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ON MODIFIED NOOR ITERATIONS FOR NONEXPANSIVE MAPPINGS
YONGHONG YAO, MUHAMMAD ASLAM NOOR! AND YEONG-CHENG LIou?

(communicated by Th. Rassias)

Abstract. In this paper, we suggest and analyze some new iterative methods for finding the fixed
point of nonexpansive mapping in Banach spaces, which are called modified Noor iterations.
We show that the approximate solution converges to a fixed point of the nonexpansive mapping,
which is a solution of a variational inequality, under some mild conditions. Results obtained in
this paper may be viewed as a significant refinement of the previously known results in this area.

1. Introduction

Variational inequalities, which were introduced and studied in early sixties, have
played a critical and significant part in the study of several unrelated problems arising in
finance, economics, network analysis, elasticity, optimization, water resources, medical
images and structural analysis. Variational inequalities have witnessed an dynamic
growth in theoretical advances, algorithmic development and new applications across
all disciplines of pure and applied sciences and proved to productive. As a result of
interaction among various branches of mathematical and engineering sciences, we now
have a variety of techniques to suggest and analyze several numerical techniques for
solving variational inequalities and related optimization problems. Analysis of these
problems requires a blend of techniques from convex analysis, functional analysis and
numerical analysis, see [2, 3, 8-25] and the references therein for more details. Related to
the variational inequalities, is the problem of finding the fixed points of the nonexpansive
mappings, which is the subject of current interest in functional analysis. In 2000, Noor
[L1] suggested and analyze three-step iterative method for finding the approximate
solution of the nonexpansive mapping using the technique of updating the solution. It
is well known [13, 18] that the three-step iterative methods perform better numerically
than the two-step(Ishikawa) and one-step(Mann) iterations. Three-step iterations are
also called Noor iteration and this has initiated a quite a new direction of research in
functional analysis. Noor [17] and Noor and Huang [19] have considered some three-
step iterative methods for the nonexpansive mappings in conjunction with variational
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inequalities. In recent years, viscosity methods introduced by Moudafi [10] are being
considered for finding the approximate solution of the nonexpansive mappings, see, for
example, [14, 21] and the references therein for more details. Motivated and inspired
by the research going on in this direction, we use the ideas and technique of Moudafi
[10] and Noor [11-13] to suggest and analyze two new iterative methods for finding the
approximate solutions of the nonexpansive mappings in the Banach spaces. We also
consider the convergence criteria of these new iterations under some mild conditions
and show that the fixed point of the nonexpansive mapping solves a certain variational
inequality.

Let X be a real Banach space with dual X* and C a nonempty closed convex
subset of X. Let J : X — 2X° denote the normalized duality mapping defined by
J(x) == {x* € X" : {xx) = || '] = x]lx € X}

Recall that a mapping f : C — C is called contractive if there exists a constant
a € (0, 1) such that [|f (x) — f(y)|| < aflx —y[l,x,y € C. We use Ilc to denote the
collection of all contractive mappings on C. Letnow T : C — C be a nonexpansive
mapping; namely,

72— Ty]l < [lx =yl
forall x,y € C. A point x € C is a fixed point of T provided Tx = x. Denote by
F(T) the set of fixed points of T, thatis, F(T) = {x € C : Tx = x}. Throughout the
paper we assume that F(T) # ().

Construction of fixed points of nonexpansive mapping is an important subject in
the fixed point theory and its applications in a number of applied areas, for example
image recovery and signal processing (please see, e.g., [1-3]). Halpern [4] considered
the following iterative scheme:

For a given xo € C and u € C, find the approximate solution x,; by the

Xn1 = O+ (1 — o) Txy. (1)

He pointed out that both of the conditions (C1):lim,_.oo @, = 0 and (C2): > >°, o, =
oo are necessary in the sense that if the iteration scheme (1) converges to a fixed point
of T, then these conditions must be satisfied. After that, many authors considered
several conditions of the iterative method (1) concerning the choice of the parameters
{0} (see [5-8]). In particular, Xu [9] considered the following iteration scheme

