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A VISCOSITY RELAXED-EXTRAGRADIENT METHOD FOR MONOTONE
VARIATIONAL INEQUALITIES AND FIXED POINT PROBLEMS

LU-CHUAN CENG' AND JEN-CHIH YAO?

(communicated by H. M. Srivastava)

Abstract. In this paper we introduce a viscosity relaxed-extragradient method for finding a
common element of the set of fixed points of a nonexpansive mapping and the set of solutions of
the variational inequality problem for a monotone, Lipschitz-continuous mapping in a real Hilbert
space H . The viscosity relaxed-extragradient method is based on two methods: extragradient-
like approximation method and viscosity approximation method. We derive a weak convergence
theorem for two sequences generated by this method. Utilizing this theorem we also construct
an iterative process for finding a common zero of two mappings, one of which is a monotone,
Lipschitz continuous mapping of H into itself and the other taken from the more general class

of maximal monotone mappings of H into 2

1. Introduction

Let H be areal Hilbert space with inner product (-, -) andnorm ||-||, respectively.
Let C be a nonempty closed convex subset of H and let P be the metric projection
from H onto C. When {x,} is a sequence in H, then x, — x (resp. x, — x) will
denote strong (resp. weak) convergence of the sequence {x,} to x.

DEFINITION 1.1. Let A : C — H be a mapping. Then A is called
(i) monotone if
(Au—Av,u—v) 20 Vu,v € C,

(ii) o -inverse-strongly-monotone (see [1,2]) if there exists a positive constant o
such that

(Au—Av,u —v) > ol|Au — Av|* Vu,v € C;

(iif) B -strongly-monotone if there exists a positive constant § such that
(Au—Av,u—v) = Bllu—v|* Yu,veC;
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(iv) k-Lipschitz-continuous if there exists a positive constant & such that

|Au — Av|| < k|lu —v|| Vu,ve C.

Obviously, it is easy to see that every o -inverse-strongly-monotone mapping A is
monotone and Lipschitz-continuous. Let S : C — C be a self-mappingon C. Then S
is called nonexpansive if for all u,v € C

[[Su = Syl < [lu = vl].
We denote by F(S) the set of fixed points of S, i.e., F(S) ={u € C: Su=u}.

Let A : C — H be a mapping. The variational inequality problem is to find a
u € C such that
(Au,v—uy 20 WveC

Following the notations in [4], the set of solutions of the variational inequality problem is
denoted by VI(C,A). Itis well known that, if A is a strongly monotone and Lipschitz-
continuous mapping on C, then the variational inequality problem has a unique solution.
How to actually find a solution of the variational inequality problem is one of the best
important topics in the study of the variational inequality problem. Indeed, there are
a lot of different approaches towards solving this problem in finite-dimensional and
infinite-dimensional spaces, and the research is intensively continued. A great deal of
effort has gone into this problem; see e.g., [2-5, 9, 11, 12, 14-18, 20].

Recently, for finding an element of F(S) N VI(C,A) under the assumption that a
set C C H is closed and convex, a mapping S of C into itself is nonexpansive, and a
mapping A of C into H is a-inverse-strongly-monotone, Takahashi and Toyoda [4]
introduced the following iterative scheme:

xo=x€C, (1 1)
Xnt1 = Ouxn + (1 — &t,)SPc(xy, — AyAx,) Vi = 0, ’

where {0} is a sequence in (0, 1) and {A,} is a sequence in (0,2¢c). They proved
that if F(S) N VI(C,A) # 0, then the sequence {x,} generated by (1.1) converges
weakly to some z € F(S) N VI(C,A).

In 1976, for finding a solution of the nonconstrained variational inequality problem
in the finite-dimensional Euclidean space R " under the assumption thataset C C R "
is closed and convex and a mapping A of C into R " is monotone and k -Lipschitz-
continuous, Korpelevich [5] introduced the following so-called extragradient method:

xo=x € C,
Xn = Pc(x, — AAx,), (1.2)
Xnt1 = Pc(x, — AAX,) Vn =0,

where A € (0,1/k). He proved that if VI(C,A) # (), then the sequences {x,} and
{X.}, generated by (1.2), converge to the same point z € VI(C,A).

