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SCHUR-CONVEX FUNCTIONS RELATED
TO HADAMARD-TYPE INEQUALITIES

HUAN-NAN SHI

(communicated by P. Bullen)

Abstract. The Schur-convexity on the upper and the lower limit of the integral for a mean of
the convex function is researched. As applications, a generalized logarithmic mean with a
parameter is obtained and a relevant double inequality that is a extension of the known inequality
is established.

1. Introduction

Let f be a convex function defined on the interval / C R — R of real numbers
and a,b € I with a < b. Then

(40 <t [ a0 1)

is known as the Hadamard’s inequality for convex function.
In[1], S. S. Dragomir established the following two theorems which are refinements
of the first inequality of (1).

THEOREM A ([1]). If f : [a,b] — R is a convex function, and H is defined on

[0, 1] by
H(r) = bia/abf <tx+(1t)a;b> dx

then H is convex, increasing on [0, 1], and for all t € [0, 1], we have

b
7 (%52) =10 <m0 < 1Y = 1 [ reas @
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THEOREM B ([1]). If f : [a,b] — R is a convex function, and F is defined on
[0, 1] by
1 b b
F(t) = — z 1 —1)y) dxd
0= g [ [ £ e 1= ) dxay
(i) F is convex on [0, 1], symmetric about %, (i.e. F(t) = F(1 —1) for all

€ [0,1]), F is increasing on [0, 1] and increasing on [}, 1], and for all t € [0,1],
we have

then

b
F<F)= ;o [ f@as ()

1y 1 borb x4y a+b
r02r(5) =g | [1(5) oerer ()
(ii) forall t € [0, 1], we have
F(t) > max{H(t),H(1 —1)}. (5)
where H(t) is defined in Theorem A.

In [2], S. S. Dragomir established the following theorem which is a extension of
the relevant conclusion in [3].

THEOREM C ([2]). If f : [a,b] — R is a convex function, and G is defined on
[0,1] by

and

1 b
G(t) = ﬁ/ IF (ta+ (1 — 1) +f (b + (1 — 1)x)] dx
then G is convex on [0, 1], and for all t € [0, 1], we have

,a/f )<G(t)<G(1):jM. .

REMARK 1. If f is concave, then (6) is reversed. (notice that —f is convex)
In [4], N. Elezovié and J. Pelari¢ researched the Schur-convexity on the upper and
the lower limit of the integral for the mean of the convex function and established the
following important result by using the Hadamard’s inequality.

THEOREM D ([4]). Let I be an interval with nonempty interior on R and f be a
continuous function on 1. Then

Cp(a,b):{baff dtabEI a;éb

fla),a=0b
is Schur-convex (Schur-concave) on I ifand if f is convex (concave)on I.

The aim of this paper is to establish the following results which are similar to
Theorem D. As applications, a generalized logarithmic mean with a parameter is ob-
tained and a relevant double inequality which is a extension of the known inequality is
established.
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THEOREM 1. Let I be an interval with nonempty interior on R and define a
function of two variables as follows

- (t),a,bel, a#b
P(a,b)—{f( ) a=b

(i) for £ <t < 1,if f isconvexon I, then P(a,b) is Schur-convexon I*.
(ii) for 0 <t < ,if f is concave on I, then P(a,b) is Schur-concave on I*.

THEOREM 2. Let I be an interval with nonempty interior on R and f be a
continuous function on I. For any t € [0, 1], we define a function of two variables as
follows

F(t),a,bel, a#b

ijy—{fmxa:b

if f is convex (concave) on I, then P(a,b) is Schur-convex (Schur-concave) on I*.

2. Definitions and Lemmas

We need the following definitions and lemmas.

DEFINITION 1. [5, 7] Let Q C R",x = (x1,...,%,) and y = (y1,...,¥) € Q,
andlet ¢ : Q — R.

(1) x is said to be majorized by y (in symbols x < y) if Zf.;l xp < Zf.;l yj for
k=1,2,...,n—1and > x; =Y v, where xy > --- > xp) and yjj) > --- >
Y[} are rearrangements of x and y in a descending order.

(2) x > y means x; > y; forall i = 1,2,...,n. ¢ is said to be increasing if
x >y implies ¢(x) > @(y). @ is said to be decreasing if and only —¢ is increasing.