Xnt1 = Of (%) + (1 — 04) T (2)

which is generalization of (1) and is known as the viscosity approximation method,
the origin of which goes to Moudafi [10]. Xu [9] proved the strong convergence of the
sequence {x,} by using the conditions (C1), (C2) and the following condition:

(C3): either > |Gt — 04| < 00 or limy oo (Qui1/0t) = 1.
Essentially using the idea and technique of Noor [11-13], Su and Qin [15] considered
the following modified Noor iteration for nonexpansive mappings.
Wy = OpXn + (1 — 8,) T,
Zn = YoXn + (1 = ) Twy,
Yo = Buxn + (1 = Ba) Tz,
X1 = Ot + (1 — )y,

3)
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It is clear from (3) that modified Noor iteration include the two-step and one-step
iterations as special cases of Noor iterations.
Su and Qin [15] obtained the following result.

THEOREM SQ. Let C be a closed convex subset of a uniformly smooth Banach
space X andlet T : C — C be a nonexpansive mapping such that F(T) # (). Givena
point u € C, the initial guess xo € C is chosen arbitrarily and given sequences {o,},

{B:}, {vn} and {6,} in [0, 1], the following conditions are satisfied

(i) 320 0 = 00, liMy_oe 04 = 0;

(i) B+ (14+B)(1 —%)(2—05,) € (0,a) for some a € (0,1);

(lll) Z:io ‘an+l - OCn| < 00, Z;ZO ‘Bﬂ«kl _ Bn| < 0, Z;Zoh/wrl . Yn‘ < 00
and Z;io ‘6n+1 - 8n| < 00.

Then {x,} defined by (3) converges strongly to a fixed point of T .

Motivated and inspired by the ongoing research in this direction, we consider
and construct two multi-step iterations algorithms for approximating fixed pints of
nonexpansive mappings. The main purpose of this paper is twofold. First we extend
Su and Qin’s result [15] to a general situation with less restrictions on parameters for
finding the fixed point of the nonexpansive mapping, which solve a certain variational
inequality. Secondly, we propose a new modified Halpern iteration which enriches and
complements the iterative methods of nonexpansive mappings, which is called the Noor-
Halpern iteration. We prove that the the proposed iteration schemes converge strongly
to a fixed point of 7 which solves some variational inequalities. Results proved in this
paper may be viewed as an improvement and refinement of the previous known results.

2. Preliminaries

Let X be a real Banach space with its dual X*. Let S = {x € X : ||x|| = 1}
denote the unit sphere of X. The norm on X is said to be G a teaux differentiable if the
limit

L eyl = ] @
t—0 t
exists for each x,y € S and in this case X is said to be smooth. X is said to have a
uniformly Frechet differentiable norm if the limit (4) is attained uniformly for x,y € S
and in this case X is said to be uniformly smooth. Itis well-known that if X is uniformly
smooth then the duality map is norm-to-norm uniformly continuous on bounded subsets
of X
The first lemma is very well-known (subdifferential) inequality.

LEMMA 2.1. Let X be a real Banach space and J the normalized duality map on
X . Then for any given x,y € X, the following inequality holds:

x> < P+ 2(pix+y),  Vilx+y) € J(x+).
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LEMMA 2.2. ([16]) Let {x,} and {z,} be bounded sequences in a Banach space
X and let {0y} be a sequence in [0, 1] which satisfies the following condition

0 < liminf o, < limsup o, < 1.

n—oo

n—oo
Suppose
X1 = OXy + (1 — 0ty)ze, n =0,
and
lim sup(||zat1 — Znll = [|Xnr1 — Xal]) <O.
n—oo

Then lim,, . (|2, — Xa|| = 0.

LEMMA 2.3. ([9]) Assume {a,} is a sequence of nonnegative real numbers such

that
anJrl < (1 - '}/n)an + 6n7 n 2 07

where {y,} is a sequence in (0,1) and {8,} is a sequence in R such that

(i) XZotn =00;

(it) limsup,_, . 8,/¥n <O or D2, 18,| < oo.
Then lim,_ s a, = 0.

