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Abstract. The Schur-concavity and the Schur-geometrically convexity of dual form for the Hamy
symmetric function are discussed and some analytic inequalities are established by use of the
theory of majorization.

1. Introduction

Throughtout the paper we use the sets of n -dimensional vectors over the reals, real
number field by R

n , and:

R
n
+ = {x = (x1, · · · , xn) ∈ R

n : xi � 0, i = 1, · · · , n},
R

n
++ = {x = (x1, · · · , xn) ∈ R

n : xi > 0, i = 1, · · · , n}.
if x = (x1, · · · , xn) ∈ R

n
+ then the Hamy symmetric function ([3],[4]-p.67) is defined

as:

Hr(x) =
∑

1�i1<···<ir�n

⎛
⎝ r∏

j=1

xij

⎞
⎠

1
r

, r = 1, 2, · · · , n. (1.1)

Corresponding to this is the r -th order Hamy mean

σn(x, r) =
1(n
r

) ∑
1�i1<i2<···<ir�n

⎛
⎝ r∏

j=1

xij

⎞
⎠

1
r

. (1.2)

T. Hara et al. [3] established the following refinement of the classical arithmetic and
geometric means inequality:

Gn(x) = σn(x, n) � σn(x, n − 1) � · · · � σn(x, 2) � σn(x, 1) = An(x) (1.3)

where An(x) = 1
n

∑n
i=1 xi, Gn(x) =

(∏n
i=1 xi

) 1
n denote the classical arithmetic and

geometric means.
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In [1], the Schur convexity of Hamy’s symmetric functions and its generalization
are discussed.

The dual form of the Hamy’s symmetric functions are

H∗
r (x) =

∏
1�i1<···<ir�n

⎛
⎝ r∑

j=1

x
1
r
ij

⎞
⎠ , r = 1, 2, · · · , n. (1.4)

The aim of this paper is to study the Schur-convexity and Schur-geometric-
convexity properties of H∗

r (x) and some interesting results are given.
We need the following definitions and lemmas.

2. Definitions and lemmas

Schur-convexity was introduced by I. Schur in 1923 [5] and has many important
applications in analytic inequalities. Hardy, Littlewood, and Pólya were also interested
in some inequalities that are related to Schur-convex functions [6]. For a historical
development of this class of functions and for some fruitful applications to statistics,
economics and other applied fields, reference can be made to the popular book by
Marshall and Olkin [5]. The following definitions can be found in many references such
as [2, 5, 7].

For fixed n � 2 , let

x = (x1, x2, · · · , xn), y = (y1, y2, · · · , yn)

be two n-tuples of real numbers, and let

x[1] � x[2] � · · · � x[n], y[1] � y[2] � · · · � y[n],

be their components in decreasing order.

DEFINITION 2.1. The n -tuple x is said to be majorized by y (in symbols x ≺ y ),
if

m∑
i=1

x[i] �
m∑

i=1

y[i], m = 1, 2, · · · , n − 1 (2.1)

and
n∑

i=1

x[i] =
n∑

i=1

y[i]. (2.2)

DEFINITION 2.2. A real-valued function φ defined on a set Ω ⊂ Rn is said to be
Schur-convex on Ω if

x ≺ y ⇒ φ(x) � φ(y).

If, in addition, φ(x) < φ(y) whenever x ≺ y but x is not a permutation of y , then φ
is said to be strictly Schur-convex on Ω . φ is a Schur-concave function on Ω if and
only if −φ is a Schur-convex function; φ is a strictly Schur-concave function on Ω if
and only if −φ is a strictly Schur-convex function on Ω .
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Recall that the following so-called Schur’s condition is very useful for determining
whether or not a given function is Schur-convex or Schur-concave.

LEMMA 2.1. [5, p. 57] Let Ω ⊂ Rn be symmetric and convex set with nonempty
interior, and let f : Ω → R be differentiable in the interior of Ω and continuous on
Ω . Then f is Schur-convex on Ω if and only if f is symmetric on Ω and for all i �= j ,

(xi − xj)
(

∂f
∂xi

− ∂f
∂xj

)
� 0 (2.3)

for all x ∈ Ω0 . It is strictly Schur-convex if (2.3) is a strict inequality for xi �= xj ,
1 � i, j � n , where Ω0 is the interior of Ω .

