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ON THE STABILITY OF HOMOMORPHISMS IN

QUASI–BANACH ALGEBRAS ASSOCIATED TO THE

PEXIDERIZED JENSEN FUNCTIONAL EQUATION

ABBAS NAJATI

(communicated by Th. Rassias)

Abstract. In this paper, we prove the Hyers-Ulam-Rassias stability of homomorphisms in quasi-
Banach algebras associated to the Pexiderized Jensen functional equation. This is applied
to investigate homomorphisms between quasi-Banach algebras. The concept of Hyers-Ulam-
Rassias stability originated from the Th. M. Rassias’ stability theorem that appeared in the paper:
On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978),
297-300.

1. Introduction

The stability problem of functional equations originated from a question of Ulam
[34] concerning the stability of group homomorphisms : Let (G1, ∗) be a group and let
(G2, �, d) be a metric group with the metric d(·, ·) . Given ε > 0 , does there exist a
δ(ε) > 0 such that if a mapping h : G1 → G2 satisfies the inequality

d(h(x ∗ y), h(x) � h(y)) < δ

for all x, y ∈ G1 , then there is a homomorphism H : G1 → G2 with

d(h(x), H(x)) < ε

for all x ∈ G1?
In other words, we are looking for situations when the homomorphisms are stable,

i.e., if a mapping is almost a homomorphism, then there exists a true homomorphism
near it. In 1941, Hyers [9] considered the case of approximately additive mappings
in Banach spaces and satisfying the well-known weak Hyers inequality controlled by
a positive constant. In 1978, Th. M. Rassias [25] provided a generalization of Hyers’
Theorem which allows the Cauchy difference to be unbounded.
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THEOREM. (Th. M. Rassias) Let f : E → E′ be a mapping from a normed vector
space E into a Banach space E′ subject to the inequality

‖f (x + y) − f (x) − f (y)‖ � ε(‖x‖p + ‖y‖p) (♥)

for all x, y ∈ E , where ε and p are constants with ε > 0 and p < 1 . Then the limit

L(x) = lim
n→∞

f (2nx)
2n

exists for all x ∈ E and L : E → E′ is the unique additive mapping which satisfies

‖f (x) − L(x)‖ � 2ε

2 − 2p
‖x‖p (♦)

for all x ∈ E . If p < 0 then inequality (♥) holds for x, y 	= 0 and (♦) for x 	= 0.
Also, if the mapping t 
→ f (tx) is continuous in t ∈ R for each fixed x ∈ X, then L is
R -linear.

In 1990, Th. M. Rassias [27] during the 27 th International Symposium on Func-
tional Equations asked the question whether such a theorem can also be proved for
p � 1 . In 1991, Z. Gajda [7] following the same approach as in Th. M. Rassias [25],
gave an affirmative solution to this question for p > 1 . It was shown by Z. Gajda [7],
as well as by Th. M. Rassias and P. Šemrl [31] that one cannot prove a Th. M. Ras-
sias’ type theorem when p = 1 . The counterexamples of Z. Gajda [7], as well as
of Th. M. Rassias and P. Šemrl [31] have stimulated several mathematicians to invent
new definitions of approximately additive or approximately linear mappings, cf. P.
Găvruta [8], S. Jung [15], who among others studied the Hyers-Ulam-Rassias stability
of functional equations.

The inequality (♥) that was introduced for the first time by Th. M. Rassias
[25] provided a lot of influence in the development of a generalization of the Hyers-
Ulam stability concept. This new concept is known as Hyers-Ulam-Rassias stability of
functional equations (cf. the books of P. Czerwik [5], S. Czerwik [6], D.H. Hyers, G.
Isac and Th. M. Rassias [11], S.-M. Jung [16]).

J. M. Rassias [23] following the spirit of the innovative approach of Th. M. Rassias
[25] for the unbounded Cauchy difference proved a similar stability theorem in which
he replaced the factor ‖x‖p + ‖y‖p by ‖x‖p · ‖y‖q for p, q ∈ R with p + q 	= 1.

P. Găvruta [8] provided a further generalization of Th. M. Rassias’ Theorem. In
1996, G. Isac and Th. M. Rassias [13] applied the Hyers-Ulam-Rassias stability theory
to prove fixed point theorems and study some new applications in Nonlinear Analy-
sis. In [12], D. H. Hyers, G. Isac and Th. M. Rassias studied the asymptoticity aspect
of Hyers-Ulam stability of mappings. During past few years several mathematicians
have published on various generalizations and applications of Hyers-Ulam stability
and Hyers-Ulam-Rassias stability to a number of functional equations and mappings,
for example : quadratic functional equation, invariant means, multiplicative mappings
- superstability, bounded n th differences, convex functions, generalized orthogonal-
ity functional equation, Euler-Lagrange functional equation, Navier-Stokes equations.
Several mathematicians have contributed works on these subjects; we mention a few:
C. Park [19]-[21],Th. M. Rassias [26]-[30], F. Skof [33].



STABILITY OF HOMOMORPHISMS IN QUASI-BANACH ALGEBRAS 207

The stability problems of several functional equations have been extensively in-
vestigated by a number of authors and there are many interesting results concerning this
problem (see [2, 8, 19, 22, 28]).

We recall some basic facts concerning quasi-Banach spaces and some preliminary
results.

DEFINITION 1.1. [4, 32] Let X be a real linear space. A quasi-norm is a real-valued
function on X satisfying the following:

(i) ‖x‖ � 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0.
(ii) ‖λx‖ = |λ |‖x‖ for all λ ∈ R and all x ∈ X.
(iii) There is a constant K � 1 such that ‖x + y‖ � K(‖x‖ + ‖y‖) for all x, y ∈ X.