LEMMA 2.4. ([9]) Let C be a nonempty closed convex subset of a real uniformly

Banach space X. Let T : C — C be a nonexpansive mapping with F(T) # 0, and
f €Tlc. Then {x;} defined by

x=t(x)+1—-0Tx, te]0,]] (3)

converges strongly to a point p in F(T) which is the unique solution of the variational
inequality
(I=f)p.j(x—p)) 20, xeF(T). (6)
LEMMA 2.5. Let C be a nonempty closed convex subset of a real uniformly smooth
Banach space X. Let T : C — C be a nonexpansive mapping with F(T) # 0, and
f € I¢. Given bounded sequence {x,} C C satisfying lim,_. ||x, — Tx,|| = 0.
Then
limsup(f (z) — z,j(x, —2)) <0, ze€F(T).

n—oo

Proof. Let x; be the unique fixed point of the contraction mapping z; given by
zx =1f (x) + (1 —1)Tx.
Then
X —xp = t(f (%) — xn) + (L = 0)(Tx, — x5).
We apply Lemma 2.1 to get
ot = xall? < (1= 20T — 3l 260F (%) = s 50 — )
<(1- t)2(||Tx, — Ty + || T, *an)z
+ 20(f () — %1, — %)) + 2120 — xa? (7)
< (1= 1l = xall® + an() + 2t — x|
+ 26(f (%) = X0, j (0 — %))
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where
an(t) = (| Txn — x| (2l|x — xal] + [ T30 — x]]) 8)
— 0asn— oo.
The last inequality (7) implies
1
(= )75 = %)) < 2l =3P+ 2-a(0).

It follows that

. : t

limsup(x; — f (%), j(x —x2)) < M, 9)

n—oo 2
where M; > 0 is a constant such that M, > ||x, — x,]|| forall z € (0,1) and n > 0.
Letting  — 0 in (9) yields

lim sup lim sup(x, — f (x;),j(x; — x,)) <O.

t—0 n—o0

Moreover, we have that

(z2=f(2),J(z — X))

=(z—f(2),jz - xn)> —(z2—f(2),J(x — x))
+ (2= f(2),j(x —xa)) — (20 = f(2),J(x — X))

2) Xn)

+ (0 —f ()50 =) — (o = f (x00), (0 = %))
+ (e = (1), (xe xn)>
= (2 =/ (22— xn) —j(x — xn))

+ (2= %0, (% — X)) + (f (%) = f(2),(x — xa))
+ <xt _f(xt)>.](-xt - -xn)> .
Then, we obtain
limsup(z — f(2),j(z — xa))
<sup(z —f(2),j(z — xn) —Jj(x: — X))
neN
+ llz = x[[ limsup [|x; — xu|| + [|f (xr) —f (2) || lim sup ||, — x,||

n—o0 n—oo

+ lim sup(x; — f (x,),j(x; — X))

n—oo

< :161113< 2= f(2),(z = x2) = j(xe — X))

+ (1 + a)||z — x| lim sup ||x; — x,]|

n—o0

+ limsup(x; — f (%), j(xe — xn)) -

n—oo

From Lemma 2.4, we know that x, — z € F(T) as t — 0 and j is norm-to-weak *
uniformly continuous on bounded subset of C, we obtain

limsup(z — £ (z),j(z — xx) —j(x —x,)) =0.
=0 peN
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Therefore we have

limsup(z — f (2),j(z — x,)) = limsuplimsup(z —f (2),j(z — xx))

n— o0 t—0 n— o0
< lim sup lim sup(x; — f (x;),j(x: — x,))
t—0 n— o0
<0.

This completes the proof.

3. Main Results

3.1. Modified Noor iteration

Our first result is the continuous study of Theorem SQ. First we note that the
restrictions on parameters given below are different from that of Theorem SQ. We now
consider and study the following iteration which includes (3) as a special case. For
f €1l¢ and xo € C, find the approximate solution x, by the iterative schemes.

Wy = 8uxn + (1 — 8,) T,
Zn =YX + (1 = ¥u)TWn,
Yn = Buxn + (1 = Bu)Tzn,
X1 = Of (Xn) + (1 — )y,

(10)

which is called the modified Noor iteration. Clearly iteration (10) includes (3) as a
special case. In a similar way, one can show that Noor iteration (10) include two-step
(Ishikawa) and one-step(Mann) iteration as special cases. This shows that modified
Noor iteration is more general and unified one.

