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SCHUR–CONVEX FUNCTIONS RELATED

TO HADAMARD–TYPE INEQUALITIES

HUAN-NAN SHI

(communicated by P. Bullen)

Abstract. The Schur-convexity on the upper and the lower limit of the integral for a mean of
the convex function is researched. As applications, a generalized logarithmic mean with a
parameter is obtained and a relevant double inequality that is a extension of the known inequality
is established.

1. Introduction

Let f be a convex function defined on the interval I ⊆ R → R of real numbers
and a, b ∈ I with a < b . Then

f

(
a + b

2

)
� 1

b − a

∫ b

a
f (x) dx � f (a) + f (b)

2
(1)

is known as the Hadamard’s inequality for convex function.
In [1], S. S. Dragomir established the following two theorems which are refinements

of the first inequality of (1).

THEOREM A ([1]). If f : [a, b] → R is a convex function, and H is defined on
[0, 1] by

H(t) =
1

b − a

∫ b

a
f

(
tx + (1 − t)

a + b
2

)
dx

then H is convex, increasing on [0, 1] , and for all t ∈ [0, 1] , we have

f

(
a + b

2

)
= H(0) � H(t) � H(1) =

1
b − a

∫ b

a
f (x) dx (2)
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THEOREM B ([1]). If f : [a, b] → R is a convex function, and F is defined on
[0, 1] by

F(t) =
1

(b − a)2

∫ b

a

∫ b

a
f (tx + (1 − t)y) dx dy

then
(i) F is convex on [0, 1] , symmetric about 1

2 , (i.e. F(t) = F(1 − t) for all
t ∈ [0, 1]) , F is increasing on [0, 1

2 ] and increasing on [ 1
2 , 1] , and for all t ∈ [0, 1] ,

we have

F(t) � F(1) =
1

b − a

∫ b

a
f (x) dx (3)

and

F(t) � F

(
1
2

)
=

1
(b − a)2

∫ b

a

∫ b

a
f

(
x + y

2

)
dx dy � f

(
a + b

2

)
(4)

(ii) for all t ∈ [0, 1] , we have

F(t) � max{H(t), H(1 − t)}. (5)

where H(t) is defined in Theorem A.

In [2], S. S. Dragomir established the following theorem which is a extension of
the relevant conclusion in [3].

THEOREM C ([2]). If f : [a, b] → R is a convex function, and G is defined on
[0, 1] by

G(t) =
1

2(b − a)

∫ b

a
[f (ta + (1 − t)x) + f (tb + (1 − t)x)] dx

then G is convex on [0, 1] , and for all t ∈ [0, 1] , we have

1
b − a

∫ b

a
f (x) dx = G(0) � G(t) � G(1) =

f (a) + f (b)
2

. (6)

REMARK 1. If f is concave, then (6) is reversed. (notice that −f is convex)
In [4], N. Elezović and J. Pečarić researched the Schur-convexity on the upper and
the lower limit of the integral for the mean of the convex function and established the
following important result by using the Hadamard’s inequality.

THEOREM D ([4]). Let I be an interval with nonempty interior on R and f be a
continuous function on I . Then

Φ(a, b) =
{

1
b−a

∫ b
a f (t)dt, a, b ∈ I, a �= b

f (a), a = b

is Schur-convex (Schur-concave) on I2 if and if f is convex (concave)on I .

The aim of this paper is to establish the following results which are similar to
Theorem D. As applications, a generalized logarithmic mean with a parameter is ob-
tained and a relevant double inequality which is a extension of the known inequality is
established.
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THEOREM 1. Let I be an interval with nonempty interior on R and define a
function of two variables as follows

P(a, b) =
{

G(t), a, b ∈ I, a �= b
f (a), a = b

(i) for 1
2 � t � 1 , if f is convex on I , then P(a, b) is Schur-convex on I2 .

(ii) for 0 � t � 1
2 , if f is concave on I , then P(a, b) is Schur-concave on I2 .

THEOREM 2. Let I be an interval with nonempty interior on R and f be a
continuous function on I . For any t ∈ [0, 1] , we define a function of two variables as
follows

Q(a, b) =
{

F(t), a, b ∈ I, a �= b
f (a), a = b

if f is convex (concave) on I , then P(a, b) is Schur-convex (Schur-concave) on I2 .

2. Definitions and Lemmas

We need the following definitions and lemmas.