Recently, motivated by the idea of Korpelevich’s extragradient method [5], Nadezhk-
ina and Takahashi [3] introduced the following iterative scheme for finding an element
of F(S) N VI(C,A) and proved the following weak convergence result.
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THEOREM 1.1. [3, Theorem 3.1]. Let C be a closed convex subset of a real Hilbert
space H. Let A be a monotone and k -Lipschitz-continuous mapping of C into H and
S be a nonexpansive mapping of C into itself such that F(S) N VI(C,A) # 0. Let
{xa}, {yu} be the sequences generated by

xo=x€C,
Yn = PC(xn - AnAxn)a (13)
Xpg1 = OpXp + (1 - an)SPC(xn — AAyn) Vn > 0’

where {A,} C [a, D] forsome a,b € (0,1/k) and {0y} C [c,d] forsome c,d € (0,1).
Then the sequences {x,}, {yn} converge weakly to the same point z € F(S)NVI(C,A)
where 7 = hmn_wo PF(S)OVI(C,A)xn .

At the same time, the idea of the extragradient iterative process introduced by
Korpelevich was successively generalized and extended not only in Euclidean but also
in Hilbert and Banach spaces; see e.g., [11,12,15,19].

Very recently, inspired by Nadezhkina and Takahashi’s iterative scheme [3], Zeng
and Yao [12] introduced another iterative scheme for finding an element of F(S) N
VI(C,A) and established the following strong convergence theorem.

THEOREM 1.2. [12, Theorem 3.1]. Let C be a nonempty closed convex subset of a
real Hilbert space H. Let A : C — H be a monotone, k -Lipschitz-continuous mapping
and let S : C — C be a nonexpansive mapping such that F(S) N\ VI(C,A) # 0. Let
{x.} and {y,} be sequences generated by

xo=x € C,
Yn = PC(-xn - ArnAxn)y (14)
Xn+1 = OpXo + (1 - an)SPC(xn - Aanyn) Vn = Oa

where {A,} and {0y} satisfy the conditions:

(a) {Mk} C (0,1 —0) forsome § € (0,1);

(b) {aw} C (0,1), D72 0 = 00, lim, .o 0t = 0.
Then the sequences {x,},{y.} converge strongly to the same point Pg(s)nvi(ca)(Xo)
provided lim,,_,  ||X, — Xy11] = 0.

On the other hand, in 2004, Xu [21] also considered so-called viscosity approxi-
mation method for finding a fixed point of a nonexpansive self-mapping on C which
solves some variational inequality. Motivated by Nadezhkina and Takahashi’s extra-
gradient method [3] and Xu’s viscosity approximation method [21], Ceng and Yao [11]
introduced an extragradient-like approximation method and proved the following strong
convergence theorem.

THEOREM 1.3. [11, Theorem 3.1]. Let C be a nonempty closed convex subset of
a real Hilbert space H. Let f : C — C be a contractive mapping with a contractive
constant o € (0,1), A : C — H be a monotone, k-Lipschitz continuous mapping and
S : C — C be a nonexpansive mapping such that F(S)NVI(C,A) # 0. Let {x,}, {yn}
be the sequences generated by

xo=x€C,
Yn = (1 — Yn)Xn + VnPC(xn — MAxy), (L.5)
Xnp1 = (1= 0t — Bu)xn + 0af (yn) + BuSPc(xn — AwAy,) Vn =0,
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where {A,} is a sequence in (0,1) with Y2 A, < 0o, and {0}, {Bu}, {1} are
three sequences in [0, 1] satisfying the conditions:

(@) o+ By<1foralln>0;

(it) limy_oo 0y =0, > 20 0ty = 00;

(iii) 0 < liminf,_, B, < limsup, . B, < L.

(iv) {A.} C [a,b] for some a,b € (0,1/k).
Then the sequences {x,},{yn} converge stronglytothe same point ¢ = Pr(synvica)f (q)
if and only if {Ax,} is bounded and liminf,_, o (Ax,,y — x,) > 0 forall y € C.