Now we consider the convergence criteria of the modified Noor iteration (1) and
is the main motivation of our next result.

THEOREM 3.1. Let C be a nonempty closed convex subset of a real uniformly
smooth Banach space X. Let T : C — C be a nonexpansive mapping with F(T) # ()
and f € l¢. Given sequences {0y}, {Bn}, {Vu} and {6,} in (0,1), suppose the
following conditions are satisfied:

(i) limy—oo 0y =0 and Y .2, 0 = 00;

(if) 0 < liminf,_ o By < limsup,_, . B < 1;

(#ii) limy— o0 (Yur1 — ¥u) = 0 and lim, o (6,11 — 6,) =0;

() B+ (1 —B)1—1)2—05) €[0,a) for some a € (0,1).

Then, for arbitrary xy € C, the sequence {x,} defined by (10) strongly converges to a
fixed point p € F(T) which is the unique solution of the variational inequality (6).

Proof. Under the conditions of Theorem 3.1, we know from Lemma 2.4 that {x,}
defined by (5) converges strongly to p € F(T) which is the unique solution of the
variational inequality (6) in F(T).
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First, we observe that {x,} is bounded. Indeed, if we take a fixed point p of T,

then we have
[wn = pll = 8ullxa — pll + (1 = 6)[|Tx, — pl|

< [l = pll-
It follows from (10) and (11) that

(11)

2o =PIl < ¥VallXa — pll + (1 = %) | Twn — pl|

< Yalln = pll + (1 = 1) [wa — pll
< [lx =l
and
[yn =PIl < Bullxw = pll + (1 = Bu) | Tzu — P
< Ballxn = pll + (1 = B)llzn — Pl
< [l = pll-
Therefore
%041 =PIl < Qullf () = pll + (1 = ) lyn = p||
< aullf () —f @) + oullf (p) — Pl
+ (1 = o)l — pl|
<1 = (1 = a)ou]lxn = pll + awllf (p) = pll
< max{|[f (p) —pll/(1 = o), [[xa — pl}-

An induction yields

[, = pll < max{|lf (p) — pll/(1 = @), |xo —pl[}, n=0.

Hence, {x,} is bounded, so are {y,}, {z,} and {w,}. Set 6, = (1 —,)B,, n>0.
It follows from (i) and (ii) that

0 < liminf o, < limsup o, < 1. (12)
Define
Xnt1 = OpXn + (1 — O)uy. (13)
Observe that
u = Xn+2 — On+1Xn+1 B Xn+1 — OnpXn
n+1 n 1_ Onsi 1_ o,
_ O 1f (Xni1) + (1 = G 1)Yni1 — Oni1 X1
1- On+1
B onf (x,,) + (1 - an)yn — OpXp
1-—o0,
_ (an+lf(xn+l) _ anf(xn)) _ (1 - an)(l B Bn)TZﬂ
1- On+1 1 - On 1- On

(1 - OC,,+1)(1 - Bt1+1)TZn+l
+
1 - On+1




172 YONGHONG YAO, MUHAMMAD ASLAM NOOR AND YEONG-CHENG LI1OU

Oy Xn O f (Xn
:( +Lf( +1) o "Jc( ))+TZn+17TZn
1 — Op+1 1 — On (14)
. an+lTZn+l anTZn
1 - On+1 1 - On ’

It follows from (14) that
Ot 1
o (If o) | + | Tz ]1)

R T
& 1
+ (I @)l + 1Tzl (13)
n
+ HZn+1 - ZnH - ||xn+1 *an-

From (10), we have
Wpil — Wi = Op1Xn+1 — 6n-xn
+ (1 - (anrl)Tanrl - (1 - 6}1)Txn
= (5n+1 - Sn)anrl + (Sn(anrl - xn)
+ (1 - 6n)(Txn+l - Txn) + (6n - 6n+l)Txn+l-

It follows that
[Wair = wall < [8ns1 = Sl (lnsa | + [T )
+ Snllxnr1r — xall + (1 = &) | Tt — T | (16)
< 81 = Sul (s [| + 1 Txnsa [}
+ s = ]
Again from (10), we obtain