Since f (x) is symmetric, Schur’s condition can be reduced to [5, p.57]

(x1 − x2)
(

∂f
∂x1

− ∂f
∂x2

)
� 0. (2.4)

And f is strictly Schur-convex if (2.4) is a strict inequality for x1 �= x2 . The Schur
condition that guarantees a symmetric function being Schur-concave is the same as (2.3)
or (2.4) except for the direction of the inequality.

Recently, C. P. Niculescu [8] introduced the multiplicatively convex function, i.e.,
GG-convex function, which reveals an entire new world of beautiful inequalities. And,
Xiao-Ming Zhang [9] stated the Schur-geometrically-convex theory as a parallel one to
Schur-convex theory by defining logarithmic majorization and using multiplicatively
convex function.

DEFINITION 2.3. (See [9, p. 89]) Let x and y be two n -tuples of nonnegative
numbers. Then the n -tuple x is said to be logarithmically majorized by y (in symbols
ln x ≺ ln y ) if

m∏
i=1

x[i] �
m∏

i=1

y[i], m = 1, 2, · · · , n − 1 (2.5)

and
n∏

i=1

x[i] =
n∏

i=1

y[i]. (2.6)

DEFINITION 2.4. (See [9, p. 107]) Assume that I is a subinterval of (0,∞) . A
function f : In → (0,∞) is called Schur-geometrically-convex if

ln x ≺ ln y ⇒ f (x) � f (y). (2.7)

The following Lemma 2.2 is basic and plays an important role in the theory of
Schur geometrically-convex function.

LEMMA 2.2. ([9, p. 108]) Let f (x) = f (x1, x2, · · · , xn) be symmetric and have
continuously partial derivatives on In , where I is a subinterval of (0,∞) . Then
f : In → (0,∞) is a Schur-geometrically-convex (concave) function if and only if

(ln x1 − ln x2)
(

x1
∂f
∂x1

− x2
∂f
∂x2

)
� (�)0. (2.8)
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LEMMA 2.3. ([5, p. 7]) A function ϕ(x) is increasing if and only if ∇ϕ(x) � 0
for x ∈ Ω , where Ω ∈ R

n is an open set, ϕ : Ω → R is differentiable, and

∇ϕ(x) =
(

∂ϕ(x)
∂x1

, · · · ,
∂ϕ(x)
∂xn

)
∈ R

n.

LEMMA 2.4. [2] Let xi > 0, (i = 1, 2, · · · , n, n � 2) ,
∑n

i=1 xi = s , then

s
n

=
( s

n
, · · · ,

s
n

)
≺ (x1, x2, · · · , xn) = x. (2.9)

LEMMA 2.5. [10] Let xi > 0, (i = 1, 2, · · · , n, n � 2) ,
∑n

i=1 xi = s , c � s , then

c + x
s + nc

=
(

c + x1

s + nc
, · · · ,

c + x1

s + nc

)
≺ (

x1

s
,
x2

s
, · · · ,

xn

s
) =

x
s
. (2.10)

LEMMA 2.6. [10] Let xi > 0, (i = 1, 2, · · · , n, n � 2) ,
∑n

i=1 xi = s , c � s , then

c − x
nc
s − 1

=
(

c − x1
nc
s − 1

, · · · ,
c − xn
nc
s − 1

)
≺ (x1, x2, · · · , xn) = x. (2.11)

3. Main results

In this section we investigate the Schur-convexity and Schur-geometrically con-
vexity of H∗

r (x) . Some analytic inequalities are established by use of the theory of
majorization.

THEOREM 3.1. H∗
r (x) is an increasing and Schur-concave function in R

n
+ .

Proof. The theorem is obviously true when r = 1 , so we assume below that
2 � r � n . It is easy to show that:

H∗
r (x) = H∗

r (x1, · · · , xn) = H∗
r (x2, · · · , xn) ·

∏
2�i1<···<ir�n

⎛
⎝x

1
r
1 +

r−1∑
j=1

x
1
r
ij

⎞
⎠ ,

ln H∗
r (x) = lnH∗

r (x2, · · · , xn) +
∑

2�i1<···<ir�n

ln

⎛
⎝x

1
r
1 +

r−1∑
j=1

x
1
r
ij

⎞
⎠ .