DEFINITION 1. [5, 7] Let Ω ⊆ R
n, xxx = (x1, . . . , xn) and yyy = (y1, . . . , yn) ∈ Ω ,

and let ϕ : Ω → R .
(1) xxx is said to be majorized by yyy (in symbols xxx ≺ yyy ) if

∑k
i=1 x[i] �

∑k
i=1 y[i] for

k = 1, 2, . . . , n − 1 and
∑n

i=1 xi =
∑n

i=1 yi , where x[1] � · · · � x[n] and y[1] � · · · �
y[n] are rearrangements of xxx and yyy in a descending order.

(2) xxx � yyy means xi � yi for all i = 1, 2, . . . , n . ϕ is said to be increasing if
xxx � yyy implies ϕ(xxx) � ϕ(yyy) . ϕ is said to be decreasing if and only−ϕ is increasing.

(3) ϕ is said to be a Schur-convex function on Ω if xxx ≺ yyy on Ω implies
ϕ(xxx) � ϕ(yyy) , ϕ is said to be a Schur-concave function on Ω if and only −ϕ is
Schur-convex function.

LEMMA 1. ([5, p. 5]) Let xxx ∈ R
n and x̄xx = 1

n

∑n
i=1 xi . Then

(x̄xx, . . . , x̄xx) ≺ xxx.

LEMMA 2. Let a � b, u(t) = tb + (1 − t)a, v(t) = ta + (1 − t)b .
(i) If 1

2 � t2 � t1 � 1 , then

(u(t2), v(t2)) ≺ (u(t1), v(t1)). (7)

(ii) If 0 � t2 � t1 � 1
2 , then

(u(t1), v(t1)) ≺ (u(t2), v(t2)). (8)

Proof. From a < b, 1
2 � t2 � t1 � 1 , it is easy to see that u(t1) � v(t1), u(t2) �

v(t2), u(t1) � u(t2) and u(t2) + v(t2) = u(t1) + v(t1) = a + b . By Definition 1, it
follows that (7) holds. It is similarly to prove that (8) holds. �



130 HUAN-NAN SHI

LEMMA 3. ([5, p. 5]) Let Ω ⊆ R
n is symmetric and has a nonempty interior set.

Ω0 is the interior of Ω . ϕ : Ω → R is continuous on Ω and differentiable in Ω0 .
Then ϕ is the Schur-convex (Schur-concave) function, if and only if ϕ is symmetric on
Ω and

(x1 − x2)
(

∂ϕ
∂x1

− ∂ϕ
∂x2

)
� 0 (� 0)

holds for any xxx = (x1, x2, · · · , xn) ∈ Ω0 .

LEMMA 4. ([5, p. 48–49]) Let Ω ⊆ R
n , ϕ : Ω → R , h : R → R , ψ(x) =

h (ϕ(x)) .
(1) If ϕ is Schur-convex and h is increasing, then ψ is also Schur-convex.
(2) If ϕ is Schur-convex and h is decreasing, then ψ is also Schur-concave.
(3) If ϕ is Schur-concave and h is increasing, then ψ is also Schur-concave.

LEMMA 5. Let F (α, β) =
∫ β
α

∫ β
α f (x, y) dx dy , where f (x, y) is continuous

on the rectangle [a, p; a, q] , α = α(b) and β = β(b) are differentiable with b ,
a � α(b) � p and a � β(b) � q . Then

∂F
∂b

=

(∫ β

α
f (α, y) dy

)
α′(b) +

(∫ β

α
f (x, β) dx

)
β ′(b) (9)

Proof. Since F (α, β) =
∫ β
α
∫ β
α f (x, y) dx dy , by the derivation rule for the com-

posite functions, we have
∂F
∂b

=
∂F
∂α

dα
db

+
∂F
∂β

dβ
db

which is the equation (9). �

3. Proofs of main results

Proof of Theorem 1.
It is sufficient prove that (i) , the proof of (ii) is similar with (i) . We need only

consider the case of 1
2 � t < 1 . It is clear that P(a, b) is symmetric. When a �= b , let

P1(a, b) =
∫ b

a
f (ta + (1 − t)x) dx

and

P2(a, b) =
∫ b

a
f (tb + (1 − t)x) dx.