Zn+1 — Zn = Ynt+1Xn+1 — YnXn + (1 - %1+1)Twn+l - (1 - %1)TWn

= (Yas1 = Ya)Xnr1 + Ya(Fns1 — Xn) (17)
+ (1= ¥) (TWast — Twa) + (Yo = Yar 1) TWap1-
It follows from (16) and (17) that
znt1 = zall < [Yas1 = Yal (s | + (| Twnga )
+ Yn”xnﬂ *an + (1 - Vn)HTWnH - TWnH
< Yot = Yal (g [ + [ Twna [])
+ YallXns1 = Xall + (1 = 1) [Wasr1 — wall
< et = Yl (st |+ 17wt ) + Yallasr — xall (18)

+ (1 = ¥)8n+1 — Sl (1 || + | Txn111])
+ (1= ¥)l[Xng1 — x|
< et = Yl (st |+ 1Tt [])
+ 18n1 = Sul (w1 |+ 17X []) + [lons1 = xall-
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Substituting (18) into (15) that

O 1
[ttn 1t = tnl| = w1 — x| < ﬁ(\lf(xnﬂ)ﬂ + [1Tzn4111)
(oM
T () + 1Tl (19

+ WnJrl - Yn|(||xn+1H + ||TWn+1H)
F 841 = Gl ([[Xn g1 [| + [ T2 [])-
Since {x,}, {f (xa)},{Txs}, {Tz,} and {Tw,} are bounded, by (i),(iii) and (19)
we obtain that
lim sup(||uns1 — tal| — [[Xns1 — Xal]) <O.

n—oo

Hence, by Lemma 2.2, we have
lim ||u, — x,|| = 0. (20)
It follows from (12), (13) and (20) that

lim ||x,11 — x| = 0. (21)
From (10), we have

1% = Toxa | < [Pt = Xall + [xas1 — Toxa|
< ns1 = xall 4+ Qallf (o) = Toa|l + (1 = @)l yn — Toxa|
< ot = Xall + allf () — T || + (1 — 06) Bullxn — T |
+ (1 = aw)(1 = Bu) I Tzn — Toxa|
< 1 = Xall + eallf (xn) — Txal| + (1 — 06) Ballxn — T |
+ (1= ) (1 = Bu)llzn — xal|-

Note that
llzn = xull = (1 = ¥a) I Twn — x|
< (=¥ Twn — Txa|| + (1 = 1) [lxn — T |
< (L= ¥a)llwn = xall 4 (1 = 72) [l — T (23)
< (1= %) (1 = 810 — Toxa | + (1 = %) [0 — Txa|
— (1= 1)@= 8) % — Tl

Substituting (23) into (22) that

120 = Tl < {1 — x| + 0t [lf (6n) — Toxa|
+ (1 =) [Bn + (1 = Ba)(1 = 1) (2 = 6u)]lxn — Toxa|-
From (21), (i), (iv) and (24), we obtain

lim ||x, — Tx,|| = 0.
n—oo
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It follows from Lemma 2.5 that

limsup(f (p) — p,j(x. —p)) <O.

n—oo

Finally we show that x, — p as n — 0.
Write

Xnr1 — P = Ou(f (xu) —p) + (1 = ) (va — p);
and apply Lemma 2.1 to get
a1 = pI* = lloa(f (x) = p) + (1 = 06) (v = P)|?

< (1= 0y = plI* + 200 (f (5) = P, (a1 = P))

< (- O‘n)znxn PH2 + 206, (f (x0) = f (), J(Xns1 — P))
+206(f (P) = P.j(nt1 — P))

< (- O‘n)znxn *PHZ + 204 If (xu) — £ (P) [ IXn41 — Pl
+20,(f (P) = P.j(nt1 — P))

<(1- O‘n)znxn *PHZ + 200 |[x, — pl[||Xn+1 — pl|
+200(f (P) = P.j(nt1 — P))

< (1= 06)?[bon = plI* + et ([l — plI? + [[xas1 = pII?)
+200(f (P) = P.j(nt1 — P)) -

It then follows that

1 -2 o), +o?

