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ON OSTROWSKI AND EULER–GRÜSS TYPE INEQUALITIES

INVOLVING MEASURES

A. ČIVLJAK, LJ. DEDIĆ AND M. MATIĆ

(communicated by J. Pečarić)

Abstract. Some generalizations of weighted Ostrowski and Euler-Grüss type inequalities are
given by using general Euler identities involving real Borel measures.

1. Introduction

For a, b ∈ R, a < b, let w : [a, b] → [0,∞) be an integrable function satisfying∫ b

a
w(t)dt > 0

For n � 1, and x, t ∈ [a, b] let

Kn(x, t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
(n − 1)!

∫ t

a
(t − s)n−1w(s)ds, a � t < x

0, t = x
1

(n − 1)!

∫ t

b
(t − s)n−1w(s)ds, x < t � b

and K0(x, t) = w(t). Also let

en(x, w) =
∫ b

a
(t − x)nw(t)dt, n � 0

It is easy to see that Kn(x, ·) is continuous on [a, b]\{x} and has a total jump of

Kn(x, x + 0) − Kn(x, x − 0) =
(−1)n

(n − 1)!
en−1(x, w)

at x. It is differentiable on [a, b]\{x} and

K′
n+1(x, t) = Kn(x, t)
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Let f : [a, b] → R be such that f (n−1) is a continuous function of bounded variation
on [a, b] for some n � 1. In paper [3] the following identity has been proved:

∫ b

a
f (t)w(t)dt =

n−1∑
k=0

f (k)(x)
k!

ek(x, w) + Rn(x) (1.1)

where x ∈ [a, b] and

Rn(x) = (−1)n
∫

[a,b]
Kn(x, t)df (n−1)(t) (1.2)

This identity has been used in [3] to prove some generalizations of weighted Ostrowski
inequalities. The aim of this paper is to generalize formula (1.1), by replacing weight
function w by a real Borel measure on [a, b] , and using it to prove some further
generalizations of weighted Ostrowski inequality.

2. Some integral identities

For a, b ∈ R, a < b, let C[a, b] be the Banach space of all continuous functions
f : [a, b]→ R with the max norm, and M[a, b] the Banach space of all real Borel
measures on [a, b] with the total variation norm. For μ ∈ M[a, b] define function
μ̌n : [a, b]→ R, n � 1, by

μ̌n(t) =
1

(n − 1)!

∫
[a,t]

(t − s)n−1dμ(s)

The function μ̌n is differentiable, μ̌ ′
n(t) = μ̌n−1(t) and μ̌n(a) = 0, for every n � 2,

while for n = 1

μ̌1(t) =
∫

[a,t]
dμ(s) = μ([a, t])

which means that μ̌1(t) is equal to the distribution function of μ. Note that

μ̌n(t) =
1

(n − 2)!

∫ t

a
(t − s)n−2μ̌1(s)ds, n � 2

and

|μ̌n(t)| � (t − a)n−1

(n − 1)!
‖μ‖ , t ∈ [a, b], n � 1

We also write

mn(μ) =
∫

[a,b]
sndμ(s), n � 0

for the n -th moment of μ, and

en(x,μ) =
∫

[a,b]
(s − x)ndμ(s), n � 0, x ∈ [a, b]
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for the n -th x -centered moment of μ. We introduce the sequence of functions Pn :
[a, b]× [a, b] → R, n � 1, by

Pn(x, t) =

⎧⎨
⎩

μ̌n(t), a � t � x

μ̌n(t) + (−1)n

(n−1)!en−1(t,μ), x < t � b

for a � x < b, while for x = b

Pn(b, t) =
{

μ̌n(t), a � t < b
0, t = b

It is easy to see that for n � 2

Pn(x, a) = Pn(x, b) = 0

and
P1(x, a) = μ̌1(a) = μ({a}), P1(x, b) = 0

for every x ∈ [a, b], and that Pn(x, ·), n � 2, is continuous on [a, b]\{x}, having a
jump of

(−1)n

(n − 1)!
en−1(x,μ)

at x. Further, Pn(x, ·), n � 2, is differentiable on [a, b]\{x} and

P′
n+1(x, t) = Pn(x, t)

REMARK 1. Note that

|Pn(x, t)| � (t − a)n−1

(n − 1)!
‖μ‖ , a � t � x, n � 1

and

|Pn(x, t)| � (b − t)n−1

(n − 1)!
‖μ‖ , x < t � b, n � 1

since for x < t � b and n � 1 we have

Pn(x, t) = μ̌n(t) − 1
(n − 1)!

