1.2)
0.t

This identity has been used in [3] to prove some generalizations of weighted Ostrowski
inequalities. The aim of this paper is to generalize formula (1.1), by replacing weight
function w by a real Borel measure on [a,b], and using it to prove some further
generalizations of weighted Ostrowski inequality.

2. Some integral identities

For a,b € R, a < b, let Cla, b] be the Banach space of all continuous functions
f : [a,b]— R with the max norm, and M][a,b] the Banach space of all real Borel
measures on [a,b] with the total variation norm. For u € Mla,b] define function
by 2 [a,b]— R, n>1, by

) = = /[ syt

The function [i, is differentiable, [t/ (¢) = [i,—(z) and [i,(a) = 0, for every n > 2,
while for n =1

in(1) = /[ (9 = (1)

which means that fi;(¢) is equal to the distribution function of u. Note that
1 ! )
(1) = m/ﬂ (t—s)"""(s)ds, n =2

and
(t—a)"!

(n—1)!

[ (1)] < el s 7 € [a,b], n> 1

We also write

m, (W) :/ s"du(s), n >0
[a.b]

for the n-th moment of u, and

ett) = [ (s 0Pdu(s), n >0, x€ fab
[a,b]
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for the n-th x-centered moment of u. We introduce the sequence of functions P, :
[@,b] X [a,b] = R, n > 1, by

U (2), a<t<x
P(x,1) =

n

ﬁn(t) + ((ni_—ll)ﬂenfl(ta“% x <t < b
for a < x < b, while for x = b

,(1), a<t<b
R e

It is easy to see that for n > 2
P,(x,a) = P,(x,b) =0
and
Pi(x,a) = fii(a) = u({a}), Pi(x,b)=0
for every x € [a, b], and that P,(x,-), n > 2, is continuous on [a, b]\{x}, having a
jump of
(
(Vl — 1) ' 6”,1()@ “’)

at x. Further, P,(x,), n > 2, is differentiable on [a, b]\{x} and

P;;+l(x7 1) = Pu(x,1)

REMARK 1. Note that

t_an—l
&ZT%THMLathLnZI

(

|P(x, 1)] <

and

_ #\n—1
|Py(x, 1)| < %

since for x <t < b and n > 1 we have

full, x<t<b, n>1

1 _Sn—l s
mm[@“ Y= du(s)
1

_ 7Sn—l s
- Gfmlgo Y du(s)

which can be written, for n > 2, as

Pn(x7 t) = ﬁn(t) -

b
Patet) =~ [ =9 (s

(n—

REMARK 2. In the special case, when the measure u has the density w, with
respect to Lebesgue measure on [a, b], the sequence (P,(x,t),n > 1) reduces to the
sequence (K,(x,7),n > 1) from Introduction, except for + = x. In this case also
Pi(x,-) is differentiable a.e. and P} (x,7) = w(z), a.e.
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LEMMA 1. Forn>2, x € a,b], and f € Cla,b], we have

(=D"

£ = [ 50t e

[a,0]

while for n = 1

f@dP(x,0) = [ f()du(r) — u({a})f (a) — u([a, b])f (x)

la,b] la,b]

Proof. For n > 2, the function P,(x,-) is differentiable on [a,b] \ {x} and its
derivative is equal to P,_(x, -). Further, it has a jump of e 1) -ey—1(x, ) at x, which
gives the first formula. Further, P;(x, -) has a jump of —[i;(b) at x, and by [1, Lemma
1] we have

F(0dPy(x.1) = /[ O ~ B9
[ O — ) @) — B 3

f)du(t) — u({a})f (a) — u(la, b])f (x),

[a,0]

which proves the second formula. [

THEOREM 1. Let f : [a,b] — R be such that f "=V is a continuous function of
bounded variation for some n > 1. Then for every x € [a, b]

[ (@)dp(t) = Su(x) + Ra(x) (2.1)

[a,0]

where

and

Ru(x) = (—1)" /[ o) ar =D (1)

Proof. By partial integration, for £ > 1, we have

Re(x) = (=) Py (x,0) f 470 (0)
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Since P,(x,a) = P,(x,b) =0, for k > 2, by the first formula of Lemma 1,

Re(x) = (1" [ fE D (@0)dPy (x,1) (2.3)

FEDOP (x,1)dt
(=t
(k—1)!