In this paper, we introduce a viscosity relaxed-extragradient method which is based
on the above extragradient-like approximation method and viscosity approximation
method, i.e.,

xo=x € C,

yn - PC(-xn - A'n.unAxn - An(l - Mn)Ayn)>

Iy = PC(xn - AnAYn - Afn(l - .un)Atn)7

Xn+l = (1 — 0y — Bn)xn + anf (tn) + BnStn Vn 2 0,

where {A,},{u,} is sequencesin (0,1] and {o,}, {B,} are sequences in [0, 1] satis-
fying the conditions:
(i) o+ B, <T<1Vn>0 forsome 7€ (0,1);
(i) Yoy <ooand 0 < o< B, Vn >0 forsome o€ (0,1);
(tii) limy—oo Uy = 1;
(iv) {A} C |a,b] for some a,b € (0,1/k).

It is shown that the sequences {x,},{y,} generated by the above method converge
weakly to the same point u € F(S) N VI(C,A). Utilizing this result we also construct
an iterative process for finding a common zero of two mappings, one of which is a
monotone, k-Lipschitz continuous mapping of H into itself and the other taken from
the more general class of maximal monotone mappings of H into 27 .

2. Preliminaries

Let H be areal Hilbert space with inner product (-, -) andnorm ||-||, respectively.
Let C be a nonempty closed convex subset of H. For every point x € H there exists
a unique nearest point in C, denoted by Pcx, such that ||x — Pcx|| < [[x — y|| for all
y € C. Pc is called the metric projection of H onto C. It is known that P¢ is a
nonexpansive mapping from H onto C. Itis also known that Pcx € C and

(x = Pcx,Pcx—y) 20 (2.1)

forall x € H, y € C; see [13] for more details. It is easy to see that (2.1) is equivalent
to

e =117 = [lx = Pex]|* + [ly — Pex||? (2.2)
forall xe H, y € C.
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Let A be a monotone mapping of C into H. In the context of the variational
inequality problem the characterization of projection (2.1) implies

ueVI(C,A) < u=Pc(u—AAu) VA > 0.

Itis also known that H satisfies Opial’s condition [10], i.e., for any sequence {x,} with
X, — x the inequality

liminf ||x, — x|| < liminf |jx, — ||
n—oo n—oo

holds for every y € H with y # x.
The following results will be used in the rest of this paper.

LEMMA 2.1. (Tan and Xu [6, p. 303)). Let {a,} and {b,} be two sequences of
nonnegative real numbers satisfying the inequality

An+1 <a,+ bn Vn = 0.

If 322 by converges, then lim, . ay, exists.

LEMMA 2.2. (Demiclosedness Principle [13]). Assume that S is a nonexpansive
self-mapping of a closed convex subset C of a Hilbert space H. If S has a fixed point,
then I —S is demiclosed; that is, whenever {x,} is a sequence in C converging weakly
to some x € C and the sequence {(I — S)x,} converges strongly to some y € H, it
Jollows that (I — S)x =y. Here I is the identity operator of H.

A set-valued mapping T : H — 2 is called monotone if for all x,y € H, f € Tx
and g € Ty imply (x—y,f —g) > 0. A monotone mapping T : H — 2 is maximal
ifits graph G(T) is not properly contained in the graph of any other monotone mapping.
It is known that a monotone mapping 7 is maximal if and only if for (x,f) € H x H,
(x—=y,f —g) =0 forall (y,g) € G(T) implies f € Tx. Let A be a monotone,
k -Lipschitz-continuous mapping of C into H and let N¢v be the normal cone to C at
veC,ie, Nov={weH:{(v—u,w) >0forallu € C}. Define

Ty — Av+Ncv ifveC,
Tl o0 ifveC.

It is known that in this case 7 is maximal monotone, and O € Tv if and only if
v e VI(C,A); see [7].

Throughout the rest of the paper, we shall use the following notation: for a given
sequence {x,} C H, m,(x,) denotes the weak ® -limit set of {x,}; thatis,

y(x,) := {x € H : {x,,} converges weakly to x for some subsequence {n;} of {n}}.
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3. Weak Convergence Theorem

We are now in a position to prove our main results in this paper. To prove it,
we need two lemmas. The first lemma was proved by Schu [8] in a uniformly convex
Banach space.