(3) @ is said to be a Schur-convex function on Q if x < y on Q implies
o(x) < ¢(y), ¢ is said to be a Schur-concave function on Q if and only —¢ is
Schur-convex function.

LEMMA 1. ([5,p.5]) Let x € R" and x = 1 37 | x;. Then
(%, ...,X) <x.

LEMMA 2. Let a < b,u(t) =th+ (1 —t)a,v(t) = ta+ (1 — t)b.
(i) If 1 < <t <1, then

(u(t2),v(12)) = (u(tr), v(t1)). (7)
(i) f0< 1, <t; < L, then

(u(tr),v(t1)) = (u(t2), v(t2)). (8)
Proof. From a < b <1 <1 < 1,itis easy to see that u(ry) > v(f;),u(ty) >

v(t2),u(t;) > u(tz) and u(tg) +v(t2) = u(ty) +v(t1) = a+ b. By Definition 1, it
follows that (7) holds. It is similarly to prove that (8) holds. O
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LEMMA 3. ([5, p. 5]) Let Q C R" is symmetric and has a nonempty interior set.
QO is the interior of Q. @ : Q — R is continuous on Q and differentiable in Q°.
Then @ is the Schur-convex (Schur-concave) function, if and only if @ is symmetric on

Q and
dep 0@
— — — — ] > <
(1 = x2) (8)61 axz) >0 (<0)
holds for any x = (x1,x2,+ - ,X,) € Q.

LEMMA 4. ([5, p. 48-49)) Let Q CR", ¢ : Q > R, h: R > R, y(x) =
h(g(x)).

X

(1) If @ is Schur-convex and h is increasing, then  is also Schur-convex.
(2) If @ is Schur-convex and h is decreasing, then  is also Schur-concave.
(3) If @ is Schur-concave and h is increasing, then  is also Schur-concave.

LEMMA 5. Let F(a,f) = f(f f(ff(x,y) dxdy, where f(x,y) is continuous
on the rectangle [a,p;a,q|, oo = a(b) and B = PB(b) are differentiable with b,
a<alb) <pand a< B(b) < q. Then

B B
%:(/f@ﬁ¢0d@+</f@ﬁﬂ0ﬁ%) 9)

Proof. Since F (a, ) = ff fff(x,y) dxdy, by the derivation rule for the com-
posite functions, we have
OF OF da _OF d

9 ~ e db ' 9P db
which is the equation (9). O

3. Proofs of main results

Proof of Theorem 1.
It is sufficient prove that (i), the proof of (ii) is similar with (7). We need only
consider the case of % <t < 1. Itis clear that P(a,b) is symmetric. When a # b, let

b
Pl(a,b):/f(ta+(l—t)x) dx

and
b
Py(a,b) = / f @b+ (1 —1)x) dx.

Then
1

2(b—a)

P(a,b) = [P1(a,b) + Py(a,b)] = G(t),a # b.
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By the transformation s = ra + (1 — #)x, we get

1 ta+(1—1)b

Pl(a,b) = : f(S)dS
1 ta+1 t
=1 VO ds‘/f ]
apla(z,b) _ 117t[f(m+(17t)b)t—f(a)}
- ITf (ta+ (1 —1)b) — J;(f)t. (10)
OPi(a,b) 1 _
1ab =1 [(1=0f ta+ (A =0b)] =1 (ta+ (1 -1)b). (11)

Notice that P,(a,b) = —P;(b,a), from (11), we get

8P2(a,b) o 8P1(b,a) o
= e = =f b+ (1= 1)), (12)

and from (10), we get

op  oP\(ba) f(b) | 1

5= 5 _1_t+1_tf(tb+(lft)a). (13)
And then
) OO _f (rat (1= 0p) — 1 of (rat (1= 1))~ T2
11— f( )
= T et (1= ) + T2,
OPy(a,b)  OPy(a,b)  f(b) 1
% oa _l_t—1_tf(thr(lft)a)+f(tb+(lft)a)
_ f(b) — 2t
_17t+1 f(tb+(1—t)a).
Since
OP(a,b) 1 1 OPi(a,b)  OPy(a,b)
b _{2(b—a)2[Pl(a’b)+P2(a’b)]+2(b—a)[ b o ]}
and
OP(a,b 1 1 OP(a,b OP>(a,b
(8a ):{2(ba)z[Pl(a,b)+P2(a,b)]+2(ba){ la(a ) za(a )]}

then
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e

 OP(a, b))