It follows easily from condition (iii) that

∥∥∥
2n∑
i=1

xi

∥∥∥ � Kn
2n∑
i=1

‖xi‖,
∥∥∥

2n+1∑
i=1

xi

∥∥∥ � Kn+1
2n+1∑
i=1

‖xi‖

for all integers n � 1 and all x1, x2, . . . , x2n+1 ∈ X.
The pair (X, ‖.‖) is called a quasi-normed space if ‖.‖ is a quasi-norm on X. The

smallest possible K is called the modulus of concavity of ‖.‖. A quasi-Banach space
is a complete quasi-normed space.

A quasi-norm ‖.‖ is called a p -norm (0 < p � 1) if

‖x + y‖p � ‖x‖p + ‖y‖p

for all x, y ∈ X. In this case, a quasi-Banach space is called a p -Banach space.
By the Aoki-Rolewicz theorem [32] (see also [4]), each quasi-norm is equivalent

to some p -norm. Since it is much easier to work with p -norms than quasi-norms,
henceforth we restrict our attention mainly to p -norms.

DEFINITION 1.2. [1] Let (A, ‖.‖) be a quasi-normed space. The quasi-normed
space (A, ‖.‖) is called a quasi-normed algebra if A is an algebra and there is a
constant C > 0 such that ‖xy‖ � C‖x‖‖y‖ for all x, y ∈ A.

A quasi-Banach algebra is a complete quasi-normed algebra. If the quasi-norm
‖.‖ is a p -norm then the quasi-Banach algebra is called a p -Banach algebra.

2. Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras
associated to the Pexiderized Jensen functional equation

Throughout this section, assume that A is a quasi-normed algebra with quasi-norm
‖.‖A and that B is a p -Banach algebra with p -norm ‖.‖B. Let K be the modulus of
concavity of ‖.‖B.

The stability of homomorphisms in quasi-Banach algebras, associated to the Jensen
functional equation, has been investigated in [21]. We prove the Hyers-Ulam-Rassias
stability of homomorphisms in quasi-Banach algebras, associated to the Pexiderized
Jensen functional equation. The stability of homomorphisms in quasi-Banach algebras,
associated to the Pexiderized Cauchy functional equation, has been investigated in [18].
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THEOREM 2.1. [21] Let r < 1
2 and θ be positive real numbers, and let f : A → B

be a mapping with f (0) = 0 satisfying∥∥∥2f
(x + y

2

)
− f (x) − f (y)

∥∥∥
B

� θ‖x‖r
A‖y‖r

A (2.1)

and
‖f (xy) − f (x)f (y)‖B � θ‖x‖r

A‖y‖r
A (2.2)

for all x, y ∈ A. If f (tx) is continuous in t ∈ R for each fixed x ∈ A, then there exists
a unique homomorphism T : A → B such that

T(x) = lim
n→∞

1
3n

f (3nx), ‖f (x) − T(x)‖B � K(1 + 3r)θ
(3p − 9pr)1/p

‖x‖2r
A

for all x ∈ A.

REMARK 2.2. Theorem 2.1 is true when r = 0 (by putting ‖.‖0
A = 1 ).

THEOREM 2.3. [21] Let r > 1 and θ be positive real numbers, and let f : A → B
be a mapping with f (0) = 0 satisfying (2.1) and (2.2). If f (tx) is continuous in
t ∈ R for each fixed x ∈ A, then there exists a unique homomorphism T : A → B such
that

T(x) = lim
n→∞ 3nf

( x
3n

)
, ‖f (x) − T(x)‖B � K(1 + 3r)θ

(9pr − 3p)1/p
‖x‖2r

A

for all x ∈ A.

The proofs of the following results are similar to the proofs of Theorems 2.1 and
2.2 of [21] and we refer to [21].

THEOREM 2.4. Let θ, r, s be positive real number r > 1
2 and s > 1. Assume

that f : A → B is a mapping such that

‖f (x + y) − f (x) − f (y)‖B � θ‖x‖r
A‖y‖r

A (2.3)

‖f (xy) − f (x)f (y)‖B � θ‖x‖s
A‖y‖s

A (2.4)

for all x, y ∈ A. If f (tx) is continuous in t ∈ R for each fixed x ∈ A, then there exists
a unique homomorphism T : A → B such that

T(x) = lim
n→∞ 2nf

( x
2n

)
, ‖f (x) − T(x)‖B � θ

(4pr − 2p)1/p
‖x‖2r

A

for all x ∈ A.

THEOREM 2.5. Let θ, r, s be a positive real number such that 0 � r < 1
2 and

0 � s < 1. Assume that f : A → B is a mapping satisfies (2.3) and (2.4) for all
x, y ∈ A. If f (tx) is continuous in t ∈ R for each fixed x ∈ A, then there exists a
unique homomorphism T : A → B such that

T(x) = lim
n→∞

1
2n

f (2nx), ‖f (x) − T(x)‖B � θ
(2p − 4pr)1/p

‖x‖2r
A

for all x ∈ A (we put ‖.‖0
A = 1 ).
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The following theorem shows that the mappings f : A → B in Theorems 2.1 and
2.3 are homomorphisms.

THEOREM 2.6. Let r, s and θ be positive real numbers with r 	= 1
2 and s 	= 1,

and let f : A → B be a mapping with f (0) = 0 satisfying (2.1) and (2.4). If
the mapping t 
→ f (tx) is continuous in t ∈ R for each fixed x ∈ A, then f is a
homomorphism.