∫
[a,b]

(t − s)n−1dμ(s)

= − 1
(n − 1)!

∫
(t,b]

(t − s)n−1dμ(s)

which can be written, for n � 2, as

Pn(x, t) = − 1
(n − 2)!

∫ b

t
(t − s)n−2μ̌1(s)ds

REMARK 2. In the special case, when the measure μ has the density w, with
respect to Lebesgue measure on [a, b], the sequence (Pn(x, t), n � 1) reduces to the
sequence (Kn(x, t), n � 1) from Introduction, except for t = x . In this case also
P1(x, ·) is differentiable a.e. and P′

1(x, t) = w(t), a.e.
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LEMMA 1. For n � 2, x ∈ [a, b], and f ∈ C[a, b], we have

∫
[a,b]

f (t)dPn(x, t) =
∫ b

a
f (t)Pn−1(x, t)dt +

(−1)n

(n − 1)!
en−1(x,μ)f (x)

while for n = 1

∫
[a,b]

f (t)dP1(x, t) =
∫

[a,b]
f (t)dμ(t) − μ({a})f (a) − μ([a, b])f (x)

Proof. For n � 2, the function Pn(x, ·) is differentiable on [a, b] \ {x} and its

derivative is equal to Pn−1(x, ·) . Further, it has a jump of (−1)n

(n−1)!en−1(x,μ) at x, which
gives the first formula. Further, P1(x, ·) has a jump of −μ̌1(b) at x, and by [1, Lemma
1] we have

∫
[a,b]

f (t)dP1(x, t) =
∫

[a,b]
f (t)dμ̌1(t) − μ̌1(b)f (x)

=
∫

[a,b]
f (t)dμ(t) − μ̌1(a)f (a) − μ̌1(b)f (x)

=
∫

[a,b]
f (t)dμ(t) − μ({a})f (a) − μ([a, b])f (x),

which proves the second formula. �

THEOREM 1. Let f : [a, b] → R be such that f (n−1) is a continuous function of
bounded variation for some n � 1. Then for every x ∈ [a, b]

∫
[a,b]

f (t)dμ(t) = Sn(x) + Rn(x) (2.1)

where

Sn(x) =
n−1∑
k=0

f (k)(x)
k!

ek(x,μ)

and

Rn(x) = (−1)n
∫

[a,b]
Pn (x, t) df (n−1)(t)

Proof. By partial integration, for k � 1, we have

Rk(x) = (−1)kPk (x, t) f (k−1)(t)
∣∣∣b
a
− (−1)k

∫
[a,b]

f (k−1)(t)dPk (x, t) (2.2)
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Since Pn(x, a) = Pn(x, b) = 0, for k � 2, by the first formula of Lemma 1,

Rk(x) = (−1)k−1
∫

[a,b]
f (k−1)(t)dPk (x, t) (2.3)

= (−1)k−1
∫ b

a
f (k−1)(t)Pk−1 (x, t) dt

+(−1)k−1 (−1)k

(k − 1)!
ek−1(x,μ)f (k−1)(x)

= − f (k−1)(x)
(k − 1)!

ek−1(x,μ) + Rk−1(x)

By the second formula of Lemma 1, for k = 1, (2.2) becomes

R1(x) = μ̌1(a)f (a) +
∫

[a,b]
f (t)dP1 (x, t)

= μ̌1(a)f (a) +
∫

[a,b]
f (t)dμ(t) − μ({a})f (a) − μ([a, b])f (x)

=
∫

[a,b]
f (t)dμ(t) − μ([a, b])f (x) (2.4)

From (2.3) and (2.4) follows, by iteration

Rn(x) = −
n∑

k=2

f (k−1)(x)
(k − 1)!

ek−1(x,μ) + R1(x)

= −
n∑

k=2

f (k−1)(x)
(k − 1)!