(k=1) (y
B f(kil()!)ekl(xvﬂ) + R (x)

By the second formula of Lemma 1, for k = 1, (2.2) becomes

et (x, u)f *7Y (x)

Ri(x) = fu(a)f(a)+ b]f(t)dpl (x,1)

[
— (@) (@) + /[ J 00 — (@) (@ — a1 3

[ b]f (0)du(2) — p([a, b))f (x) (2.4)

From (2.3) and (2.4) follows, by iteration
~ V)

R,(x) = —Zmek—l(x>u)+Rl(x)

= —iwek 16 u) = u(la,b))f (x) + [ f(0)du(r)
(k— 1) 1o ’ s

which proves our assertion. [

REMARK 3. Note that R,(x) can be rewritten for n > 2, by Lemma 1, as

R0 = 1 [ Penalre e )

[ e s @] e

[0 =] P

It can be easily seen that the theorem above also holds for functions f : [a,b] — R
such that £ "= is integrable on [a, b], for n > 2, and

R = (1 [ [0 - 0] P ) a

[a,]
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Note that formula (2.1) is a generalization of (1.1).

3. Generalizations of weighted Ostrowski inequality

In this section we shall use the same notations as above.

THEOREM?2. Let f : [a,b] — R be such that f ") isan L-Lipschitzian function
on [a,b] for some n > 1. Then

[ (@0)du(t) — Su(x)

[a,0]

b
< L/ P, (x,1)| i (3.1)
1

< Sl—a)+ (=0 |l

forevery x € [a,b].

Proof. If ¢ : [a,b] — R is L-Lipschitzian on [a,b], then for any integrable
function g : [¢,b] — R

b
<t [ gt (3:2)

/ s()do(1)
[a,b]

Using this estimate and Theorem 1 we get

b
Ra()] = <L / 1P (x, )] d

/ P, (x,0)df "~V (1)
la.b]

By Remark 1 we have
b X b
/|P,,(x,t)|dt = / \Pn(x,t)\dtJr/ |Py (x,7)| dt

X b
(n!ll)' / (t_a)nfldt_’_ (n|i’t||1)'/ (b_t)nfldt

= Bl ey oy

which proves our assertion. [

REMARK 4. For positive measure 4 we have

b X b
/ [Py (x,0)|dt = /Pn(x,t)dt+(—l)”/ P, (x,1)dt

1 n
- £ —x]" du(s).
b]

a ),
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Therefore, for every u € Ma, b]

b
1 n
/ \Pn<x,r>\dr<—/ 10— 2" d ] (1)
a n! la,b]

b
/ P o) de < DL oy -y

n! a<i<b

which gives

= BT e . (6 )

IIMH [
]n

/|P1 (.0 dr < (b— a)L ||

max{x — a,b — x}]"

||MH b—a a+b
a2 T2

COROLLARY 1. If f is L-Lipschitzian on [a,b], then

f@)du(r) — pu(la,b

[a,0]

forevery x € [a,b].
Proof. Put n =1 in the theorem above. [J

COROLLARY 2. If f' is L-Lipschitzian on |a,b], then

f@du(t) = f ()u(la, b]) = f'(x)er (x, u)

[a,b]
b
< L/ 1Py (x, )|t
1
< Ha—ap+®-x?Lul

forevery x € [a, b].
Proof. Put n =2 in the theorem above. [

COROLLARY 3. Let f : [a,b] — R be such that £V is an L-Lipschitzian
function on [a, b] for some n > 1. Then

forevery x € [a,b].
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Proof. Apply the theorem above for the Lebesgue measure on [a,b]. O

COROLLARY 4. Let f : [a,b] — R be such that £~V is an L-Lipschitzian
Sfunction on [a, b] for some n > 1. Then

n—1
f (X k L n
}/ Z E < HV*Y\

k=0

forevery x,y € [a,b].

Proof. Apply the theorem above for y = §,, where §, is the Dirac measure at y.
Then

ex(x,p) = (v _x)k> k=0

and )
="
P, (x,¢ — 1
Pux)] = 2
and P, (x,7) =0 forother z. O

€ [x,y]ort € [y,x]

COROLLARY 5. Let f : [a b] — R be such that f"=Y is an L-Lipschitzian
function on [a,b] for some n > 1. Further, let (¢;;,m > 1) be a sequence in R such

that
Z lem| < 00

m>=1
and let {x,;m > 1} be different points in |a,b]. Then

n—1
Zcmf (%) Z 1! k'(x Cm(Xm —x)k

m>=1 m>=1 k=0
L
< _' Z ‘Cm‘ ‘x *xm|n
n:
m>1
L
< =(b—a)" ) leal
m>1

forevery x € [a, b].