LEMMA 3.1. Let H be a real Hilbert space, let {0,} be a sequence of real numbers
suchthat 0 < a < g, < b <1 forall n >0, and let {v,} and {w,} be sequences in
H such that

lim || 0,v, + (1 — gu)wal| = c,
n—oo

for some ¢ > 0. Then,
lim ||v, — wy|| = 0.
n—oo

THEOREM 3.1. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let f : C — C be a contractive mapping with a contractive constant o € (0, 1),
A : C — H be a monotone and k-Lipschitz continuous mapping and S : C — C
be a nonexpansive mapping such that F(S) N VI(C,A) # 0. Let {x,},{y.} be the
sequences generated by

xo=x€C,

Yn = PC(xn - An.unAxn - An(l - Mn)Ayn)>

I, = PC(xn - AnAyn - An(l - .un)Atn)>

Xn+l = (1 — 0y — Bn)xn + anf (tn) + BnStn Vn 2 0,

(3.1)

where {A,},{t.} is sequencesin (0,1] and {0y}, {B.} are sequencesin [0,1] satis-
fying the conditions:
(i) a4+ B <T<1Vn=0 forsome 7€ (0,1);
(it) D00y <00 and 0< o< f,Vn=0 forsome o€ (0,1);
(iid) 1My soo fhy = 1;
(iv) {A} C la,b] for some a,b € (0,1/k).
Then the sequences {x,},{yn} converge weakly to the same point u € F(S)NVI(C,A).

REMARK 3.1. First, observe that forall x,y € C andall n > 0

|1Pc(xn — AuutAx, — A (1 — py)Ax) — Pe(xn — ApllAx, — An (1 — wy)Ay) ||
< ||(xn - A’n.unAxn - An(l - Mn)A-x) - (xn - nMnA-xn - Afn(l - .un)Ay)H
— (1 — ) [ Ax — Ay

Thus, by Banach Contraction Principle, we know that for each n > 0 there exists a
unique y, € C such that

Y = Pc(Xn — AnllnAxy — A (1 — y)Ayy). (3.2)
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Also, observe that for all x,y € C andall n > 0

HPC(xn - AnAYn - Afn(l - “n)Ax) - PC(xn - Aanyn - An(l - un)Ay)”
< H(xn - Aanyn - An(l - “n)Ax) - (xn - Aanyn - An(l - un)Ay)”
= An(1 — pin)[|Ax — Ay
< Akl = .

Utilizing Banach Contraction Principle, we know that for each n > 0 there exists a
unique #, € C such that

ty = Pc(xn — AAyn — An(1 — W,)Aty). (3.3)

Proof of Theorem 3.1. We divide the proof into several steps.

Step 1. We claim that {x,},{y,} and {z,} are bounded. Indeed, note that
th = Pe(xy — AAyy — An(1 — Wy)At,) forall n > 0. Let u € F(S) N VI(C,A) be an
arbitrary element. From (2.2), monotonicity of A, and u € VI(C,A), we have

1t —ull® <[ — AnAyn = (1 = p)AL,) — ul)?

*”(xn - Aanyn - An(l - .un)Atn) - tn”z

= [l — An(1 — pa)At, — ul?
—||xn = An(1 — ) Aty — ta||> + 24, ( Ay, u — 1)

= [Jxn — An(1 = wn)Aty — ul]® = [lxy — Au(1 — pu)Aty — 1 ?
+22((AYny u = yn) + (AVny Y0 — 1) )

= [l = Au(1 = ) Aty — u]|* = [0 — An(1 — )AL, — 1|
+24((Ayn — Au,u — yu) + (Au,u— yn) + (Ayn, yu — 1n))

< lotw = An(1 = ) Aty — ul]* — |10 — Au(1 — W) Aty — 1]
22, ( Ay, Yo — )

= []x, — ””2 — I — th2 = 22n(1 = W) ( Aty 1y — u)
+2Afn<Ayna_Yn - tn>

= Hxn - u”Z - ||xn *ynH2 - 2<xn - yna))n - tn> - ||yn - thZ
F24,( Ay, yn — tn) — 240 (1 — W) ({ A, — Au, t, — u)
+(Au,t, —u))