Then

P(a, b) =
1

2(b − a)
[P1(a, b) + P2(a, b)] = G(t), a �= b.
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By the transformation s = ta + (1 − t)x , we get

P1(a, b) =
1

1 − t

∫ ta+(1−t)b

a
f (s) ds

=
1

1 − t

[∫ ta+(1−t)b

0
f (s) ds −

∫ a

0
f (s) ds

]
.

∂P1(a, b)
∂a

=
1

1 − t
[f (ta + (1 − t)b) t − f (a)]

=
t

1 − t
f (ta + (1 − t)b) − f (a)

1 − t
. (10)

∂P1(a, b)
∂b

=
1

1 − t
[(1 − t)f (ta + (1 − t)b)] = f (ta + (1 − t)b) . (11)

Notice that P2(a, b) = −P1(b, a) , from (11), we get

∂P2(a, b)
∂a

= −∂P1(b, a)
∂a

= −f (tb + (1 − t)a) , (12)

and from (10), we get

∂P
∂b

= −∂P1(b, a)
∂b

=
f (b)
1 − t

+
t

1 − t
f (tb + (1 − t)a) . (13)

And then

∂P1(a, b)
∂b

− ∂P1(a, b)
∂a

= f (ta + (1 − t)b) − t
1 − t

f (ta + (1 − t)b) − f (a)
1 − t

=
1 − 2t
1 − t

f (ta + (1 − t)b) +
f (a)
1 − t

,

∂P2(a, b)
∂b

− ∂P2(a, b)
∂a

=
f (b)
1 − t

− t
1 − t

f (tb + (1 − t)a) + f (tb + (1 − t)a)

=
f (b)
1 − t

+
1 − 2t
1 − t

f (tb + (1 − t)a) .

Since

∂P(a, b)
∂b

=
{
− 1

2(b − a)2
[P1(a, b) + P2(a, b)] +

1
2(b − a)

[
∂P1(a, b)

∂b
+

∂P2(a, b)
∂b

]}

and

∂P(a, b)
∂a

=
{

1
2(b − a)2

[P1(a, b) + P2(a, b)] +
1

2(b − a)

[
∂P1(a, b)

∂a
+

∂P2(a, b)
∂a

]}
,

then
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(b − a)
(

∂P(a, b)
∂b

− ∂P(a, b)
∂a

)

=
1
2

[(
∂P1(a, b)

∂b
− ∂P1(a, b)

∂a

)
+
(

∂P2(a, b)
∂b

− ∂P2(a, b)
∂a

)]
− G(t)

=
1

2(1−t)
[f (a)+f (b)+(1−2t) (f (ta+(1−t)b) +f (tb+(1−t)a))]−G(t)

� 1
2(1−t)

[f (a)+f (b)+(1−2t) (tf (a)+(1−t)f (b)+tf (b)+(1−t)f (a))]−G(t)

(notice that f is convex and from
1
2

� t < 1, we have 1 − 2t � 0)

= f (a) + f (b) − G(t) � 0. ( by the right inequality in (6)

According to Lemma 3, it follows that P(a, b) is Schur-convex on I2 . The proof of
Theorem 1 is completed. �

Proof of Theorem 2.
Taking α = β = b in Lemma 5, when a �= b , we have

∂Q(a, b)
∂b

=
−2

(b − a)3

∫ b

a

∫ b

a
f (tx + (1 − t)y) dx dy

+
1

(b − a)2

[∫ b

a
f (tb + (1 − t)y) dy +

∫ b

a
f (tx + (1 − t)b) dx

]

∂Q(a, b)
∂a

=
2

(b − a)3

∫ b

a

∫ b

a
f (tx + (1 − t)y) dx dy

+
1

(b − a)2

[∫ b

a
f (ta + (1 − t)y) dy +

∫ b

a
f (tx + (1 − t)a) dx

]

Now we only consider the case of convexity, the case of concavity is similar.

(b − a)
(

∂Q(a, b)
∂b

− ∂Q(a, b)
∂a

)

=
1

b − a

[∫ b

a
(f (tb + (1 − t)y) + f (ta + (1 − t)y)) dy

+
∫ b

a
(f (tx + (1 − t)b) + f (tx + (1 − t)a)) dx

]

− 4
(b − a)2

∫ b

a

∫ b

a
f (tx + (1 − t)y) dx dy

� 4
b − a

∫ b

a
f (x) dx − 4

(b − a)2

∫ b

a

∫ b

a
f (tx + (1 − t)y) dx dy
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(by the left inequality in (6))
� 0 (by (3)).