Proof. Letting y = 0 in (2.1), we get 2f (x/2) = f (x) for all x ∈ A. By
induction we infer that

2nf
( x

2n

)
= f (x) (2.5)

for all x ∈ A and all n ∈ Z. Therefore, the mapping f : A → B satisfies (2.3) and
(2.4). By Theorems 2.4 and 2.5, there exists a homomorphism T : A → B such that
T(x) = f (x) for all x ∈ A. �

THEOREM 2.7. Let r, s and θ be positive real numbers, and let f , g, h : A → B
be mappings satisfying

∥∥∥2f
(x + y

2

)
− g(x) − h(y)

∥∥∥
B

� θ‖x‖r
A‖y‖r

A (2.6)

and
‖f (xy) − g(x)h(y)‖B � θ‖x‖s

A‖y‖s
A (2.7)

for all x, y ∈ A. Suppose that at least one of the mappings t 
→ f (tx) , t 
→ g(tx) or
t 
→ h(tx) is continuous in t ∈ R for each fixed x ∈ A.

(i) If 0 < r < 1
2 and 0 < s < 1, then there exists a unique homomorphism

T : A → B such that

‖f (x) − f (0) − T(x)‖B � θ22r−1

(2p − 4pr)1/p
‖x‖2r

A

‖g(x) − g(0) − T(x)‖B � θ
(2p − 4pr)1/p

‖x‖2r
A

‖h(x) − h(0) − T(x)‖B � θ
(2p − 4pr)1/p

‖x‖2r
A

(2.8)

for all x ∈ A.
(ii) If r > 1

2 and s > 1, then there exists a unique homomorphism T : A → B such
that

‖f (x) − f (0) − T(x)‖B � θ22r−1

(4pr − 2p)1/p
‖x‖2r

A

‖g(x) − g(0) − T(x)‖B � θ
(4pr − 2p)1/p

‖x‖2r
A

‖h(x) − h(0) − T(x)‖B � θ
(4pr − 2p)1/p

‖x‖2r
A

(2.9)

for all x ∈ A.
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Proof. Letting x = 0 in (2.6) and (2.7), we get that

2f
( y

2

)
= g(0) + h(y), f (0) = g(0)h(y) (2.10)

for all y ∈ A. Once again letting y = 0 in (2.6) and (2.7), we get that

2f
( x

2

)
= g(x) + h(0), f (0) = g(x)h(0) (2.11)

for all x ∈ A. It follows from (2.10) and (2.11) that

g(x) − g(0) = h(x) − h(0), (2.12)

2f
( x

2

)
− 2f (0) = g(x) + h(0) − 2f (0)

= g(x) + h(0) − g(0) − h(0)
= g(x) − g(0)

(2.13)

for all x ∈ A. Let H : A → B be a mapping defined by

H(x) := g(x) − g(0)

for all x ∈ A. It follows from (2.12) and (2.13) that

H(x + y) − H(x) − H(y) = 2f
(x + y

2

)
− 2f (0) − g(x) + g(0) − h(y) + h(0)

= 2f
(x + y

2

)
− g(x) − h(y)

for all x, y ∈ A. Therefore, we obtain from (2.6) the following inequality

‖H(x + y) − H(x) − H(y)‖B � θ‖x‖r
A‖y‖r

A,

for all x, y ∈ A.
(i). By Theorem 2.5, there exists a unique R -linear mapping T : A → B such

that

T(x) = lim
n→∞

1
2n

H(2nx), ‖H(x) − T(x)‖B � θ
(2p − 4pr)1/p

‖x‖2r
A

for all x ∈ A. Therefore, the mappings f , g, h : A → B satisfy in (2.8). To complete
the proof of (i), we show that T is a homomorphism. It is clear that

T(x) = lim
n→∞

1
2n

f (2nx) = lim
n→∞

1
2n

g(2nx) = lim
n→∞

1
2n

h(2nx)

for all x ∈ A. Therefore, we have from (2.7)

‖T(xy) − T(x)T(y)‖B = lim
n→∞

1
4n

‖f (4nxy) − g(2nx)h(2ny)‖B

� θ lim
n→∞

(4s

4

)n
‖x‖s

A‖y‖s
A = 0

for all x, y ∈ A. It proves (i).
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(ii). By Theorem 2.4, there exists a unique R -linear mapping T : A → B such
that

T(x) = lim
n→∞ 2nH

( x
2n

)
, ‖H(x) − T(x)‖B � θ

(4pr − 2p)1/p
‖x‖2r

A

for all x ∈ A. Therefore, the mappings f , g, h : A → B satisfy in (2.9). Since

T(x) = lim
n→∞ 2n

[
f
( x

2n

)
− f (0)

]
= lim

n→∞ 2n
[
g
( x

2n

)
−g(0)

]
= lim

n→∞ 2n
[
h
( x

2n

)
−h(0)

]

for all x ∈ A, we get from (2.7), (2.10) and (2.11)

‖T(xy) − T(x)T(y)‖B

= lim
n→∞ 4n

∥∥∥f
(xy

4n

)
− f (0) −

[
g
( x

2n

)
− g(0)

][
h
( y

2n

)
− h(0))

]∥∥∥
B

= lim
n→∞ 4n

∥∥∥f
(xy

4n

)
− g

( x
2n

)
h
( y

2n

)∥∥∥
B

� θ lim
n→∞

( 4
4s

)n
‖x‖s

A‖y‖s
A = 0

for all x, y ∈ A. It proves that T is a homomorphism. �
For r = s = 0, we have the following theorem.