Differentiating H∗
r (x) with respect to x1 and x2 , we obtain

∂H∗
r (x)

∂x1
= H∗

r (x)
∑

2�i1<···<ir−1�n

⎛
⎝x

1
r
1 +

r−1∑
j=1

x
1
r
ij

⎞
⎠

−1

· 1
r
x

1
r −1
1

= H∗
r (x)

⎡
⎢⎣ ∑

3�i1<···<ir−1�n

⎛
⎝x

1
r
1 +

r−1∑
j=1

x
1
r
ij

⎞
⎠

−1

1
r
x

1
r−1
1
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+
∑

3�i1<···<ii−2�n

⎛
⎝x

1
r
1 + x

1
r
2 +

r−2∑
j=1

x
1
r
ij

⎞
⎠

−1

1
r
x

1
r −1
1

⎤
⎥⎦

> 0

∂H∗
r (x)

∂x2
= H∗

r (x)
∑

2�i1<···<ir−1�n

⎛
⎝x

1
r
2 +

r−1∑
j=1

x
1
r
ij

⎞
⎠

−1

· 1
r
x

1
r −1
2

= H∗
r (x)

⎡
⎢⎣ ∑

3�i1<···<ir−1�n

⎛
⎝x

1
r
2 +

r−1∑
j=1

x
1
r
ij

⎞
⎠

−1

1
r
x

1
r−1
2

+
∑

3�i1<···<ii−2�n

⎛
⎝x

1
r
1 + x

1
r
2 +

r−2∑
j=1

x
1
r
ij

⎞
⎠

−1

1
r
x

1
r −1
2

⎤
⎥⎦

> 0.

From the Lemma 2.3, H∗
r (x) is an increasing function on R

n
+ .

On the other hand, we have

(x1 − x2)
(

∂H∗
r (x)

∂x1
− ∂H∗

r (x)
∂x2

)

= (x1 − x2)H∗
r (x)

⎡
⎢⎣ ∑

3�i1<···<ir−1�n

⎛
⎝x

1
r
1 +

r−1∑
j=1

x
1
r
ij

⎞
⎠

−1

1
r
x

1
r −1
1

−
∑

3�i1<···<ir−1�n

⎛
⎝x

1
r
2 +

r−1∑
j=1

x
1
r
ij

⎞
⎠

−1

1
r
x

1
r −1
2

⎤
⎥⎦

+(x1−x2)H∗
r (x)

⎡
⎢⎣ ∑

3�i1<···<ii−2�n

⎛
⎝x

1
r
1 +x

1
r
2 +

r−2∑
j=1

x
1
r
ij

⎞
⎠

−1(
1
r
x

1
r −1
1 −1

r
x

1
r −1
2

)⎤⎥⎦

=
1
r
(x1 − x2)H∗

r (x)

⎡
⎢⎣ ∑

3�i1<···<ir−1�n

⎛
⎝x

1
r
1 +

r−1∑
j=1

x
1
r
ij

⎞
⎠

−1⎛
⎝x

1
r
2 +

r−1∑
j=1

x
1
r
ij

⎞
⎠

−1

· M

⎤
⎥⎦

+ (x1−x2)H∗
r (x)

⎡
⎢⎣ ∑

3�i1<···<ii−2�n

⎛
⎝x

1
r
1 +x

1
r
2 +

r−2∑
j=1

x
1
r
ij

⎞
⎠

−1(
1
r
x

1
r −1
1 −1

r
x

1
r −1
2

)⎤⎥⎦ ;
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where

M =

⎛
⎝x

1
r
2 +

r−1∑
j=1

x
1
r
ij

⎞
⎠ x

1
r −1
1 −

⎛
⎝x

1
r
1 +

r−1∑
j=1

x
1
r
ij

⎞
⎠ x

1
r−1
2

= x
1
r−1
1 x

1
r
2 − x

1
r −1
1 x

1
r
2 +

r−1∑
j=1

x
1
r
ij

(
x

1
r −1
1 − x

1
r−1
2

)

= x
1
r
1 x

1
r
2 (

1
x1

− 1
x2

) +
r−1∑
j=1

x
1
r
ij

(
x

1
r −1
1 − x

1
r−1
2

)
.