ek−1(x,μ) − μ([a, b])f (x) +
∫

[a,b]
f (t)dμ(t)

= −
n−1∑
k=0

f (k)(x)
k!

ek(x,μ) +
∫

[a,b]
f (t)dμ(t)

which proves our assertion. �

REMARK 3. Note that Rn(x) can be rewritten for n � 2 , by Lemma 1, as

Rn(x) = (−1)n
∫

[a,b]
Pn (x, t) d

[
f (n−1)(t) − f (n−1)(x)

]

= (−1)n−1
∫

[a,b]

[
f (n−1)(t) − f (n−1)(x)

]
dPn (x, t)

= (−1)n−1
∫

[a,b]

[
f (n−1)(t) − f (n−1)(x)

]
Pn−1 (x, t) dt

It can be easily seen that the theorem above also holds for functions f : [a, b] → R
such that f (n−1) is integrable on [a, b], for n � 2, and

Rn(x) = (−1)n−1
∫

[a,b]

[
f (n−1)(t) − f (n−1)(x)

]
Pn−1 (x, t) dt
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Note that formula (2.1) is a generalization of (1.1).

3. Generalizations of weighted Ostrowski inequality

In this section we shall use the same notations as above.

THEOREM 2. Let f : [a, b] → R be such that f (n−1) is an L -Lipschitzian function
on [a, b] for some n � 1. Then∣∣∣∣∣

∫
[a,b]

f (t)dμ(t) − Sn(x)

∣∣∣∣∣ � L
∫ b

a
|Pn (x, t)| dt (3.1)

� 1
n!

[(x − a)n + (b − x)n] L ‖μ‖

for every x ∈ [a, b].

Proof. If ϕ : [a, b] → R is L -Lipschitzian on [a, b] , then for any integrable
function g : [a, b] → R ∣∣∣∣∣

∫
[a,b]

g(t)dϕ(t)

∣∣∣∣∣ � L
∫ b

a
|g(t)| dt (3.2)

Using this estimate and Theorem 1 we get

|Rn(x)| =

∣∣∣∣∣
∫

[a,b]
Pn (x, t) df (n−1)(t)

∣∣∣∣∣ � L
∫ b

a
|Pn (x, t)| dt

By Remark 1 we have

∫ b

a
|Pn (x, t)| dt =

∫ x

a
|Pn (x, t)| dt +

∫ b

x
|Pn (x, t)| dt

� ‖μ‖
(n − 1)!

∫ x

a
(t − a)n−1dt +

‖μ‖
(n − 1)!

∫ b

x
(b − t)n−1dt

=
‖μ‖
n!

[(x − a)n + (b − x)n]

which proves our assertion. �

REMARK 4. For positive measure μ we have

∫ b

a
|Pn (x, t)| dt =

∫ x

a
Pn (x, t) dt + (−1)n

∫ b

x
Pn (x, t) dt

=
1
n!

∫
[a,b]

|t − x|n dμ(t).
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Therefore, for every μ ∈ M[a, b]∫ b

a
|Pn (x, t)| dt � 1

n!

∫
[a,b]

|t − x|n d |μ| (t)

which gives ∫ b

a
|Pn (x, t)| dt � ‖μ‖

n!
max
a�t�b

|t − x|n

=
‖μ‖
n!

max{(x − a)n, (b − x)n}

=
‖μ‖
n!

[max{x − a, b − x}]n

=
‖μ‖
n!

[
b − a

2
+
∣∣∣∣x − a + b

2

∣∣∣∣
]n

COROLLARY 1. If f is L -Lipschitzian on [a, b] , then∣∣∣∣∣
∫

[a,b]
f (t)dμ(t) − μ([a, b])f (x)

∣∣∣∣∣ � L
∫ b

a
|P1 (x, t)| dt � (b − a)L ‖μ‖

for every x ∈ [a, b].

Proof. Put n = 1 in the theorem above. �

COROLLARY 2. If f ′ is L -Lipschitzian on [a, b] , then∣∣∣∣∣
∫

[a,b]
f (t)dμ(t) − f (x)μ([a, b]) − f ′(x)e1(x,μ)

∣∣∣∣∣
� L

∫ b

a
|P2 (x, t)| dt

� 1
2

[
(x − a)2 + (b − x)2

]
L ‖μ‖

for every x ∈ [a, b].