Oa

P(a,
Ka Pi(a,b)  OPi(a, b)> . <8Pza(z,b) - 8P28(2,b))] 6

(@)+f (b)+(1=21) (f (ta+(1=1)b) +f (b+(1-1)a))] =G (1)

> i @ @120 (1 (@)+(1=0)f (B)+4f () +(1-1)f (a))] =G (1)

1
(notice that f is convex and from 3 <t<1,wehave l —2¢ < 0)

=f(a) +f(b) — G(t) = 0. ( by theright inequality in (6)

According to Lemma 3, it follows that P(a, b) is Schur-convex on I?. The proof of
Theorem 1 is completed. [

Proof of Theorem 2.
Taking & = = b in Lemma 5, when a # b, we have

aQ“b //ftx+1—t dxdy

b
+m [/f(llﬂr(l—f)y) dy+/ f (tx+ (1 —1)b) dx]

aQ“b //ftx+1—t dxdy

b
+m [/f(lﬂﬂr(l—f)y) dy+/ f (tx+ (1 —1)a) dx]

Now we only consider the case of convexity, the case of concavity is similar.

o252 220)

b
. [/ (b + (1 =) +f ta + (1 — 1)) dy

b
+/ (fex+(L—0)b) +f(x+ (1 —t)a))dx]

b b
ﬁ/ /f(tx+(lft)y)dxdy
b b b
bia/f(x)dx—ﬁ/ /f(tx+(1—t)y)dxdy
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(by the left inequality in (6))
>0 (by(3)).

According to Lemma 3, it follows that Q(a, b) is Schur-convex on I?. The proof
of Theorem 2 is completed. [

4. Applications

THEOREM 3. Let t € [0,1),a,b € R, = [0,+00), and let

;

1

b —a)— (W —v)]r atb

(
r(1—10(b—a)
L.(a,a;t) =a
where u=tb + (1 — )av—taJr(lft)b

(i) ifr>2and $ <t1<1, then L.(a,b;t) is Schur-convex on R%,
(i) if 1 <r<2and 0 <t <%, then Ly(a,b;t) is Schur-concave on R%,
(iit) if r < 1,r #£0 and 5 <t <1, then L,(a,b;1) is Schur-concave on R

L.(a,b;t) =

Proof. Taking f(x) = x"~!,r # 0, then for a # b, from Theorem 1, we have

Glt) = —— /¢[ua+(1—tpyV+ub+(1—ﬂxyl}dx

2(b—a)

1 rb rb
W (ta+(l—t)x) a+(lb+(1—t)x) l;|
W )+ (at (L 0b) — (tb+ (1 - a)’

2r(1 —1)(b — a)
(br _ ar) + (ur _ Vr)
2r(l—10)(b—a)

(i) if r > 2 and % <t < 1,since f(x) = x"~! is convex on R, , from Theorem
1 we obtain that P(a, b) is Schur-convex on Ri. Furthermore, since h : t — 7T s
increasing on R , then from (1) in Lemma4, L,(a,b;t) = [P(a,b)]’i_1 is Schur-convex
on R%,

(i) if 1 < r<2and 0 <1< 1, since f(x) = x~' is concave on R,
from Theorem 1 we obtain that P(a,b) is Schur-concave on Ri . Furthermore, since
hit— 17T is increasing on R , then from (3) in Lemma4, L,(a,b;t) = [P(a,b)]’i_1
is Schur-concave on R? ,

(i@ii) if r < 1,r # 0 and % <t < 1, since f(x) = x"~! is convex on R, ,
from Theorem 1 we obtain that P(a,b) is Schur-convex on R? . Furthermore, since
hit— 177 is decreasing on R, then from (2) in Lemma 4, L,(a,b;r) is Schur-
concave on Ri . Setting r — 1, it is deduced that L,(a, b;¢) is still Schur-concave on
R2 for r = 1. The proof of Theorem 3 is completed. [
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COROLLARY 1. If (r,1) € {r >2,3 <t < 1}, then