n - 2 g " Xn — 2
%1 =Pl 1_ e % — pl
+— 1 s (f(P) = p,j(xns1 — D))
2(1 — a)oy, 206,1 .
— - ﬁ»m PP+ ) st )
2
o o 2
+1—O£O!onn p” 9
that is
||xn+1 —P||2 = (1 _sn)H-xn _pH2 +sn[1 — OC<f(p) _p>j(-xn+l _p)>
Oy 2
1 . 25
< (1= s)llon = plF + sly=o ) = i —pp) )
(Xﬂ
— M
o™

= (1 - Sn)Hxn *pHZ + 1,

where Sp = 2(1 ao)c s In = Sn[l a<f(p) p7j(xn+l 7p)> + 2(1a—_n()5)M2] and M > 0
is a constant such that |jx, — p|> < My, n > 0.
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It is easily seen that Y ° s, = 0o, and

. . 1 . Oy
limsupt, /s, = limsup[——(f (p) — p,j(xur1 —P)) + M,] < 0.

n—oo n—oo 1 0 2(1 - a)

Finally apply Lemma 2.3 to (25) and conclude that x,, — p as n — oo. This completes
the proof.

COROLLARY 3.2. Let C be a nonempty closed convex subset of a real uniformly
smooth Banach space X. Let T : C — C be a nonexpansive mapping with F(T) # ()
and u € C. Given sequences {0y}, {B.}, {1} and {8,} in (0,1), the following
conditions are satisfied:

(i) limy—oo 0y =0 and Y2, 0 = 00;

(if) 0 < liminf,_ o By < limsup,_, . B < 1;

(#ii) limy— o0 (Y1 — ¥u) = 0 and lim, oo (6,11 — 6,) = 0;

() B+ (1 —PB)1—1)2—05) €[0,a) for some a € (0,1).

Then, for arbitrary xy € C, the sequence {x,} defined by (3) strongly converges to a
fixed point p € F(T).

REMARK 3.3. Taking f (x) = u in (10), we immediately obtain (3), that is to say,
our iteration scheme (10) includes (3) as a special case.

3.2. Modified Noor-Halpern iteration

In this section, we consider and analyze another iteration for finding the approxi-
mate point of the nonexpansive mapping and this is the main motivation of this section.
For given xy € C, find the approximate solution x, by the iterative scheme:

in = Ynf(xn) + (1 - Yn)xm
Yn = Baf () + (1 = Ba) Tz, (26)

Xnt1 = OpXp + (1 — 04)yn

which is called the modified Noor-Halpern iteration. Now we state and study the
convergence result of iteration scheme (26).

THEOREM 3.4. Let C be a nonempty closed convex subset of a real uniformly
smooth Banach space X. Let T : C — C be a nonexpansive mapping with F(T) # ()
and f € Tlc. Given sequences {a,}, {B.} and {y,} in (0,1), suppose the following
conditions are satisfied:

(i) lim,,_, Bn =0 and Z;io ﬁn =00y
(if) 0 < liminf,— o a, < limsup, o, <1;
(iii) lim,— o0 Y = 0 and E—Z < M for some M > 0.
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Then, for arbitrary xo € C, the sequence {x,} defined by (26) converges strongly to a
fixed point p € F(T) which is the unique solution of the variational inequality (6).

Proof. First we prove that {x,} is bounded. Take p € F(T), from (26), we have

lzn =PIl < Yallf (%) — Pl + (1 = v) 16 — |
< 1allf () = £ @)+ Wllf (0) =PIl + (1 = ) [lxa = Pl
< oYl = pll + 1allf () — Il + (1 = ¥a) [l — P
= [1 = (1 = )ylllx. = pll + %llf (0) = Pl

and hence

[yn =PIl < Ballf (xa) =PIl + (1 = Bu) [ T22 — pl

< Bullf () = F )1+ Ballf () — Pl + (1 = Ba)llza — Pl

< oBullxn = pll + Bullf () — pll + (1 = B)wllf () — Pl
+ (1= B)[1 = (1 = o)alllxa — pl|

={aB, + (1= B[l — (1 — )]}t —pl
+ [ﬁn + (1 - ﬁn)yn”lf(p) 7PH

={l = (1= a)[Bu+ (1 = B)¥al}lxn — pll
+ B+ (1 = Bo)wlllf () — pll-

Therefore

X1 = pll < el — pll + (1 — o) lya — pl|
< ol —pll + (1 — o) {1 — (1 — &) [By + (1 = B)¥al Hlxw — Pl
+ (1= a)[Bu + (1 = B)nalllf () — pll
={l— (1= a)(1 = 0)[B:+ (1= Bu)¥al }|xn — pll
+ (1 =) [B. + (1 = B)vllf () —pll
< max{|[x, —pl[, [f (p) — pll/(1 — @) }.