Notice that since 1
x , x

1
r −1 are all decreasing in (0, +∞) , it follows that

(x1 − x2)( 1
x1
− 1

x2
) � 0 and (x1 − x2)(x

1
r −1
1 − x

1
r−1
2 ) � 0 . Therefore

(x1 − x2)
(

∂H∗
r (x)

∂x1
− ∂H∗

r (x)
∂x2

)
� 0.

By Lemma 2.1, Theorem 3.1 follows. �

COROLLARY 3.1. Let xi > 0 , (i = 1, 2, · · · , n, n � 2) ,
∑n

i=1 xi = s , then

H∗
r (x) �

[
r
( s

n

) 1
r
](n

r)
. (3.1)

Proof. From Theorem 3.1 and Lemma 2.4, (3.1) holds. �

COROLLARY 3.2. Let xi > 0 , (i = 1, 2, · · · , n, n � 2) ,
∑n

i=1 xi = s , c � s ,
then

H∗
r (c − x)
H∗

r (x)
�
(nc

s
− 1
)(n

r)
r

. (3.2)

Proof. From Theorem 3.1 and Lemma 2.6, (3.2) holds. �

REMARK 3.1. By Corollary 3.2, let c = s = 1 , r = 1 , the following statements
are true

n∏
i=1

(x−1
i − 1) � (n − 1)n.

(See [1], Weierstrass inequality)

COROLLARY 3.3. Let xi > 0 , (i = 1, 2, · · · , n, n � 2) ,
∑n

i=1 xi = s , c � s ,
then

H∗
r (c + x)
H∗

r (x)
�
(nc

s
+ 1
)(n

r)
r

. (3.3)

Proof. From Theorem 3.1 and Lemma 2.5, (3.3) holds. �
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REMARK 3.2. By Corollary 3.3, let c = s = 1 , r = 1 , we can get the Weierstrass
inequality (see [1]):

n∏
i=1

(x−1
i + 1) � (n + 1)n.

THEOREM 3.2. H∗
r (x) is Schur-geometrically convex function in R

n
++ .

Proof. From theorem 3.1 we have

x1
∂H∗

r (x)
∂x1

= H∗
r (x)

⎡
⎢⎣ ∑

3�i1<···<ir−1�n

⎛
⎝x

1
r
1 +

r−1∑
j=1

x
1
r
ij

⎞
⎠

−1

1
r
x

1
r
1

+
∑

3�i1<···<ii−2�n

⎛
⎝x

1
r
1 + x

1
r
2 +

r−2∑
j=1

x
1
r
ij

⎞
⎠

−1

1
r
x

1
r
1

⎤
⎥⎦

x2
∂H∗

r (x)
∂x2

= H∗
r (x)

⎡
⎢⎣ ∑

3�i1<···<ir−1�n

⎛
⎝x

1
r
2 +

r−1∑
j=1

x
1
r
ij

⎞
⎠

−1

1
r
x

1
r
2

+
∑

3�i1<···<ii−2�n

⎛
⎝x

1
r
1 + x

1
r
2 +

r−2∑
j=1

x
1
r
ij

⎞
⎠

−1

1
r
x

1
r
2

⎤
⎥⎦ .

Accordingly

(ln x1 − ln x2)
(

x1
∂H∗

r (x)
∂x1

− x2
∂H∗

r (x)
∂x2

)

= (ln x1 − ln x2)H∗
r (x)

⎡
⎢⎣ ∑

3�i1<···<ir−1�n

⎛
⎝x

1
r
1 +

r−1∑
j=1

x
1
r
ij

⎞
⎠

−1

1
r
x

1
r
1

−
∑

3�i1<···<ir−1�n

⎛
⎝x

1
r
2 +

r−1∑
j=1

x
1
r
ij

⎞
⎠

−1

1
r
x

1
r
2

⎤
⎥⎦

+ (ln x1 − ln x2)H∗
r (x)

⎡
⎢⎣ ∑

3�i1<···<ii−2�n

⎛
⎝x

1
r
1 + x

1
r
2 +

r−2∑
j=1

x
1
r
ij

⎞
⎠

−1(
1
r
x

1
r
1 − 1

r
x

1
r
2

)⎤⎥⎦

=
1
r

ln x1− ln x2

x1−x2
(x1−x2)H∗

r (x)