1

“;b< Li(a,b;1) < ( 2”_11_t)> (14)

if (nt) e {l<r<20<t<1/2}U{r<1,r#0,1/2 <t < 1}, then the two
inequalities in (14) are all reversed

Proof. Since

b b
(52 55) < @) <@+ .0,

then from Theorem 3, when r > 2 and % <t <1, wehave

b b
L (i at ) < L(a,b) < Li(a+ b,0),

272

ie. (14)isholds. When (r,f) € {1 <r<2,0<r<1/2}U{r<1,r#0,1/2<1 <
1}, the two inequalities in (14) are all reversed. D

REMARK 2. L,(a, b;0) is the generalized logarithmic mean (or Stolarsky’s mean):

Taking ¢ = 0, from (14), we can obtain known inequality [5, p. 53]:

b b
220 <Sab) < 2 rs0 (15)
2 =
THEOREM 4. Let s<t<1l,a,be Ry, andlet
(Inb —1Ina) — (Inu — Inv)
b;t b
La, bit) = -om—a 7

L(a,a;t) = a™!

where u = tb+ (1 —t)a,v =ta+ (1 — 1)b. Then L(a,b;1) is Schur-convex on R? .

Proof. Taking f (x) = x~!, then for a # b, from Theorem 1, we have

j

b
G(t) = ﬁ/ [(ta+ (1= 1)+ (10 4+ (1~ )] dx

b

:m a—l—ln(tb—i—(l—t)x)

_ (Inb—1Ina) —[In(tb + (1 — t)a) — In(ta+ (1 — 1)b)]
N 21 —1)(b—a)
_ (Inb—1Ina) — (Inu—Inv)

21—-1)(b—a)

In(ta+ (1 —1)x)
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Since f(x) = x~! is convex on R, when % <t < 1, by Theorem 1, it follows that
L(a, b;1) is Schur-convexon R% . [

From Theorem 4 and (%52, 422) < (a,b), we get

COROLLARY 2. Let 1 <1< 1,a,b € R,. Then

2

L(a,b;t) < .
(a, ) a+b

(16)

REMARK 3. L(a, b;0) is the logarithmic mean L(a, b) = 22=0¢  Taking ¢ = 0,
from (16), we can obtain the Ostle-Terwilliger inequality [7]:

Inb —1Ina 2
<

< . 17
b—a a+b (17)

THEOREM 5. Let t € (0,1),a,b € R, = [0,+00), and let

1
ar+1 +br+1 _ (ur+1 _ Vr+1) r—1

r(r+1D)t(1 —1)(b — a)?

O,(a,b;t) = ,a#b

O(a,a;t) =a
where u =tb+ (1 — t)a,v =ta+ (1 — )b, if r = 2, then Q,(a,b;1t) is Schur-convex
on R;, ifre{l<r<2}U{r<l1,r+#0,-1}, then Q,(a,b;t) is Schur-concave
on R,

Proof. Taking f(x) = x"~!,r # 0, then for a # b,

0(a.b) = F) = = //ftx+1—t))dxdy

x+ (1—1)y) dy

a

rt(bfa)z/a (
1 b

m/ [(tb+ (1 —1)y)" — (ta+ (1 —1)y)"] dy
1

= r(r+1)t(1 —1)(b — a)? [(tb (=)™~ (ta+ (1 - t)y)r“K
b —(a+(1 _t)y)rﬂ ~(th+ (1 — 1)y )r+1 g
= r(r+ D1 —1)(b— (1)2

ar+1 + br+1 _ (ur+1 _ Vr+1)

r(r+ D1 —1)(b — a)?

The following discussions are similar with Theorem 3, hence itis omitted. Theorem
5is completed. [
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2
when r € {1 < r <2}U{r < 1,r # 0,—1}, the two inequalities in (17) are all

HUAN-NAN SHI

COROLLARY 3. When r > 2, we have

a+b

_ A\l o+l rTll
1—(1—1) r ) (18)

S Q@b < (ath) ( r(r+ 1)1 —1)

reversed.

Proof. Since

(a+b a+b

> ><(a,b)<(a+b,0),

then from Theorem 5, when r > 2 we have

a+b a+b
o (424

) < 0u(a,b) < Oy(a+b,0),

i.e. (18)isholds. when r € {1 <r <2}U{r < 1,r#0,—1}, the two inequalities in
(18) are all reversed. [
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