By induction

[, = pll < max{|xo — pll, [If (p) = pll /(1 = @)}, n=>0,

thatis, {x,} is bounded, so are {f (x,)}, {Tx,} and {z,}.
We observe that

Vns1 = Yall = [[(Bas1 = Bu)f (ng1) + Bal(f (Kng1) —f (%))
+ (1 - ﬂn)(TZnJrl - TZn) + (ﬁn - ﬂn+l)TZn+l
< ABusr = Bul (I Gens )| + (1T zns1[[) + Bullf Censr) = (el
+ (1= Bo)llzas1 — zall
< Bus1 = Bal (I G )| + 1 Tznr1[]) + 0BallXns1 — x|
+ (1= Bo)llzasr1 — zall,

(27)
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and
||Zn+l - Zn” = ||('}/n+l - Yn)f(anrl) + Yn(f(xn+l) _f(xn))

+ (1 - Vn)(xnﬂ *xn) + (Vn - Yn+1)xn+1“
< Vot =Vl (I G DI+ (i []) + 0¥l = xall - (28)
+ (1= Ya) [Pnts — x|
< farr = Yl (I Gas DI + [sa 1) + s = xall-
Substituting (28) into (27) that

Va1 = Yl < 1Buvt — Bal (I Gens )|l + 1 Tz0r1 )

(29)
+ Va1 = Yl (I Conr ]+ st 1) + (201 = 2]l
It follows from lim,_ . 3, = lim,—~ ¥, = 0 and (29) that
lim sup(|[|yns1 — Yall = [[*ns1 — Xal]) <O.
Hence, by Lemma 2.2, we have
lim ||y, — x|l = 0. (30)
Then
Tim [~ = lim (1 04y, — .| = 0. (1)
From (26), we obtain
1260 = Txa| < X1 = 2l + %1 — Tl
< o1 = Xall + a0 — Txa|| + (1 — o) [[yn — T |
g Hxn+1 - an + aonn - Tan + (1 - an)ﬁn“f(xn) - Tan (32)

+ (1= 0)(1 = Bo)[|Tzn — Txa|
< xn1 = xall 4 Qllxn = Toa || + (1 = @) Bullf (xa) — Toxa|
+ (1= 06) (1 = Ba)Yallf () — -

We note that lim,_,, 8, = lim,— ¥, = 0 and, {x,}, {f(x,)} and {Tx,} are all
bounded, therefore from (32) with (31), we have

nll>nolo | — Txn|| = 0. (33)
Since
< lyn = Txall + 1T — Tyl
< yn = 2Xall + 1% = Txa|| + [[yn — Xall (34)
= 2||yn *an + ”xn - Tan'
It follows from (30), (33) and (34) that

||yn - TynH

nll>n()10 [yn = Tyal = 0. (35)
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Again by similar way,
12 = Tzull < llzw = 2all + [P = yall + [[ya = Tzl
< Yallf (o) = xall + lln = yall + llyn — T2a]|
< Yallf () = xall + 150 = yall + Ballf () — Tzal,
which implies that (noting that (i), (iii) and (30))
lim ||z, — Tz, = 0. (36)
It follows from (35), (36) and Lemma 2.5 that
limsup(f (p) — p,j(ya —p)) < O0and limsup(f (p) — p.j(za —p)) <0.  (37)

n—o0 n—oo

From (26) and Lemma 2.1, we have

z0 = PI* = 1%(f () = p) + (1 = 1) (v = P)|?