THEOREM 2.8. Let θ be a positive real number and let f , g, h : A → B be
mappings satisfying ∥∥∥2f

(x + y
2

)
− g(x) − h(y)‖B � θ, (2.14)

and
‖f (xy) − g(x)h(y)‖B � θ (2.15)

for all x, y ∈ A. If at least one of the mappings t 
→ f (tx) , t 
→ g(tx) or t 
→ h(tx) is
continuous in t ∈ R for each fixed x ∈ A, then there exists a unique homomorphism
T : A → B such that

‖f (x) − f (0) − T(x)‖B � 4K3θ
(3p − 1)1/p

,

‖g(x) − g(0) − T(x)‖B � 8K3θ
(3p − 1)1/p

,

‖h(x) − h(0) − T(x)‖B � 8K3θ
(3p − 1)1/p

(2.16)

for all x ∈ A.

Proof. Let H : A → B be a mapping defined by

H(x) := 2f
( x

2

)

for all x ∈ A. Then
‖H(x + y) − g(x) − h(y)‖B � θ (2.17)
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for all x, y ∈ A. Since

2H
(x + y

2

)
− H(x) − H(y)

=
[
H

(x + y
2

)
− g

( x
2

)
− h

( y
2

)]
+

[
H

(x + y
2

)
− g

( y
2

)
− h

( x
2

)]

+
[
g
( x

2

)
+ h

( x
2

)
− H(x)

]
+

[
g
( y

2

)
+ h

( y
2

)
− H(y)

]

for all x, y ∈ A, then we have
∥∥∥2H

(x + y
2

)
− H(x) − H(y)

∥∥∥
B

� 4K2θ

for all x, y ∈ A. Hence, by Theorem 2.1, There exists a unique additive mapping
T1 : A → B satisfying

T1(x) = lim
n→∞

1
3n

H(3nx), ‖H(x) − H(0) − T1(x)‖B � 8K3θ
(3p − 1)1/p

(2.18)

for all x ∈ A. Similarly, since

2g
(x + y

2

)
− g(x) − g(y)

=
[
g
(x + y

2

)
− H

( y
2

)
+ h

(−x
2

)]
+

[
g
(x + y

2

)
− H

( x
2

)
+ h

(−y
2

)]

+
[
H

( x
2

)
− g(x) − h

(−x
2

)]
+

[
H

( y
2

)
− g(y) − h

(−y
2

)]

for all x, y ∈ A, then we have
∥∥∥2g

(x + y
2

)
− g(x) − g(y)

∥∥∥
B

� 4K2θ

for all x, y ∈ A. Similarly,
∥∥∥2h

(x + y
2

)
− h(x) − h(y)

∥∥∥
B

� 4K2θ

for all x, y ∈ A. Hence, by Theorem 2.1, There exist unique additive mappings T2, T3 :
A → B satisfying

T2(x) = lim
n→∞

1
3n

g(3nx), ‖g(x) − g(0) − T2(x)‖B � 8K3θ
(3p − 1)1/p

, (2.19)

T3(x) = lim
n→∞

1
3n

h(3nx), ‖h(x) − h(0) − T3(x)‖B � 8K3θ
(3p − 1)1/p

(2.20)

for all x ∈ A. It follows from (2.17) that T1 = T2 = T3. Let T = T1, by the same
reasoning as in the proof of Theorem of [25], the mapping T : A → B is R -linear.
Since

T(x) = lim
n→∞

1
3n

f (3nx) = lim
n→∞

1
3n

g(3nx) = lim
n→∞

1
3n

h(3nx) (2.21)
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for all x ∈ A, then it follows from (2.15) that

‖T(xy) − T(x)T(y)‖B = lim
n→∞

1
9n

‖f (9nxy) − g(3nx)h(3ny)‖B

� lim
n→∞

θ
9n

= 0

for all x, y ∈ A. Hence, T(xy) = T(x)T(y) for all x, y ∈ A. Therefore T is a
homomorphism satisfying (2.16). �

THEOREM 2.9. Let r, s < 0 and θ be positive real numbers, and let f : A → B
be a mapping with f (0) = 0 satisfying (2.1) and (2.4) for all x, y ∈ A \ {0}. If the
mapping t 
→ f (tx) from R to B is continuous at zero for each fixed x ∈ A, then
f : A → B is a homomorphism.

Proof. Let y ∈ A \ {0}. Replacing x and y in (2.1) by y − ny and y + ny,
respectively, we get that

f (y) =
1
2

lim
n→∞[f (y + ny) + f (y − ny)]. (2.22)

It is clear that (2.22) holds for all y ∈ A. Let x, y ∈ A \ {0}. It follows from (2.1)
and (2.22) that∥∥∥2f

(x + y
2

)
− f (x) − f (y)

∥∥∥
B

=
1
2

lim
n→∞

∥∥∥2
[
f
(x + y + n(x + y)

2

)
+ f

(x + y − n(x + y)
2

)]

− [f (x + nx) + f (x − nx)] − [f (y + ny) + f (y − ny)]
∥∥∥

B

� K
2

lim sup
n→∞

∥∥∥2f
( (x + nx) + (y + ny)

2

)
− f (x + nx) − f (y + ny)

∥∥∥
B

+
K
2

lim sup
n→∞

∥∥∥2f
( (x − nx) + (y − ny)

2

)
− f (x − nx) − f (y − ny)

∥∥∥
B

� Kθ
2

[
lim sup

n→∞
(n + 1)2r + lim sup

n→∞
(n − 1)2r

]
‖x‖r

A|y‖r
A = 0.