According to Lemma 3, it follows that Q(a, b) is Schur-convex on I2 . The proof
of Theorem 2 is completed. �

4. Applications

THEOREM 3. Let t ∈ [0, 1) , a, b ∈ R+ = [0, +∞) , and let

Lr(a, b; t) =
[
(br − ar) − (ur − vr)

r(1 − t)(b − a)

] 1
r−1

, a �= b

Lr(a, a; t) = a

where u = tb + (1 − t)a, v = ta + (1 − t)b .
(i) if r > 2 and 1

2 � t � 1 , then Lr(a, b; t) is Schur-convex on R
2
+ ,

(ii) if 1 < r < 2 and 0 � t � 1
2 , then Lr(a, b; t) is Schur-concave on R

2
+ ,

(iii) if r � 1, r �= 0 and 1
2 � t � 1 , then Lr(a, b; t) is Schur-concave on R

2
+ .

Proof. Taking f (x) = xr−1, r �= 0 , then for a �= b , from Theorem 1, we have

G(t) =
1

2(b − a)

∫ b

a

[
(ta + (1 − t)x)r−1 + (tb + (1 − t)x)r−1

]
dx

=
1

2r(1 − t)(b − a)

[
(ta + (1 − t)x)r

∣∣∣∣
b

a

+ (tb + (1 − t)x)r
∣∣∣∣
b

a

]

=
(br − ar) + (ta + (1 − t)b)r − (tb + (1 − t)a)r

2r(1 − t)(b − a)

=
(br − ar) + (ur − vr)

2r(1 − t)(b − a)
.

(i) if r > 2 and 1
2 � t � 1 , since f (x) = xr−1 is convex on R+ , from Theorem

1 we obtain that P(a, b) is Schur-convex on R
2
+ . Furthermore, since h : t → t

1
r−1 is

increasing on R+ , then from (1) in Lemma4, Lr(a, b; t) = [P(a, b)]
1

r−1 is Schur-convex
on R

2
+ ,
(ii) if 1 < r < 2 and 0 � t � 1

2 , since f (x) = xr−1 is concave on R+ ,
from Theorem 1 we obtain that P(a, b) is Schur-concave on R

2
+ . Furthermore, since

h : t → t
1

r−1 is increasing on R+ , then from (3) in Lemma 4, Lr(a, b; t) = [P(a, b)]
1

r−1

is Schur-concave on R
2
+ ,

(iii) if r � 1, r �= 0 and 1
2 � t � 1 , since f (x) = xr−1 is convex on R+ ,

from Theorem 1 we obtain that P(a, b) is Schur-convex on R
2
+ . Furthermore, since

h : t → t
1

r−1 is decreasing on R+ , then from (2) in Lemma 4, Lr(a, b; t) is Schur-
concave on R

2
+ . Setting r → 1 , it is deduced that Lr(a, b; t) is still Schur-concave on

R
2
+ for r = 1 . The proof of Theorem 3 is completed. �
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COROLLARY 1. If (r, t) ∈ {r > 2, 1
2 � t � 1} , then

a + b
2

� Lr(a, b; t) � (a + b)
(

(tr − 1)r + (1 − t)r

2r(t − 1)

) 1
r−1

(14)

if (r, t) ∈ {1 < r < 2, 0 � t � 1/2} ∪ {r � 1, r �= 0, 1/2 � t � 1} , then the two
inequalities in (14) are all reversed.

Proof. Since (
a + b

2
,
a + b

2

)
≺ (a, b) ≺ (a + b, 0),

then from Theorem 3, when r > 2 and 1
2 � t � 1 , we have

Lr

(
a + b

2
,
a + b

2

)
� Lr(a, b) � Lr(a + b, 0),

i.e. (14) is holds. When (r, t) ∈ {1 < r < 2, 0 � t � 1/2}∪ {r � 1, r �= 0, 1/2 � t �
1} , the two inequalities in (14) are all reversed. �

REMARK 2. Lr(a, b; 0) is the generalized logarithmicmean (or Stolarsky’smean):

Sr(a, b) =
(

br − ar

r(b − a)

) 1
r−1

.