⎡
⎢⎣ ∑

3�i1<···<ir−1�n

⎛
⎝x

1
r
1 +

r−1∑
j=1

x
1
r
ij

⎞
⎠

−1⎛
⎝x

1
r
2 +

r−1∑
j=1

x
1
r
ij

⎞
⎠

−1

· M

⎤
⎥⎦
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+
ln x1− ln x2

x1−x2
(x1−x2)H∗

r (x)

⎡
⎢⎣ ∑

3�i1<···<ii−2�n

⎛
⎝x

1
r
1 +x

1
r
2 +

r−2∑
j=1

x
1
r
ij

⎞
⎠

−1(
1
r
x

1
r
1 −

1
r
x

1
r
2

)⎤⎥⎦ ,

where

M =

⎛
⎝x

1
r
2 +

r−1∑
j=1

x
1
r
ij

⎞
⎠ x

1
r
1 −

⎛
⎝x

1
r
1 +

r−1∑
j=1

x
1
r
ij

⎞
⎠ x

1
r
2

=
r−1∑
j=1

x
1
r
ij

(
x

1
r
1 − x

1
r
2

)
.

Since ln x1−ln x2
x1−x2

� 0, (x1 − x2)(x
1
r
1 − x

1
r
2 ) � 0 , we have

(ln x1 − ln x2)
(

x1
∂H∗

r (x)
∂x1

− x2
∂H∗

r (x)
∂x2

)
� 0.

From Lemma 2.2, Theorem 3.2 follows. �
The following result holds in terms of Theorem 3.2 and the fact [9, p. 97] that

ln(s, · · · , s) ≺ ln(x1, · · · , xn) .

COROLLARY 3.4. Let xi > 0 , (i = 1, 2, · · · , n, n � 2) , n
√∏n

i=1 xi = s , then

H∗
r (x) =

∏
1�i1<···<ir�n

⎛
⎝ r∑

j=1

x
1
r
ij

⎞
⎠ �

(
rs

1
r

)(n
r)

. (3.4)

4. Applications

In this section, by using our results, we establish some interesting matrix and
geometric inequalities. In what follows A = (aij)m×n is a complex matrix, and let
d(A) = (a11, · · · , ann), λ (A) = (λ1, λ2, · · · , λn) , where the components λi is eigen-
values of A respectively.

THEOREM 4.1. Let A = (aij)m×n (n � 3) be a positive definite Hermitian matrix,
and I denotes n × n matrix, then∏

1�i1<···<ir�n

r∑
j=1

(λij)
1
r �

(
r( n
√

det(A))
1
r

)(n
r)

. (4.1)

Proof. Since λi(1 � i � n) is an eigenvalue of matrix A , one can easily find that
tr(A) =

∑n
i=1 , det(A) = λ1 · · · λn . It is not difficult to see that

ln

(
n
√

det(A)
tr(A)

, · · · ,
n
√

det(A)
tr(A)

)
≺ ln

(
λ1

tr(A)
, · · · ,

λn

tr(A)

)
, (4.2)

where tr(A) is the trace of matrix A .
From Theorem 3.2, it follows that inequality (4.1) holds. �
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THEOREM 4.2. Let A be an n -dimensional simplex in n -dimensional Euclidean
space E

n(n � 3) and {A1, · · · , An+1} be the set of vertices. Let P be an arbitrary
point in the interior of A . If Bi is the intersection point of the extension line of AiP
and the (n − 1) -dimensional hyperplane opposite to the point A , then we have

H∗
r

(
PB1

A1B1
, · · · ,

PBn+1

An+1Bn+1

)
�
[
r

(
1

n + 1

) 1
r
](n+1

r )
, (4.3)

and

H∗
r

(
PA1

A1B1
, · · · ,

PAn+1

An+1Bn+1

)
�
[
r

(
n

n + 1

) 1
r
](n+1

r )
. (4.4)

Proof. It is easy to see that

n+1∑
i=1

PBi

AiBi
= 1,

AiP
AiBi

= 1 − BiP
AiBi

, i = 1, 2, · · · , n + 1,

n+1∑
i=1

AiP
AiBi

= 1.

Taking s = 1 and s = n in (3.1), it follows that (4.3) and (4.4) holds respectively. �
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