Therefore, we get that

2f
(x + y

2

)
= f (x) + f (y) (2.23)

for all x, y ∈ A \ {0}. Since f (0) = 0, (2.23) implies that f is odd. Let x ∈ A \ {0}.
It follows from (2.23) that

2f (x) = 2f
(3x

2
+

−x
2

)
= f (3x) + f (−x)

= f (x + 2x) + f (x − 2x)

=
1
2
[f (2x) + f (4x)] +

1
2
[f (2x) + f (−4x)]

= f (2x).
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Since f (0) = 0, we get that f (2x) = 2f (x) for all x ∈ A. Therefore, (2.23) implies
that

f (x + y) = f (x) + f (y)

for all x, y ∈ A. So f is Q -linear. Since the mapping t 
→ f (tx) is continuous in zero
for each fixed x ∈ A, then the mapping t 
→ f (tx) is continuous in t ∈ R. Therefore
f is R -linear. Also, it follows from (2.4) and (2.22) that

‖f (xy)−f (x)f (y)‖B

=
1
2

lim
n→∞

∥∥∥[f (xy + nxy) + f (xy − nxy)] − f (x)[f (y + ny) + f (y − ny)]
∥∥∥

B

� K
2

lim sup
n→∞

‖f (xy + nxy) − f (x)f (y + ny)‖B

+
K
2

lim sup
n→∞

‖f (xy − nxy) − f (x)f (y − ny)‖B

� Kθ
2

[
lim sup

n→∞
(n + 1)s + lim sup

n→∞
(n − 1)s

]
‖x‖s

A‖y‖s
A = 0

for all x, y ∈ A \ {0}. Since f (0) = 0, then f (xy) = f (x)f (y) for all x, y ∈ A. So the
mapping f : A → B is a homomorphism. �

THEOREM 2.10. Let r, s < 0 and θ be positive real numbers, and let f , g : A → B
be mappings with f (0) = g(0) = 0 satisfying

∥∥∥2f
(x + y

2

)
− f (x) − g(y)

∥∥∥
B

� θ‖x‖r
A‖y‖r

A (2.24)

‖f (xy) − f (x)g(y)‖B � θ‖x‖s
A‖y‖s

A (2.25)

for all x, y ∈ A \ {0}. If the mapping t 
→ f (tx) from R to B is continuous at zero for
each fixed x ∈ A, then f : A → B is a homomorphism. Moreover f = g.

Proof. Replacing x by nx in (2.24), we get that

g(y) = lim
n→∞

[
2f

(nx + y
2

)
− f (nx)

]

for all x, y ∈ A \ {0}. Similarly, we have

f (y) = lim
n→∞

[
2f

(nx + y
2

)
− g(nx)

]

for all x, y ∈ A \ {0}. Hence

f (y) − g(y) = lim
n→∞[f (nx) − g(nx)] (2.26)

for all x, y ∈ A \ {0}. Replacing x and y by nx in (2.24), we get that

lim
n→∞[f (nx) − g(nx)] = 0 (2.27)
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for all x ∈ A \ {0}. Since f (0) = g(0), it follows from (2.26) and (2.27) that f = g.
Therefore the result follows from Theorem 2.9. �

THEOREM 2.11. Let r, s < 0 and θ be positive real numbers, and let f , g, h : A →
B be mappings with f (0) = g(0) = 0 satisfying (2.6) and (2.7) for all x, y ∈ A\{0}.
Let h be an odd mapping and let the mapping t 
→ f (tx) from R to B be continuous at
zero for each fixed x ∈ A, then f : A → B is a homomorphism. Moreover f = g = h.

Proof. Similar to the proof of Theorem 2.10 we have

g(x) = lim
n→∞

[
2f

(x + ny
2

)
− h(ny)

]
, h(x) = lim

n→∞

[
2f

(x + ny
2

)
− g(ny)

]

for all x, y ∈ A \ {0}. Hence

g(x) − h(x) = lim
n→∞[g(ny) − h(ny)] (2.28)

for all x, y ∈ A \ {0}. Replacing x and y by nx and −nx, respectively, in (2.6), we
get that

lim
n→∞[g(nx) − h(nx)] = 2f (0) = 0 (2.29)

for all x ∈ A \ {0}. Since h(0) = g(0) = 0, it follows from (2.28) and (2.29) that
g = h.

Replacing y by y − x in (2.6), we get that
∥∥∥2f

( y
2

)
− h(x) − h(y − x)

∥∥∥
B

� θ‖x‖r
A‖y − x‖r

A

for all x ∈ A \ {0} and all y ∈ A \ {x}. Therefore, we have

2f
( y

2

)
= lim

n→∞[h(nx) − h(nx − y)], h(y) = lim
n→∞

[
2f

(nx
2

)
− h(nx − y)

]

for all x, y ∈ A \ {0}. So we get that

2f
( y

2

)
− h(y) = lim

n→∞

[
h(nx) − 2f

(nx
2

)]
(2.30)

for all x, y ∈ A \ {0}. Let y0 ∈ A \ {0} and let b = 2f ( y0

2 ) − h(y0). It follows from
(2.30) that

2f
( y

2

)
− h(y) = b (2.31)

for all y ∈ A \ {0}. Replacing y by y/n in (2.31), we get that

2f
( y

2n

)
− h

( y
n

)
= b (2.32)

for all y ∈ A \ {0}. Since h is odd, replacing y by −y in (2.32), we get that

2f
(−y

2n

)
+ h

( y
n

)
= b (2.33)
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for all y ∈ A \ {0}. It follows from (2.32) and (2.33), that

f
( y

2n

)
+ f

(−y
2n

)
= b

for all y ∈ A \ {0}. Since the mapping t 
→ f (tx) is continuous in zero for each fixed
x ∈ A, we obtain that b = 0. Since f (0) = h(0) = 0, (2.31) implies that