Proof. Apply the theorem above for the discrete measure © = Zm% cmOy,. O

THEOREM 3. Let f : [a,b] — R be such that f "= is a continuous function of
bounded variation on [a, ] for some n > 1. Then

[ (@0)du(t) — Sa(x)

< max |P(x, 2)] VE(F D)
@,

t€(a,b

1 [b-a a+b[]""! .
W{T ‘x— 2 ] [l VE(F D)

for every x € [a,b], where VE(f "=V is the total variation of f "~V on [a,b].
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Proof. If F : [a,b] — R is bounded and the Stieltjes integral

exists, then

/ Foydf (1)
[a,b]

[ Fware)
0]

< max [F(r)] - Vy(r"~Y)
t€(a,b]

Let us apply this estimation to formula (2.1)

|Rn (x)| =

/ " Py (1) df (1)

Further, by Remark 1 we have

max |P, (x,1)]

t€(a,b]

which proves our assertion.

<

O

< max [P, (x,0)| V(")
t€(a,b)

x—a)! —x)"!
max{((n_)l)! ||u||7(lzn_)1)! il
<n'f‘“1>z max{(x —a)"~", (b —x)""}
% [max{(x — a), (b~ 0)}]"”"
H,u|| b—a x_g+b n—1
(n—1)! { 2 ‘ 2 }

73

COROLLARY 6. If f is a continuous function of bounded variation on [a, b], then

forevery x € [a, b].

[ b]f(t)du(t) — u(la, b])f (x)

< lwll va ()

Proof. Put n =1 in the theorem above. [

COROLLARY 7. If f' is a continuous function of bounded variation on |a, b, then

f@du(t) = f (u((a, b]) = f'(x)er (x, u)

[a,0]

< max |Pa(x, 1) VI(f')
t€(a,b]

‘]

forevery x € |a, b]

b—a
2

+’x

a+b
-2 v
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Proof. Put n = 2 in Theorem 3. [J

COROLLARY 8. Let f : [a,b] — R be such that f "~V is a continuous function
of bounded variation on [a, b] for some n > 1. Then

n—1
f(k>(x) + +1
— (k+1)! BRU

b—a a+b[]" ne
o e

M

forevery x € [a,b].

Proof. Apply the theorem above for the Lebesgue measure on [a,b]. O

COROLLARY 9. Let f : [a,b] — R be such that f "~ is a continuous function
of bounded variation on |[a,b] for some n > 1. Then

1l ey
P(y)—zf e <'(n—yl)vb<f< ")
k=0 ’

forevery x,y € [a, D).

Proof. Apply the theorem above for u = 6,. O

COROLLARY 10. Let f : [a,b] — R be such that f "~V is a continuous function
of bounded variation on [a, b] for some n > 1. Further, let (¢, m > 1) be a sequence

in R such that
Z lem| < 00
m>1

and let {xy;m > 1} be different points in |a,b]. Then

n—1

Z Cmf xm Z Zf ! C xm - x)k

m>=1 m>=1 k=0

< Z|cm|\x X" V()

" m>1

(b_a) Vb (n— 1 Z|CW!|

(n N 1 m=1
forevery x € [a, b].

Proof. Apply the theorem above for the discrete measure u = Zm>1 cmOy,. O
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THEOREM 4. Let f : [a,b] — R be such that ") is integrable, for some n > 1.
Then

f (@0)du(t) — Su(x)

< max |P,(x, 0)] [If "]y
[a,b] a,b]

e

7a+b
2

+ |x

1 {b—a

n—1
- (n)
— | | e

forevery x € [a,b].
Proof. Note that in this case
b
v = [Crola=
and apply Theorem 3. [

THEOREM 5. Let f : [a,b] — R be such that f") € Lo[a,b], for some n > 1.
Then

b
f@0du(r) = Su(x)| < / [P x, )] dt - |If |
a,b] a

[a,

1
< ==+ 0 ="l ™ oo
forevery x € [a,b].

Proof. In this case f"~1 is L-Lipschitzian with L = ||f "||o,. O

THEOREM 6. Let f : [a,b] — R be such that f") € L,[a,b], for some n > 1
and 1 < p < oo. Then

< N1Pw () llgllf ™1

F(D)du(t) — S,(x)
0.t

n— n— 1/ n
_ [G=a) Ve 4 (b — ) D ],
= (n—1)g+1 (n—1)!

forevery x € [a,b], where 1/p+1/q=1.