< oen = ull® =l = yull® = [[yn = tall> + 220 — AuAYn = Y ta = V) -

Since y, = Pc(x, — AptbnAx, — Ay (1 — ,)Ay,) and A is k-Lipschitz continuous, we
have
<xn — MAYp = Yny by — yn>
= <)Cn — )L,,,unAxn - An(l - IJ-n)Ayn — Yn, Iy — yn> + AfnlJ-n<A-xn - Aym ty, — yn>
< Afn.l>’Ln<A-)Cn - Aym In — yn>
< /l,,k”xn - yn””tn *ynH-

So, we have

[lxn — qu — [ — yn||2 — [lyn — tn”Z + 20k %0 — Yall|ltn — Yall

1t — ul® <
< e — qu = Il — yn||2 — [lyn — tn”Z + /'ank2||xn *Yn”Z + [lyn — thZ
= || — qu + ()ankz = Dlx, — yn||2
< o — uff

(3.4)
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Therefore, from (3.4), x,11 = (1 — 0, — Bu)xn + o4f (£,) + BuSt,, and u = Su, we
have

[Xns1 —ul = ”(1 — Bu)xu + ouf (ta) + BuSty — ul|
<(1- Bn)Hxn ull + onllf (t) — ull + BallSty — ull
<(1- O!,, B llxn — ull + o Ilf (&) — f @)|| + Ilf () — ull} + Ballta — ull
< (1= 0 = Bo)llxn — ull + o[ty — ul| + |If (u) — ul|} + Balltn — ull
< (1= 0 = Bo)llxn — ull + o { el — ull + [If () — ull} + Bullxn — ull
=(1-(1- a)a,,)Hx,, —ul 4+ (1 = o) - 25 |If (w) — ul|
<

(

max{ o, — ul, g If (1) — ul]}
(3.5)

for all n > 0. Obviously, it is easy to see that

e — ul| <

(w)—ul} Vn>0

This shows that {x,} is bounded and so are {z,},{y,} dueto (3.4).

Step 2. We claim that the following statements hold:
(i) lim,_ oo ||x, — u|| exists for each u € F(S) N VI(C,A);
(ii) lim,,— Hxn - ynH =03
(i) limy_oo ||xy, — 14]| = 0.
Indeed, let u € F(S) N VI(C,A) be an arbitrary element. Utilizing (3.4) we know
that

Han - ””2 = ||(1 - O!,, Ba)xn + anf(tn) + BuSt, — ”‘Hz
< (1= 0 = Bo)llxa — ull* + cullf (22) — ull® + Bal| St — ul|?
< (- = B)llxn — qu + anllf (ta) — qu + Bulltn — qu
< (1= ey — Bl — ll> + onllf () — ul? (3.6)

FBulllxn — ull* + (A7K — 1)|lxa — yall?]
<l — qu + O |If (tn) — M||§ + Bu(Agk? — D)|x, — yal?
< e — ull® + o If (22) — ull?.

Since Y., o < oo and {f (#,) — u} is bounded, we deduce from Lemma 2.1 that
lim,,—, o ||X;, — u|| exists. From the last relations, we obtain also

6(1 - Anzkz)Hxn _yn||2 < Bn(l - )ankz)Hxn _yn‘lz
< Nl — ul]? = a1 — ul* 4 e lf (1) — ul|*.
So we have
1
2 2 2 2
o =l < gy (oo =l = e =l ol () =P}

Hence,

-y, — 0 asn— oo.
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Further, we obtain

||PC( - nMnAxn - A' (1 - Mn)Ayn) - PC(xn - A'nAyn - An(l - Mn)Atn)H
||( - nMnA-xn - A’ (1 - .un)Ayn) - (xn - Aanyn - An(l - Mn)Atn)H
| At (Ayn — Axy) + An(1 — WAty ||

Al ||Ayn — Axp|| + A (1 — o) | A |
< Akl yn = xal| + Aa(1 = ) [| At

lyn — tal

/Al

//\

Since x, —y, — 0, u, — 1 and {At,} is bounded, we get
Yp—t, — 0 asn— oo.