2f
( y

2

)
= h(y) (2.34)

for all y ∈ A. Therefore, (2.6) implies that

‖h(x + y) − h(x) − h(y)‖B � θ‖x‖r
A‖y‖r

A (2.35)

for all x, y ∈ A \ {0}. It follows from (2.35) that

h(x) = lim
n→∞[h(x + ny) − h(ny)]

for all x, y ∈ A. Therefore we have

‖h(x + y) − h(x) − h(y)‖B

= lim
n→∞

∥∥∥[h(x + y + ny) − h(ny)] − h(x) − [h(y + ny) − h(ny)]
∥∥∥

B

= lim
n→∞ ‖h(x + y + ny) − h(x) − h(y + ny)‖B

� θ lim
n→∞(n + 1)r‖x‖r

A‖y‖r
A = 0

for all x, y ∈ A\{0}. So h(x+y) = h(x)+h(y) for all x, y ∈ A\{0}. Since h(0) = 0,
then h is additive and we conclude that h is Q -linear. By the continuity of the mapping
t 
→ h(tx), we get that h is R -linear. Therefore, it follows from (2.34)

f (y) =
1
2
h(2y) = h(y)

for all y ∈ A. So f = h = g. Hence the result follows from Theorem 2.9. �

THEOREM 2.12. Let r, t and θ be positive real numbers and q, s < 0 be real
numbers such that λ = r+s 	= 1. Assume that f , g, h : A → B are mappings satisfying∥∥∥2f

(x + y
2

)
− g(x) − h(y)

∥∥∥
B

� θ‖x‖r
A‖y‖s

A (2.36)

‖f (xy) − g(x)h(y)‖B � θ‖x‖t
A‖y‖q

A (2.37)

for all x ∈ A and all y ∈ A\{0}. If g(0) = 0 and the mappings t 
→ f (tx), t 
→ g(tx)
and t 
→ h(tx) are continuous in 0 ∈ R for each fixed x ∈ A, then the mapping
g : A → B is a homomorphism and satisfies

‖f (x) − g(x)‖B � 2λ−1C‖x‖λA (2.38)

for all x ∈ A, where C = min
{
θ, 2Kθ

|2λp−2p|1/p

}
. Moreover g : A → B is a unique

homomorphism satisfies (2.38).
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Proof. Letting x = 0 in (2.37) and (2.36), we get that f (0) = 0 and 2f (y/2) =
h(y) for all y ∈ A \ {0}. Since the mappings t 
→ f (tx) and t 
→ h(tx) are continuous
in 0 ∈ R for each fixed x ∈ A, then h(0) = 0. So 2f (y/2) = h(y) for all y ∈ A.
Therefore

‖h(x + y) − g(x) − h(y)‖B � θ‖x‖r
A‖y‖s

A (2.39)

for all x ∈ A and all y ∈ A \ {0}. It follows from (2.39) that

g(x) = lim
n→∞[h(x + ny) − h(ny)]

for all x ∈ A and all y ∈ A \ {0}. So

‖g(x + y) − g(x) − g(y)‖B

= lim
n→∞

∥∥∥[h(x + y + ny) − h(ny)] − g(x) − [h(y + ny) − h(ny)]
∥∥∥

B

= lim
n→∞ ‖h(x + y + ny) − g(x) − h(y + ny)‖B

� θ lim
n→∞(n + 1)s‖x‖r

A‖y‖s
A = 0

for all x ∈ A and all y ∈ A \ {0}. So g(x + y) = g(x) + g(y) for all x ∈ A and all
y ∈ A \ {0}. Since g(0) = 0, then g is additive and we conclude that g is Q -linear.
By the continuity of the mapping t 
→ g(tx), we get that g is R -linear. Also we have

‖g(xy) − g(x)g(y)‖B

= lim
n→∞

∥∥∥2
[
f
(xy + nxy

2

)
− f

(nxy
2

)]
− g(x)[h(y + ny) − h(ny)]

∥∥∥
B

= 2K lim sup
n→∞

∥∥∥f
(xy + nxy

2

)
− g

( x
2

)
h(y + ny)

∥∥∥
B

+ 2K lim sup
n→∞

∥∥∥f
(nxy

2

)
− g

( x
2

)
h(ny)

∥∥∥
B

� Kθ21−t
[
lim sup

n→∞
(n + 1)q + lim sup

n→∞
nq

]
‖x‖t

A‖y‖q
A = 0

for all x ∈ A and all y ∈ A \ {0}. Since g(0) = 0, then g(xy) = g(x)g(y) for all
x, y ∈ A. It proves that the mapping g : A → B is a homomorphism. To continue the
rest of the proof we have two cases:

Case I. Let λ > 1. Putting y = x in (2.39), we get that

‖h(2x)− g(x) − h(x)‖B � θ‖x‖λA (2.40)

for all x ∈ A \ {0}. If we put x = −y in (2.39), we have

‖g(y) − h(y)‖B � θ‖y‖λA (2.41)

for all y ∈ A \ {0} . It is clear that (2.40) and (2.41) hold for all x, y ∈ A . It follows
from (2.40) and (2.41) that

‖h(2x) − 2h(x)‖B � 2Kθ‖x‖λA (2.42)



218 ABBAS NAJATI

for all x ∈ A. If we replace x in (2.42) by x/2n+1 and multiply both sides of (2.42)
to 2n, then we have

∥∥∥2n+1h
( x

2n+1

)
− 2nh

( x
2n

)∥∥∥
B

� Kθ
( 2

2λ

)n+1
‖x‖λA (2.43)

for all x ∈ A. Since B is a p -Banach algebra,

∥∥∥2n+1h
( x

2n+1

)
− 2mh

( x
2m

)∥∥∥p

B
�

n∑
i=m

∥∥∥2i+1h
( x

2i+1

)
− 2ih

( x
2i

)∥∥∥p

B

� Kpθp
n∑

i=m

( 2
2λ

)(i+1)p
‖x‖λp

A

(2.44)

for all non-negative integers m and n with n � m and all x ∈ A. It follows from
(2.44) that the sequence {2nh( x