Proof. Put n = 2 in the theorem above. �

COROLLARY 3. Let f : [a, b] → R be such that f (n−1) is an L -Lipschitzian
function on [a, b] for some n � 1. Then∣∣∣∣∣

∫ b

a
f (t)dt −

n−1∑
k=0

f (k)(x)
(k + 1)!

[
(b − x)k+1 − (a − x)k+1

]∣∣∣∣∣
� L

(n + 1)!
[
(x − a)n+1 + (b − x)n+1

]
for every x ∈ [a, b].
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Proof. Apply the theorem above for the Lebesgue measure on [a, b]. �

COROLLARY 4. Let f : [a, b] → R be such that f (n−1) is an L -Lipschitzian
function on [a, b] for some n � 1. Then∣∣∣∣∣f (y) −

n−1∑
k=0

f (k)(x)
k!

(y − x)k

∣∣∣∣∣ � L
n!

|x − y|n

for every x, y ∈ [a, b].

Proof. Apply the theorem above for μ = δy, where δy is the Dirac measure at y.
Then

ek(x,μ) = (y − x)k, k � 0

and

|Pn (x, t)| =
|t − y|n−1

(n − 1)!
, t ∈ [x, y] or t ∈ [y, x]

and Pn (x, t) = 0 for other t. �

COROLLARY 5. Let f : [a, b] → R be such that f (n−1) is an L -Lipschitzian
function on [a, b] for some n � 1. Further, let (cm, m � 1) be a sequence in R such
that ∑

m�1

|cm| < ∞

and let {xm; m � 1} be different points in [a, b] . Then∣∣∣∣∣∣
∑
m�1

cmf (xm) −
∑
m�1

n−1∑
k=0

f (k)(x)
k!

cm(xm − x)k

∣∣∣∣∣∣
� L

n!

∑
m�1

|cm| |x − xm|n

� L
n!

(b − a)n
∑
m�1

|cm|

for every x ∈ [a, b].

Proof. Apply the theorem above for the discrete measure μ =
∑

m�1 cmδxm . �

THEOREM 3. Let f : [a, b] → R be such that f (n−1) is a continuous function of
bounded variation on [a, b] for some n � 1. Then∣∣∣∣∣
∫

[a,b]
f (t)dμ(t) − Sn(x)

∣∣∣∣∣ � max
t∈[a,b]

|Pn(x, t)|Vb
a (f

(n−1))

� 1
(n − 1)!

[
b − a

2
+
∣∣∣∣x − a + b

2

∣∣∣∣
]n−1

‖μ‖Vb
a (f

(n−1))

for every x ∈ [a, b], where Vb
a (f

(n−1)) is the total variation of f (n−1) on [a, b].
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Proof. If F : [a, b] → R is bounded and the Stieltjes integral∫
[a,b]

F(t)df (n−1)(t)

exists, then ∣∣∣∣∣
∫

[a,b]
F(t)df (n−1)(t)

∣∣∣∣∣ � max
t∈[a,b]

|F(t)| · Vb
a (f

(n−1))

Let us apply this estimation to formula (2.1)

|Rn(x)| =

∣∣∣∣∣
∫ b

a
Pn (x, t) df (n−1)(t)

∣∣∣∣∣ � max
t∈[a,b]

|Pn (x, t)|Vb
a (f

(n−1))

Further, by Remark 1 we have

max
t∈[a,b]

|Pn (x, t)| � max{ (x − a)n−1

(n − 1)!
‖μ‖ ,

(b − x)n−1

(n − 1)!
‖μ‖}

=
‖μ‖

(n − 1)!
max{(x − a)n−1, (b − x)n−1}

=
‖μ‖

(n − 1)!
[max{(x − a), (b − x)}]n−1

=
‖μ‖

(n − 1)!

[
b − a

2
+
∣∣∣∣x − a + b

2

∣∣∣∣
]n−1

which proves our assertion. �

COROLLARY 6. If f is a continuous function of bounded variation on [a, b], then∣∣∣∣∣
∫

[a,b]
f (t)dμ(t) − μ([a, b])f (x)

∣∣∣∣∣ � ‖μ‖Vb
a (f )

for every x ∈ [a, b].