From
Hxn - tn” < Hxn _ynH + Hyn - tn”y
we have also
X, —t, — 0 asn — oo.

Step 3. We claim that the following statements hold:
(l) lim,, o Hxn+1 7an =0;

(i) limp— oo ||Sxn — 4] = 0.

Indeed, according to Step 2 (i) we denotes

lim ||x, —u|| =d
Now put ¢, = ¢, + B, forall n > 0. Then we write

Xn+1 = (1 - Qn)xn + OnZn,

where

anf (tn) + BnStn o Oy
o+ B ot By

Let u € F(S) N VI(C,A) be an arbitrary element. Since

B
O + Bn

in = f(tn) + Stﬂ

120 — uf aﬁgn\lf(tn) ull + g2 ISty — ull

we have
limsup ||z, — ul| <d

n—oo

Further, we have
nll>rlolo (1 = 04)(Xn — 1) + 0u(20 — u)|| = nli)n;o [Xns1 —ul| =d

Note that conditions (i), (ii) imply that 0 < 0 < g, < 7 < 1 forall n > 0. Thus, by
Lemma 3.1, we obtain

lim ||z, — x| =0
n—oo
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which implies that
lim Hxn+1 *an = lim Qﬂ”zn *an =0.
n—oo n— oo

Observe that

ZNSte — xall < aﬁ:;;n [[Sta — x|

_ ||06n+ﬁ,,<f(t”) *Xn) + on +ﬁn (Stn - n) T +ﬁn<f(t”) — n)H
< lzn — 2l + a,1+5,, 1f (#n) — x|
< lzn — xall + %Hf(tn) — Xull,

and hence
lim ||Sz, — x,]| =0
n—oo

due to the boundedness of {f (¢,)} and {x,}. Since
1800 — x| < (1520 = Stall + 1St — x| < [|xn = tall + 11880 — X,

we have from Step 2 (iii)
lim ||Sx, — x,|| = 0.

Step 4. We claim that w,,(x,) C F(S)NVI(C,A), where o, (x,) denotes the weak
o -limit set of {x,}, i.e.,

wy(x,) = {u € H : {x,,} converges weakly to u for some subsequence {n;} of {n}}.

Indeed, since {x,} is bounded, it has a subsequence which converges weakly to
some point in C and hence w,,(x,) # 0. Let u € w,(x,) be an arbitrary point. Then
there exists a subsequence {x,,} C {x,} which converges weakly to u and hence we
have lim;_. ||xnj - anj|| = 0. Note that from Lemma 2.2 it follows that I — S is
demiclosed at zero. Thus u € F(S). Now, we show u € VI(C,A). Let

Ty — Av + N¢v 1'fv€C,

0 ifvgcC.
Then T is maximal monotone and 0 € Tv if and only if v € VI(C,A); see [7]. Let
(v,w) € G(T). Then we have w € Tv = Av + N¢v and hence w — Av € Ncv.

So, we have (v —t,w — Av) > 0 for all 7 € C. On the other hand, from 7, =
Pc(xy — AAyy — An(1 — uy)At,) and v € C we have

<xn - A'nAyn - Afn(l - .un)Atn —In,In — V> 2 0
and hence

;x + Ay + (1 — wp)Az,) > 0.

(v—ty,
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From (v —#,w — Av) >0 forall ¢t € C and tn; € C, we have

<V7tnj7W> 2 <V7tﬂj7Av>
s —Xn:
2 <V - tnj>AV> - <V - tnj7 % +Aynj + (1 - .unj)Atnj>
J
=(v— tn;, AV —Atnj> +(v— s Al —Aynj>
s —Xn:
_<V_ tnj> J)Lnj J> - (1 —‘LLnj)<V— tnj>Atnj>

In; —Xn

> (v— tn;, Aly; fAy,,j> —(v— Ty JAT]_W - (1- unj)<v - t,,j,At,,j> .
Since A is Lipschitz continuous, we have
At,,j fAynj — 0 asj— oo.