2n )} is a Cauchy sequence for all x ∈ A. Since B is
complete, the sequence {2nh( x

2n )} converges. So one can define a mapping T : A → B
by

T(x) := lim
n→∞ 2nh

( x
2n

)

for all x ∈ A. Since 2f (x/2) = h(x) for all x ∈ A, then

T(x) = lim
n→∞ 2nh

( x
2n

)
= lim

n→∞ 2nf
( x

2n

)

for all x ∈ A. It follows from (2.41)

‖T(x) − g(x)‖ = lim
n→∞

∥∥∥2nh
( x

2n

)
− 2ng

( x
2n

)∥∥∥
B

� θ lim
n→∞

( 2
2λ

)n
‖x‖λA = 0

for all x ∈ A. Therefore T = g. Moreover, letting m = 0 and passing the limit n → ∞
in (2.44), we get

‖h(x) − g(x)‖B � 2Kθ
(2λp − 2p)1/p

‖x‖λA (2.45)

for all x ∈ A. Since the mapping g : A → B is a homomorphism and h(2x) = 2f (x)
for all x ∈ A, then (2.38) follows from (2.41) and (2.45). To prove the uniqueness
of g, let Q : A → B be another homomorphism satisfying (2.38). We have

‖g(x) − Q(x)‖B = lim
n→∞ 2n

∥∥∥f
( x

2n

)
− Q

( x
2n

)∥∥∥
B

� 2λ−1C lim
n→∞

( 2
2λ

)n
‖x‖λA = 0

for all x ∈ A. So g = Q.
Case II. Let λ < 1. If we replace x in (2.42) by 2nx and divide both sides of

(2.42) by 2n+1, then we have

∥∥∥ 1
2n+1

h(2n+1x) − 1
2n

h(2nx)
∥∥∥

B
� Kθ

(2λ

2

)n
‖x‖λA (2.46)
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for all x ∈ A (x ∈ A \ {0}) . Since B is a p -Banach algebra,

∥∥∥ 1
2n+1

h(2n+1x) − 1
2m

h(2mx)
∥∥∥p

B
�

n∑
i=m

∥∥∥ 1
2i+1

h(2i+1x) − 1
2i

h(2ix)
∥∥∥p

B

� Kpθp
n∑

i=m

(2λ

2

)ip
‖x‖λp

A

(2.47)

for all non-negative integers m and n with n � m and all x ∈ A (x ∈ A \ {0}) . It
follows from (2.47) that the sequence { 1

2n h(2nx)} is a Cauchy sequence for all x ∈ A.

Since B is complete, the sequence { 1
2n h(2nx)} converges. So one can define a mapping

T : A → B by

T(x) := lim
n→∞

1
2n

h(2nx)

for all x ∈ A. The rest of the proof is similar to the proof of case I. �

COROLLARY 2.13. Let r, t and θ be positive real numbers and let q, s < 0 be
real numbers. Assume that f : A → B is a mapping satisfying∥∥∥2f

(x + y
2

)
− f (x) − f (y)

∥∥∥
B

� θ‖x‖r
A‖y‖s

A (2.48)

‖f (xy) − f (x)f (y)‖B � θ‖x‖t
A‖y‖q

A (2.49)

for all x ∈ A and all y ∈ A\{0}. If f (0) = 0 and the mapping t 
→ f (tx) is continuous
in 0 ∈ R for each fixed x ∈ A, then the mapping f : A → B is a homomorphism.

In Theorem 2.12, let 0 < t < 1 and λ < 1. If we replace x in (2.37) by nx and
divide both sides of (2.37) by n, then we have

∥∥∥1
n
f (nxy) − g(x)h(y)

∥∥∥
B

� θnt−1‖x‖t
A‖y‖q

A

for all x ∈ A and all y ∈ A \ {0}. Therefore

lim
n→∞

1
n
f (nxy) = g(x)h(y)

for all x, y ∈ A. It follows from the proof of Theorem 2.12 (case II), g(xy) = g(x)h(y)
for all x, y ∈ A. Since the mapping g : A → B is a homomorphism, then we have

g(x)[g(y) − h(y)] = 0 (2.50)

for all x, y ∈ A. Similarly, one can obtain (2.50) if t > 1 and λ > 1. Therefore we
have the following results:

COROLLARY 2.14. In Theorem 2.12, let g 	= 0 , t 	= 1 and B = C. Then
f , g, h : A → B are homomorphisms. Moreover f = g = h.

COROLLARY 2.15. In Theorem 2.12, let A and B be unital with units eA and eB,
respectively. If t 	= 1 and g(eA) = eB, then f , g, h : A → B are homomorphisms.
Moreover f = g = h.
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3. Homomorphisms between unital quasi-Banach algebras

Throughout this section, assume that A is a unital quasi-Banach algebra with
quasi-norm ‖.‖A and unit e and that B is a unital p -Banach algebra with p -norm ‖.‖B

and unit e′.
We investigate homomorphisms between unital quasi-Banach algebras, associated

to the Pexiderized Jensen functional equation. We generalize the results of [21].