Proof. Put n = 1 in the theorem above. �

COROLLARY 7. If f ′ is a continuous function of bounded variation on [a, b] , then∣∣∣∣∣
∫

[a,b]
f (t)dμ(t) − f (x)μ([a, b]) − f ′(x)e1(x,μ)

∣∣∣∣∣
� max

t∈[a,b]
|P2(x, t)|Vb

a (f ′)

�
[
b − a

2
+
∣∣∣∣x − a + b

2

∣∣∣∣
]
‖μ‖Vb

a (f
′)

for every x ∈ [a, b]
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Proof. Put n = 2 in Theorem 3. �

COROLLARY 8. Let f : [a, b] → R be such that f (n−1) is a continuous function
of bounded variation on [a, b] for some n � 1. Then∣∣∣∣∣

∫ b

a
f (t)dt −

n−1∑
k=0

f (k)(x)
(k + 1)!

[
(b − x)k+1 − (a − x)k+1

]∣∣∣∣∣
� 1

n!

[
b − a

2
+
∣∣∣∣x − a + b

2

∣∣∣∣
]n

Vb
a (f

(n−1))

for every x ∈ [a, b].

Proof. Apply the theorem above for the Lebesgue measure on [a, b]. �

COROLLARY 9. Let f : [a, b] → R be such that f (n−1) is a continuous function
of bounded variation on [a, b] for some n � 1. Then∣∣∣∣∣f (y) −

n−1∑
k=0

f (k)(x)
k!

(y − x)k

∣∣∣∣∣ � |x − y|n−1

(n − 1)!
Vb

a (f
(n−1))

for every x, y ∈ [a, b].

Proof. Apply the theorem above for μ = δy. �

COROLLARY 10. Let f : [a, b] → R be such that f (n−1) is a continuous function
of bounded variation on [a, b] for some n � 1. Further, let (cm, m � 1) be a sequence
in R such that ∑

m�1

|cm| < ∞

and let {xm; m � 1} be different points in [a, b] . Then∣∣∣∣∣∣
∑
m�1

cmf (xm) −
∑
m�1

n−1∑
k=0

f (k)(x)
k!

cm(xm − x)k

∣∣∣∣∣∣
� 1

(n − 1)!

∑
m�1

|cm| |x − xm|n−1 Vb
a (f

(n−1))

� (b − a)n−1

(n − 1)!
Vb

a (f
(n−1))

∑
m�1

|cm|

for every x ∈ [a, b].

Proof. Apply the theorem above for the discrete measure μ =
∑

m�1 cmδxm . �
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THEOREM 4. Let f : [a, b] → R be such that f (n) is integrable, for some n � 1.
Then∣∣∣∣∣

∫
[a,b]

f (t)dμ(t) − Sn(x)

∣∣∣∣∣ � max
t∈[a,b]

|Pn(x, t)| ‖f (n)‖1

� 1
(n − 1)!

[
b − a

2
+
∣∣∣∣x − a + b

2

∣∣∣∣
]n−1

‖μ‖ ‖f (n)‖1

for every x ∈ [a, b].

Proof. Note that in this case

Vb
a (f (n−1)) =

∫ b

a

∣∣∣f (n)(t)
∣∣∣ dt = ‖f (n)‖1

and apply Theorem 3. �

THEOREM 5. Let f : [a, b] → R be such that f (n) ∈ L∞[a, b], for some n � 1.
Then ∣∣∣∣∣

∫
[a,b]

f (t)dμ(t) − Sn(x)

∣∣∣∣∣ �
∫ b

a
|Pn(x, t)| dt · ‖f (n)‖∞

� 1
n!

[(x − a)n + (b − x)n] ‖μ‖ ‖f (n)‖∞

for every x ∈ [a, b].