So, we obtain (v —u,w) > 0 as j — oo. Since T is maximal monotone, we have
u € T~10 and hence u € VI(C,A). Therefore, u € F(S) N VI(C,A). This shows that
o, (x,) C F(S)NVI(C,A).

Step 5. We claim that {x,} and {y,} converge weakly to the same point u €
F(S)NVI(C,A).

Indeed, it is sufficient to show that w,,(x,) is a single-point set because x, —y, — 0
as n — o0o. Since @, (x,) # 0, let us take two points u, &t € w,(x,) arbitrarily. Then
there exist two subsequences {xn]_} and {x,, } of {x,} suchthat X, — u and X, — i,
respectively. In terms of Step 4, we know that u, it € F(S) N VI(C,A). Meantime,
according to Step 2 (i) we also know that there exist both lim,_. ||x, — u|| and
lim, oo ||x;, — #@||. Let us show that u = @. Assume that u # @. From the Opial

condition [10] it follows that

lim ||x, —u|| = liminf |lx, — «| < liminf ||x,, — &]|
n— 00 j—o0 J j—o0 J
— lim %, — &l = liminf [t — |
n—o00o k— o0
< liminf ||x,, —u|| = lim |jx, —u].
k—o00 n— 00

This leads to a contradiction. Thus, we have u = #i. This implies that w,,(x,) is a single-
point set. Without loss of generality, we may write @,,(x,) = {u}. Consequently, {x, }
converges weakly to u € F(S) N VI(C,A). Since x, —y, — 0 as n — oo, we have
also

yn — u € F(S) N VI(C,A).

This completes the proof. [
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The second lemma was proved by Takahashi and Toyoda [4].

LEMMA 3.2. Let H be areal Hilbert space and let D be a nonempty closed convex
subset of H. Let {x,} be a sequence in H. Suppose that, for all u € D,

X1 = ul] < [ben —uf ¥n>0.
Then, the sequence {Ppx,} converges strongly to some z € D.

By the careful analysis of the proof of Theorem 3.1, we can state another weak
convergence theorem.

THEOREM 3.2.. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let A : C — H beamonotone and k -Lipschitz continuous mappingand S : C — C
be a nonexpansive mapping such that F(S) N VI(C,A) # 0. Let {x,},{y.} be the
sequences generated by

xo=x€ C,

Yn = PC(xn - AnMnAxn - An(l - .un)Ayn)7 (3 7)
Iy = PC(xn - Aanyn - An(l - un)Atn)a '
Xn+1 = (1 — Oy — ﬁn)xn + Oty + ﬁnStn Vn = 07

where {A,}, {t,} is sequencesin (0,1] and {04}, {B.} are sequencesin [0, 1] satis-
fying the conditions:

(i) o+ Py <T<1VYn>=0 forsome t€(0,1);

(ii) 0< o< B,Vn=0 forsome o€ (0,1);

(iii) Timy—oo thy = 1 ;

(iv) {A.} C [a,b] for some a,b € (0,1/k).
Then the sequences {x,},{yn} converge weakly to the same point u € F(S)NVI(C,A),
where u = hmn_)oo PF(S)OVI(C,A)xn .

Proof. We divide the proof into several steps.

Step 1. We claim that the following statements hold:
(i) lim,_ s ||x, — u|| exists for each u € F(S) N VI(C,A);
(ii) {x.},{yn} and {z,} are bounded.
Indeed, let u € F(S)NVI(C,A) be an arbitrary element. As in Step 1 of the proof
of Theorem 3.1, we can derive

[t — ””2 < lxn — qu + ()ankz = D)f]x, — yn||2
< o — ul*.

Moreover, we can obtain

1 = ul|?

2 22 2
}lxn ul]* + (o4 + B) (A7k 1) [xn = yall (3.8)

<
< e — ul|*

This implies that lim,_ ||x, — u|| exists. Hence {x,} is bounded and so is {z,}.
Consequently, from (3.8) it follows that {y,} is bounded.