THEOREM 3.1. Let r, s and θ be positive real numbers such that 0 < r < 1
2 and

0 < s < 1, and let f , g, h : A → B be mappings satisfying (2.6) and (2.7) for all
x, y ∈ A. Suppose that at least one of the mappings t 
→ f (tx) , t 
→ g(tx) or t 
→ h(tx)
is continuous in t ∈ R for each fixed x ∈ A, and limn→∞ 1

2n f (2ne) = e′. Then the
mappings f , g, h : A → B are homomorphisms. Moreover f = g = h

Proof. By Theorem 2.7, there exists a unique homomorphism T : A → B satisfy-
ing

T(x) = lim
n→∞

1
2n

f (2nx) = lim
n→∞

1
2n

g(2nx) = lim
n→∞

1
2n

h(2nx)

for all x ∈ A. It follows from (2.7) that

‖T(x) − g(x)‖B = lim
n→∞

∥∥∥ 1
2n

f (2nx) − g(x)
∥∥∥

B

= lim
n→∞

∥∥∥ 1
2n

f (2nxe) − g(x)e′
∥∥∥

B

= lim
n→∞

1
2n

∥∥∥f (2nxe) − g(x)h(2ne)
∥∥∥

B

� θ lim
n→∞

(2s

2

)n
‖x‖s

A‖e‖s
A = 0

for all x ∈ A. So T = g. Similarly, one can obtain that T = h. Therefore g = h and
g(0) = h(0) = 0. Since the mapping h : A → B is a homomorphism, it follows from
(2.10) that f = h. �

COROLLARY 3.2. Let θ, r, s be non-negative real numbers such that 0 < r < 1
2

and 0 < s < 1. Suppose that f : A → B is a mapping satisfies (2.1) and (2.4) for all
x, y ∈ A. If the mapping t 
→ f (tx) is continuous in t ∈ R for each fixed x ∈ A and
limn→∞ 1

2n f (2ne) = e′, then the mapping f : A → B is a homomorphism.

THEOREM 3.3. Let θ be a positive real number and let f , g, h : A → B be map-
pings satisfying (2.14) and (2.15). If at least one of themappings t 
→ f (tx) , t 
→ g(tx)
or t 
→ h(tx) is continuous in t ∈ R for each fixed x ∈ A and limn→∞ 1

3n f (3ne) = e′,
then the mappings g, h : A → B are homomorphisms. Moreover g = h and

‖f (x) − g(x)‖B � θ
2

(3.1)

for all x ∈ A.
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Proof. By Theorem 2.8 and its proof, there exists a unique homomorphism T :
A → B satisfying (2.21). Similar to the proof of Theorem 3.1, we get that the mappings
g, h : A → B are homomorphisms and g = h. Letting y = x in (2.14), we get
(3.1). �

REMARK 3.4. In Theorem 3.3, we can not infer that f is a homomorphism. Let A
be a unital algebra with unit e, and let f , g, h : A → A be mappings defined by

f (x) = x +
θ

4‖e‖e, g(x) = h(x) = x

for all x ∈ A. It is clear that the conditions of Theorem 3.3 hold (with A = B ), but the
mapping f : A → A is not a homomorphism.

COROLLARY 3.5. Let θ be a non-negative real number. Suppose that f : A → B
is a mapping satisfies

∥∥∥∥2f

(
x + y

2

)
− f (x) − f (y)

∥∥∥∥
B

� θ,

‖f (xy) − f (x)f (y)‖B � θ

for all x, y ∈ A. If the mapping t 
→ f (tx) is continuous in t ∈ R for each fixed x ∈ A
and limn→∞ 1

3n f (3ne) = e′, then the mapping f : A → B is a homomorphism.

THEOREM 3.6. Let r, s and θ be positive real numbers such that r > 1
2 and

s > 1, and let f , g, h : A → B be mappings satisfying (2.6) and (2.7) for all x, y ∈ A.
Suppose that at least one of the mappings t 
→ f (tx), t 
→ g(tx) or t 
→ h(tx) is
continuous in t ∈ R for each fixed x ∈ A, and limn→∞ 2n[f ( e

2n ) − f (0)] = e′. Then
the mappings f , g, h : A → B are homomorphisms. Moreover f = g = h .

Proof. By Theorem 2.7, there exists a unique homomorphism T : A → B satisfy-
ing

T(x) = lim
n→∞ 2n

[
f
( x

2n

)
− f (0)

]
= lim

n→∞ 2n
[
g
( x

2n

)
−g(0)

]
= lim

n→∞ 2n
[
h
( x

2n

)
−h(0)

]

for all x ∈ A. Since f (0) = g(x)h(0) for all x ∈ A, it follows from (2.7) that

‖T(x) − g(x)‖B = lim
n→∞

∥∥∥2n
[
f
( x

2n

)
− f (0)

]
− g(x)

∥∥∥
B

= lim
n→∞

∥∥∥2n
[
f
( xe

2n

)
− f (0)

]
− g(x)e′

∥∥∥
B

= lim
n→∞ 2n

∥∥∥[
f
( xe

2n

)
− f (0)

]
− g(x)

[
h
( e

2n

)
− h(0)

]∥∥∥
B

= lim
n→∞ 2n

∥∥∥f
(xe

2n

)
− g(x)h

( e
2n

)∥∥∥
B

� θ lim
n→∞

( 2
2s

)n
‖x‖s

A‖e‖s
A = 0



222 ABBAS NAJATI

for all x ∈ A. So T = g. Similarly, one can obtain that T = h. Therefore g = h and
g(0) = h(0) = 0. Since the mapping h : A → B is a homomorphism, it follows from
(2.10) that f = h. �

COROLLARY 3.7. Let θ, r, s be positive real numbers such that r > 1
2 and

s > 1. Suppose that f : A → B is a mapping satisfies (2.1) and (2.4) for all
x, y ∈ A. If the mapping t 
→ f (tx) is continuous in t ∈ R for each fixed x ∈ A and
limn→∞ 2n[f ( e

2n ) − f (0)] = e′, then the mapping f : A → B is a homomorphism.

REMARK 3.8. In Corollaries 3.2, 3.5 and 3.7, the results hold if e and e′ are left
(right) units for A and B, respectively.
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