Proof. In this case f (n−1) is L -Lipschitzian with L = ‖f (n)‖∞ . �

THEOREM 6. Let f : [a, b] → R be such that f (n) ∈ Lp[a, b], for some n � 1
and 1 < p < ∞. Then∣∣∣∣∣
∫

[a,b]
f (t)dμ(t) − Sn(x)

∣∣∣∣∣ � ‖Pn (x, ·) ‖q‖f (n)‖p

�
[
(x − a)(n−1)q+1 + (b − x)(n−1)q+1

(n − 1)q + 1

]1/q ‖μ‖ ‖f (n)‖p

(n − 1)!

for every x ∈ [a, b], where 1/p + 1/q = 1.

Proof. By applying the Hölder inequality we have∣∣∣∣∣
∫

[a,b]
f (t)dμ(t) − Sn(x)

∣∣∣∣∣ �
∫ b

a
|Pn (x, t)|

∣∣∣f (n)(t)
∣∣∣ dt

�
(∫ b

a
|Pn (x, t)|q dt

)1/q

‖f (n)‖p
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Further, by Remark 1 we have∫ b

a
|Pn (x, t)|q dt =

∫ x

a
|Pn (x, t)|q dt +

∫ b

x
|Pn (x, t)|q dt

�
[ ‖μ‖
(n − 1)!

]q
[∫ x

a
(t − a)(n−1)qdt +

∫ b

x
(b − t)(n−1)qdt

]

=
[ ‖μ‖
(n − 1)!

]q (x − a)(n−1)q+1 + (b − x)(n−1)q+1

(n − 1)q + 1

which proves our assertion. �

COROLLARY 11. Let f : [a, b] → R be such that f (n) ∈ Lp[a, b], for some n � 1
and 1 < p < ∞. Then∣∣∣∣∣

∫ b

a
f (t)dt −

n−1∑
k=0

f (k)(x)
(k + 1)!

[
(b − x)k+1 − (a − x)k+1

]∣∣∣∣∣
�
[
(x − a)nq+1 + (b − x)nq+1

nq + 1

]1/q ‖f (n)‖p

n!

for every x ∈ [a, b], where 1/p + 1/q = 1.

Proof. Apply the theorem above for the Lebesgue measure on [a, b]. �

COROLLARY 12. Let f : [a, b] → R be such that f (n) ∈ Lp[a, b], for some n � 1
and 1 < p < ∞. Then∣∣∣∣∣f (y) −

n−1∑
k=0

f (k)(x)
k!

(y − x)k

∣∣∣∣∣ � |x − y|n−1+1/q

[(n − 1)q + 1]1/q
· ‖f (n)‖p

(n − 1)!

for every x, y ∈ [a, b], where 1/p + 1/q = 1.

Proof. Apply the theorem above for μ = δy. �

COROLLARY 13. Let f : [a, b] → R be such that f (n) ∈ Lp[a, b], for some n � 1
and 1 < p < ∞. Further, let (cm, m � 1) be a sequence in R such that∑

m�1

|cm| < ∞

and let {xm; m � 1} be different points in [a, b] . Then∣∣∣∣∣∣
∑
m�1

cmf (xm) −
∑
m�1

n−1∑
k=0

f (k)(x)
k!

cm(xm − x)k

∣∣∣∣∣∣
� ‖f (n)‖p

(n − 1)! [(n − 1)q + 1]1/q

∑
m�1

|cm| |x − xm|n−1+1/q

� (b − a)n−1+1/q‖f (n)‖p

(n − 1)! [(n − 1)q + 1]1/q

∑
m�1

|cm|
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for every x ∈ [a, b].

Proof. Apply the theorem above for the discrete measure μ =
∑

m�1 cmδxm . �
Let α ∈ (0, 1] and L � 0. Function g : [a, b] → R is called α -Hölder function

with constant L if
|g(t) − g(s)| � L |t − s|α , s, t ∈ [a, b]

THEOREM 7. Let f : [a, b] → R be such that f (n−1) is α -Hölder function with
constant L, for some n � 2. Then∣∣∣∣∣

∫
[a,b]

f (t)dμ(t) − Sn(x)

∣∣∣∣∣ � L
∫ b

a
|t − x|α |Pn−1 (x, t)| dt

� (x − a)α+n−1 + (b − x)α+n−1

(α + 1)(α + 2) · · · (α + n − 1)
L ‖μ‖

for every x ∈ [a, b].