< (L= 1) llx = pIP + 2% (f () = p.j(za —P))

< (=1 lbon = pI? + 2% {f () —f (P).i(zn — P))
+21(f (P) = p.j(zn — P))

<(1- Vn)z”xn *PHZ + 2a¥ul[xa = pllllzn — Pl
+21(f (p) = p.j(zn — P))

< (- Vn)z”xn *PHZ + o ([ xn *I’”Z + ||z *I’HZ)
+2%(f (P) = P2i(zn = P))

\\

that is ( ) )
2(1 — o) Yn Y,
2 2 n 2
w—pllm <l ——=———=lx—pl"+—x%—-p
len = pIP <[ e e N
17 O% ———(f () —p.j(za — D)) ;
and

[y = pIIP = 1Bu(f (5a) —p) + (1 = Bu)(Tzn — p)|I?

<(1- [3,,)2||Tz,, *PHZ +2B,(f (x0) = P,j(yn — P))

< (L= Bu)llzn = pIIP + 2Bu(f (xa) = f (P).i(yn — P))
+2B:(f (p) = P:j(yn — P))

< (1= Bu)?llza — pII* + 20B, [0 — pll[[ya — pll
+2B:(f (p) = P:j(yn — P))

< (1= Ba)?llza — pII* + aBu(lln = plI* + llyn — PIP)
+2B:(f (p) = P:j(yn — P))

2(1 — o)y 2
< (1= B[ — S, — pl 2 + — [, — p|?
(1= B0 = 2, P+ s,
2%

+ 2 ()~ e = )+ @Bl I
+ oBullyn — pII* + 2B.(f (p) — poi(vn — P)) »
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which implies that

- 2
lyn —plI* <1 — 2(117;%?"“?5 —plP+ [1 7,{,)([3"
i1 )
+ (1 — aﬁn)(l _ ayn)]”xn p”
+ 2%1 <f(p) _p7j(Zn —p)>

(I —aB)(1 - ay,)

1 Eﬁéﬁn <f(17) I’J()’n*l’».

Again from (26)

[[%+1 *I’”Z = ||t (xn —p) + (1 — &) (¥ *P)Hz
< el = pll + (1 = a)lyw =PI
< ol = pl* + (1= aw)?[lya = pII?
+205(1 = o) [[xn = pllllyn — Pl
< ol = pl* + (1= aw)?[lya = pII?
+ 06 (1 — 06:) ([|x *PHZ + [lyn *I’HZ)
= O ||xn *I’”Z + (1= a)llyn *I’||2~

Substituting (38) and (39) into (40), we have

(| X011 —P||2 <[1- aﬁ
1w I
(1—oap,) (1 — o)

2(1 — o) .
T — o) ) =P =p))

+ 2(11_7323)"6”<f(p) *pvj())n *P»

= (1= &)l = plI* + 8,00,

a1l

_|_

where 8, = %ﬁfﬂ)ﬁ" and
YZ
~ 1 (1 @) At —anp
¥ " (F0) — poien — )

(1 - O()(l - aYn)Bn
;O£<f(p) 7paj(yn *P» },

— O‘n)ﬁ;%
T-op,

179

(40)
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where M3 > 0 is a constant such that ||x, — p||> < M5 forall n > 0. Itis easily seen
from (i)-(iii) and (37) that

ZS,, =o0 and limsupo, <0.

n—o00
n=0

Finally apply Lemma 2.3 to (41) and conclude that x, — p. This completes the proof.

REMARK 3.5. Taking ¥, =0 for all n > 0 in (26), then we have
{yn = an(xn) + (1 - Bn)Txny

42
Xnr1 = OpXy + (1 - an)yw ( )

The following result is an immediate consequence of Theorem 3.4.

COROLLARY 3.6. Let C be a nonempty closed convex subset of a real uniformly
smooth Banach space X. Let T : C — C be a nonexpansive mapping with F(T) # ()
and f € Tlc. Given sequences {0y} and {B,} in (0,1), the following conditions are
satisfied:

(i) limy—oo B =0and Y 2 By =c;
(if) 0 < liminf,_, a, < limsup, , 0, < 1.

Then, for arbitrary xy € C, the sequence {x,} defined by (42) strongly converges to a
fixed point p € F(T) which is the unique solution of the variational inequality (6).
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