Proof. By applying the Holder inequality we have

< /uan<x,r>v<"><r>\dr

b 1/q
< (/ Pn(x’f)qdf> i1l

[ (@0)du(t) — Sa(x)

[a,0]




76 A. CIVLIAK, LJ. DEDIC AND M. MATIC

Further, by Remark 1 we have

b X b
/\Pn(x,t)\‘fdt /\Pn(x,t)\‘fdt+/ Py (x,1)[7 dt

{(nlu”l)!r V:(t — @) Dagy 4 /xb(b _ t)“"”‘fdt]

lill 77 (x — @)D 4 (b — )l Dt
(n —1)! (n—1)g+1
which proves our assertion. [

N

COROLLARY 11. Let f : [a,b] — R be such that f ™) € L,a,b], for some n > 1
and 1 < p < oo. Then

b n—1 f
/l; f(l ; ( 1 x)k+1 _ (Cl _x)k+1]
(x—a) 4 (b - WHIMW I
{ ng +1 } n!
forevery x € [a,b], where 1/p+1/q=1.

<

Proof. Apply the theorem above for the Lebesgue measure on [a,b]. O

COROLLARY 12. Let f : [a,b] — R be such that f\") € L,[a,b], for some n > 1
and 1 < p < co. Then

n—1 3
}ﬂw— o
k=0

forevery x,y € [a,b], where 1/p+1/q=1.

n—1+1 n
o o T,
[(n—1)g+1)"9 (n—1)!

Proof. Apply the theorem above for u = 6,. O

COROLLARY 13. Let f : [a,b] — R be such that f") € L,[a,b], for some n > 1
and 1 < p < co. Further, let (¢;;,m > 1) be a sequence in R such that

Z|C’”| < 00

m>=1
and let {xy;m > 1} be different points in |a,b]. Then

Z cmf xm Z Zf k'(x xm - x)k

m>1 m>=1 k=0

< Hf(")Hp Z |Cm| ‘x_xm‘n—l+l/q
(n—1)[(n— g+ 1" &

- (b— )n 1+1/qu n H Z| |
(n = [(n = g+ 11" 7=
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forevery x € [a,b].
Proof. Apply the theorem above for the discrete measure 4 =3, -, ¢w0y,. U

Let o € (0,1] and L > 0. Function g : [a,b] — R is called o -Holder function
with constant L if

8(t) —g(s)| <Lt —s|, 5,1 € [a,b]
THEOREM 7. Let f : [a,b] — R be such that f "=V is o -Holder function with
constant L, for some n > 2. Then

f(t)du(r) —
[a.b]

/'u—ﬂ Pt (x,1)] d

a)ochn l—l—(b x)ochn 1
(a+1)(a+2) (a+n-1)

~X

L |||
forevery x € [a,b].
Proof. By Remark 3

Rl < [0 ] el

b
L/)V—ﬂaww4ﬁjﬂm

Further, by Remark 1 we have

b
[ =t s ol a

n 2 7[)" 2
ll [0 [0 O

= (n|f||2)' [/A( *I) (t )n 2d[+/ (f*x) (b*t)" 24

= (n|‘u||2)!B(a—|—l,n— 1) [()c—a)‘“”_l —|—(b—x)°‘+"_l]
_ ()C _ a)ochn—l + (b _x)Ochn—l H‘u”
(a+1(a+2)---(a+n—1)

which proves our assertion, where B is the beta function. [

N

COROLLARY 14. [If f' is an o -Holder function with constant L, then

f@du(t) = f (u((a, b]) — f'(x)er (x, u)

[a,0]

b
< L/ |t — x| |Py (x,1)] dt
a

(x o a)a+1 + (b 7X)OH>1
oa—+1

X

an
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forevery x € [a,b].

Proof. Put n =2 in the theorem above. [

REMARK 5. Applying calculations as in Remark 4 and in the proof of Theorem
7, for positive measure U we have

( ) o+n
/\tfx| Py (x,1)|dt = (a+n+1)/[ ]\tfx\ du(r)

Therefore, for every u € Ma, b]
F(O{+1) o+n
r— Hldt < ——— r— d t
[ Fo a1y [, 0
which gives
b
Iloe+1)
t—x|% P, (x,0)|dt < ——— 2 ¢t — x|t
| =t el < mo ok )\Iu\lurgfgbl x|
~ sl [

F(a+n+1)

x_a+b
2

-

COROLLARY 15. Let f : [a,b] — R be such that f"~V is o -Hélder function
with constant L, for some n > 2. Then
o+n—1
[

2

Ia+1) [b—a ‘ a+b
+ |x —

forevery x € [a,b].