Proof. By Remark 3

|Rn(x)| �
∫

[a,b]

∣∣∣[f (n−1)(t) − f (n−1)(x)
]∣∣∣ |Pn−1 (x, t)| dt

� L
∫ b

a
|t − x|α |Pn−1 (x, t)| dt

Further, by Remark 1 we have∫ b

a
|t − x|α |Pn−1 (x, t)| dt

� ‖μ‖
∫ x

a
(x − t)α

(t − a)n−2

(n − 2)!
dt + ‖μ‖

∫ b

x
(t − x)α

(b − t)n−2

(n − 2)!
dt

=
‖μ‖

(n − 2)!

[∫ x

a
(x − t)α (t − a)n−2dt +

∫ b

x
(t − x)α (b − t)n−2dt

]

=
‖μ‖

(n − 2)!
B(α + 1, n − 1)

[
(x − a)α+n−1 + (b − x)α+n−1

]
=

(x − a)α+n−1 + (b − x)α+n−1

(α + 1)(α + 2) · · · (α + n − 1)
‖μ‖

which proves our assertion, where B is the beta function. �

COROLLARY 14. If f ′ is an α -Hölder function with constant L, then∣∣∣∣∣
∫

[a,b]
f (t)dμ(t) − f (x)μ([a, b]) − f ′(x)e1(x,μ)

∣∣∣∣∣
� L

∫ b

a
|t − x|α |P1 (x, t)| dt

� (x − a)α+1 + (b − x)α+1

α + 1
L ‖μ‖
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for every x ∈ [a, b].

Proof. Put n = 2 in the theorem above. �

REMARK 5. Applying calculations as in Remark 4 and in the proof of Theorem
7, for positive measure μ we have∫ b

a
|t − x|α |Pn (x, t)| dt =

Γ(α + 1)
Γ(α + n + 1)

∫
[a,b]

|t − x|α+n dμ(t)

Therefore, for every μ ∈ M[a, b]∫ b

a
|t − x|α |Pn (x, t)| dt � Γ(α + 1)

Γ(α + n + 1)

∫
[a,b]

|t − x|α+n d |μ| (t)

which gives∫ b

a
|t − x|α |Pn (x, t)| dt � Γ(α + 1)

Γ(α + n + 1)
‖μ‖ max

a�t�b
|t − x|α+n

=
Γ(α + 1)

Γ(α + n + 1)
‖μ‖

[
b − a

2
+
∣∣∣∣x − a + b

2

∣∣∣∣
]α+n

COROLLARY 15. Let f : [a, b] → R be such that f (n−1) is α -Hölder function
with constant L, for some n � 2. Then∣∣∣∣∣

∫
[a,b]

f (t)dμ(t) − Sn(x)

∣∣∣∣∣ � Γ(α + 1)
Γ(α + n)

[
b − a

2
+
∣∣∣∣x − a + b

2

∣∣∣∣
]α+n−1

L ‖μ‖

for every x ∈ [a, b].

Proof. Follows from Theorem 7 and Remark 5. �

COROLLARY 16. Let f : [a, b] → R be such that f (n−1) is α -Hölder function
with constant L, for some n � 2. Then∣∣∣∣∣f (y) −

n−1∑
k=0

f (k)(x)
k!

(y − x)k

∣∣∣∣∣ � |x − y|α+n−1 L
(α + 1)(α + 2) · · · (α + n − 1)

for every x, y ∈ [a, b].

Proof. Apply the theorem above for μ = δy. �

COROLLARY 17. Let f : [a, b] → R be such that f (n−1) is α -Hölder function
with constant L, for some n � 2. Further, let (cm, m � 1) be a sequence in R such
that ∑

m�1

|cm| < ∞
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and let {xm; m � 1} be different points in [a, b] . Then∣∣∣∣∣∣
∑
m�1

cmf (xm) −
∑
m�1

n−1∑
k=0

f (k)(x)
k!

cm(xm − x)k

∣∣∣∣∣∣
� L

(α + 1)(α + 2) · · · (α + n − 1)

∑
m�1

|cm| |x − xm|α+n−1

� L(b − a)α+n−1

(α + 1)(α + 2) · · · (α + n − 1)

∑
m�1

|cm|

for every x ∈ [a, b].