Taking t = 0 , from (14), we can obtain known inequality [5, p. 53]:

a + b
2

� Sr(a, b) � a + b

r
1

r−1

, r > 2 (15)

THEOREM 4. Let 1
2 � t < 1, a, b ∈ R+ , and let

L(a, b; t) =
(ln b − ln a) − (ln u − ln v)

2(1 − t)(b − a)
, a �= b

L(a, a; t) = a−1

where u = tb + (1 − t)a, v = ta + (1 − t)b . Then L(a, b; t) is Schur-convex on R
2
+ .

Proof. Taking f (x) = x−1 , then for a �= b , from Theorem 1, we have

G(t) =
1

2(b − a)

∫ b

a

[
(ta + (1 − t)x)−1 + (tb + (1 − t)x)−1

]
dx

=
1

2(1 − t)(b − a)

[
ln (ta + (1 − t)x)

∣∣∣∣
b

a

+ ln (tb + (1 − t)x)
∣∣∣∣
b

a

]

=
(ln b − ln a) − [ln (tb + (1 − t)a) − ln (ta + (1 − t)b)]

2(1 − t)(b − a)

=
(ln b − ln a) − (ln u − ln v)

2(1 − t)(b − a)
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Since f (x) = x−1 is convex on R+ , when 1
2 � t < 1 , by Theorem 1, it follows that

L(a, b; t) is Schur-convex on R
2
+ . �

From Theorem 4 and
(

a+b
2 , a+b

2

) ≺ (a, b) , we get

COROLLARY 2. Let 1
2 � t < 1, a, b ∈ R+ . Then

L(a, b; t) � 2
a + b

. (16)

REMARK 3. L(a, b; 0) is the logarithmic mean L(a, b) = ln b−ln a
b−a . Taking t = 0 ,

from (16), we can obtain the Ostle-Terwilliger inequality [7]:

ln b − ln a
b − a

� 2
a + b

. (17)

THEOREM 5. Let t ∈ (0, 1) , a, b ∈ R+ = [0, +∞) , and let

Qr(a, b; t) =

[
ar+1 + br+1 − (ur+1 − vr+1

)
r(r + 1)t(1 − t)(b − a)2

] 1
r−1

, a �= b

Qr(a, a; t) = a

where u = tb + (1 − t)a, v = ta + (1 − t)b , if r � 2 , then Qr(a, b; t) is Schur-convex
on R

2
+ , if r ∈ {1 � r < 2} ∪ {r < 1, r �= 0,−1} , then Qr(a, b; t) is Schur-concave

on R
2
+ .

Proof. Taking f (x) = xr−1, r �= 0 , then for a �= b ,

Q(a, b) = F(t) =
1

(b − a)2

∫ b

a

∫ b

a
f (tx + (1 − t)y) dx dy

=
1

rt(b − a)2

∫ b

a
(tx + (1 − t)y)r

∣∣∣∣
b

a

dy

=
1

rt(b − a)2

∫ b

a

[
(tb + (1 − t)y)r − (ta + (1 − t)y)r] dy

=
1

r(r + 1)t(1 − t)(b − a)2

[
(tb + (1 − t)y)r+1 − (ta + (1 − t)y)r+1

]b
a

=
br+1 − (ta + (1 − t)y)r+1 − (tb + (1 − t)y)r+1 + ar+1

r(r + 1)t(1 − t)(b − a)2

=
ar+1 + br+1 − (ur+1 − vr+1

)
r(r + 1)t(1 − t)(b − a)2

.

The following discussions are similarwith Theorem3,hence it is omitted. Theorem
5 is completed. �
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COROLLARY 3. When r � 2 , we have

a + b
2

� Qr(a, b; t) � (a + b)
(

1 − (1 − t)r+1 − rr+1

r(r + 1)t(1 − t)

) 1
r−1

(18)

when r ∈ {1 � r < 2} ∪ {r < 1, r �= 0,−1} , the two inequalities in (17) are all
reversed.

Proof. Since (
a + b

2
,
a + b

2

)
≺ (a, b) ≺ (a + b, 0),

then from Theorem 5, when r � 2 we have

Qr

(
a + b

2
,
a + b

2

)
� Qr(a, b) � Qr(a + b, 0),

i.e. (18) is holds. when r ∈ {1 � r < 2}∪ {r < 1, r �= 0,−1} , the two inequalities in
(18) are all reversed. �
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