Proof. Follows from Theorem 7 and Remark 5. [J

COROLLARY 16. Let f : [a,b] — R be such that f"~V is o -Holder function
with constant L, for some n > 2. Then

n—1
W
P Zkv 0= <

‘ y|OC+n l

(a+1D(ax+2)-- (ochnfl)

X

forevery x,y € [a, D).

Proof. Apply the theorem above for u = §,. O

COROLLARY 17. Let f : [a,b] — R be such that f"~V is o -Holder function
with constant L, for some n > 2. Further, let (¢,;,m > 1) be a sequence in R such

that
Z lem| < o0

m>=1
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and let {x;m > 1} be different points in |a,b]. Then

n—1

Z Cmf xm Z Zf ! C xm - x)k

m>1 m>=1 k=0
< L Z‘C HX*X ‘a+n 1
S o(a+D(a+2)-(a+n— " "
L(b a)a+n 1 Z‘
X CWI
(a+1)(a+2)---(a+n—

forevery x € [a, b].
0

X *

Proof. Apply the theorem above for the discrete measure yu = Zm>1 Cmd.

4. Some Griiss-type inequalities

Measure u € Mla, b] is called balanced if u([a,b]) = 0. Itis called n-balanced
if [, (b) = 0. We see that 1 -balanced measure is the same as balanced measure. Let
f :la,b] — R be such that f € L.[a,b], for some n > 1. Then

m, Sf(")(t) <M, t €lab], ae
for some real constants m,, and M,,.

THEOREM 8. Let f : [a,b] — R be such that f "~V € Lo, [a,b], for some n > 2.
If x € [a,b] and u € M[a,b] are such that
6,1,1(X,H) =0
then

Mnfl — My

f(@)du(t) — Sa(x)| < CE [(x — a)"'+ (b *x)nfl] [l

[a.b]
Proof. By Remark 3 we have

Ry(x) = (=1 /[ 0= P ar

Define measure v,,_; by

dv,_1(t) = (=1)"'P,_; (x,1) dt
Then

b
vor(la,b]) = (—1)"-1/ ot (x,1) dt
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and by our condition v,_;([a,b]) = 0, which means that v,_; is balanced measure.
Further,

b
Va1l Z/ |Pu_i1 (x,2)|dt < (n|“|1)! [(x—a)" " + (b— 2]

Therefore, by [2, Theorem 1] we have

Mn—l — My
2
M,y —m,_y  |[ul

2 (n—1
Mnfl — My

= S e e ]

[Vl

)' [(x . a)nfl 4 (b 7x)nfl]

[Ra(x)| <

N

which proves our assertion. [

COROLLARY 18. For f' € Loo[a,b] let x € [a,b] and u € Mla, b] be such that
/ (1 — ¥)du(t) = 0
[a,0]

Then
My —my

< b —a) Ju

]f(f)du(f) — u([a, b)) f (x)

la,b

Proof. Put n = 2 in the theorem above. [J

COROLLARY 19. Let f : [a,b] — R be such that f "~V € L.[a,b], for some
n>=2. If u € Mla,b] is such that

mo() =my(u) =---=mu_1(u) =0

then
Mnfl — My

CE [ =)'+ (b —x)" ] [|ul]

f)du(r)| <

[a,b]
forevery x € [a, b].

Proof. Apply the theorem above and note that in this case we have ex(x, u) = 0,
for k=0,1,...,n—1, and also S,(x) =0, forevery x € [a,b]. O

COROLLARY 20. Let f : [a,b] — R be such that f "~ € Lo.[a,b], for some
n>=2. If u € Mla,b] is k-balanced, for k = 1,..,n, then

Mn—l — My

2(?17 1)' [(x_a)n—l +(b_x)n_l] ||IJ'H

ft)du(r)| <
[a.b]

forevery x € [a,b].



INEQUALITIES INVOLVING MEASURES 81

Proof. Note that in this case, by [2, Theorem 4] we have

Apply now Corollary 19.

mo(u) =mi(u) =+ =m,_1(u) =0
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