Proof. Apply the theorem above for the discrete measure μ =
∑

m�1 cmδxm . �

4. Some Grüss-type inequalities

Measure μ ∈ M[a, b] is called balanced if μ([a, b]) = 0. It is called n -balanced
if μ̌n (b) = 0. We see that 1 -balanced measure is the same as balanced measure. Let
f : [a, b] → R be such that f (n) ∈ L∞[a, b], for some n � 1. Then

mn � f (n)(t) � Mn, t ∈ [a, b], a.e.

for some real constants mn and Mn.

THEOREM 8. Let f : [a, b] → R be such that f (n−1) ∈ L∞[a, b], for some n � 2.
If x ∈ [a, b] and μ ∈ M[a, b] are such that

en−1(x,μ) = 0

then ∣∣∣∣∣
∫

[a,b]
f (t)dμ(t) − Sn(x)

∣∣∣∣∣ � Mn−1 − mn−1

2(n − 1)!
[
(x − a)n−1 + (b − x)n−1

] ‖μ‖
Proof. By Remark 3 we have

Rn(x) = (−1)n−1
∫

[a,b]

[
f (n−1)(t) − f (n−1)(x)

]
Pn−1 (x, t) dt

Define measure νn−1 by

dνn−1(t) = (−1)n−1Pn−1 (x, t) dt

Then

νn−1([a, b]) = (−1)n−1
∫ b

a
Pn−1 (x, t) dt

= (−1)n−1 (−1)n−1

(n − 1)!
en−1(x,μ)

=
1

(n − 1)!
en−1(x,μ)
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and by our condition νn−1([a, b]) = 0, which means that νn−1 is balanced measure.
Further,

‖νn−1‖ =
∫ b

a
|Pn−1 (x, t)| dt � ‖μ‖

(n − 1)!
[
(x − a)n−1 + (b − x)n−1

]
Therefore, by [2, Theorem 1] we have

|Rn(x)| � Mn−1 − mn−1

2
‖νn−1‖

� Mn−1 − mn−1

2
‖μ‖

(n − 1)!
[
(x − a)n−1 + (b − x)n−1

]
=

Mn−1 − mn−1

2(n − 1)!
[
(x − a)n−1 + (b − x)n−1

] ‖μ‖
which proves our assertion. �

COROLLARY 18. For f ′ ∈ L∞[a, b] let x ∈ [a, b] and μ ∈ M[a, b] be such that∫
[a,b]

(t − x)dμ(t) = 0

Then ∣∣∣∣∣
∫

[a,b]
f (t)dμ(t) − μ ([a, b]) f (x)

∣∣∣∣∣ � M1 − m1

2
(b − a) ‖μ‖

Proof. Put n = 2 in the theorem above. �

COROLLARY 19. Let f : [a, b] → R be such that f (n−1) ∈ L∞[a, b], for some
n � 2. If μ ∈ M[a, b] is such that

m0(μ) = m1(μ) = · · · = mn−1(μ) = 0

then ∣∣∣∣∣
∫

[a,b]
f (t)dμ(t)

∣∣∣∣∣ � Mn−1 − mn−1

2(n − 1)!
[
(x − a)n−1 + (b − x)n−1

] ‖μ‖
for every x ∈ [a, b].

Proof. Apply the theorem above and note that in this case we have ek(x,μ) = 0,
for k = 0, 1, ..., n − 1, and also Sn(x) = 0, for every x ∈ [a, b]. �

COROLLARY 20. Let f : [a, b] → R be such that f (n−1) ∈ L∞[a, b], for some
n � 2. If μ ∈ M[a, b] is k -balanced, for k = 1, .., n, then∣∣∣∣∣

∫
[a,b]

f (t)dμ(t)

∣∣∣∣∣ � Mn−1 − mn−1

2(n − 1)!
[
(x − a)n−1 + (b − x)n−1

] ‖μ‖
for every x ∈ [a, b].
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Proof. Note that in this case, by [2, Theorem 4] we have

m0(μ) = m1(μ) = · · · = mn−1(μ) = 0

Apply now Corollary 19. �
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