Step 2. We claim that the following statements hold:
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(i) limp—oo [|Xn — yul = 03
(i) limy—oo ||%, — 2] = 0.
Indeed, utilizing (3.8) we have

1
T = Az U = ull* = lener —ul?},

2
- <
X0 — yal|” < (an T B,
and hence x, —y, — 0 as n — 0o. As in Step 2 of the proof of Theorem 3.1, we can
obtain y, — t, — 0 as n — oo. Thus, from

[0 — tall < M0 — Yall + |[yn — tal]
weget x, —t, — 0 as n— 0.

Step 3. We claim that the following statements hold:
(l) lim,, . Hxn+1 7an =0;
(ii) lim,— o0 [|Sx; — x4]] = 0.
Indeed, put ¢, = oy, + B, forall n > 0. Then we write
Xn+1 = (1 - Qn)xn + 0nZn,
where S
antn n tﬂ an n
in = i B - th + B Stn~
% + B o + By o + By
As in Step 3 of the proof of Theorem 3.1, we can obtain z, —x, — 0 as n — ©0.

Hence, x,y; —x, — 0 as n — oo.
Observe that

)t — 5l < g5t — 5

= ”%ﬁﬁ,,(tn *xn) + anlinﬁn (Stn *xn) - #fﬁn(t" *xn)H
<z — Xl + %fﬁ,,“tn — Xl
< ||Zn _xn” + th _an,
and hence
lim ||St, — x,|| = 0.
n—oo
Since

(120 — Xall < (1820 — Stull + [1Stn — Xl < [lxn — tall + [|St0 — X[,

we have
lim ||Sx, — x,|| = 0.
n— oo

Step 4. We claim that w,,(x,) C F(S) N VI(C,A).

Indeed, the proof of this step is the same as in Step 4 of the proof of Theorem 3.1.
Step 5. We claim that the following statements hold:

(i) {xn} and {y.} converge weakly to the same point u € F(S) N VI(C,A);
(it) {Pr(s)nvi(caixn} converges strongly to sucha u € F(S) N VI(C,A).
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Indeed, the proof of statement (i) is the same as in Step 5 of the proof of Theorem
3.1. Now, put

un = Pr(synvi(c.a)Xn-

We show that

u= lim u,.
From
U, = PF(S)ﬁVI(C,A)xn and uec F(S) N ‘/1(61714)7
we have

(u— tp,uy —x,) = 0.

By Lemma 3.2, {u,} converges strongly to some z € F(S)NVI(C,A). Then, we have
(u—z,z—u) 20

and hence u = z. This completes the proof. [

4. Applications

Utilizing Theorems 3.1 and 3.2 in the above section, we prove several weak
convergence theorems in a real Hilbert space.

THEOREM 4.1. Let H be a real Hilbert space. Let f : H — H be a contractive
mapping with a contractive constant o, € (0,1), A : H — H be a monotone and
k -Lipschitz continuous mapping and S : H — H be a nonexpansive mapping such that
F(S)NA™Y #0. Let {x,},{ys} be the sequences generated by

Xo=x€H,

Yn = Xn — AnMnAxn - An(l - .un)Aym

In = Xp — AnAyn - An(l - Mn)Atm

Xnyl = (1 — 0 — Bn)xn + anf (tn) + BnStn Vn 2 07

where {A,},{U:} is sequencesin (0,1] and {a,},{B,} are sequencesin [0, 1] satis-
fying the conditions:
(i) o+ Py <T<1VYn>=0 forsome t€(0,1);
(it) D200 <00 and 0< o <P, Vn=0 forsome o€ (0,1);
(iii) liMp ooty = 1;
(iv) {A.} C [a,b] for some a,b € (0,1/k).
Then the sequences {x,},{yn} converge weakly to the same point u € F(S) NA~'0.

Proof. We have A~'0 = VI(H,A) and Py = I. By Theorem 3.1, we obtain the
desired result. [
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THEOREM 4.2. Let H be a real Hilbert space. Let A : H — H be a monotone and
k -Lipschitz continuous mapping and S : H — H be a nonexpansive mapping such that
F(S)NAT'0 # 0. Let {x,},{y.} be the sequences generated by

Xo=x€H,

yn = Xp — An“nAxn - An(l - “n)AyM

Iy = Xp — AnAYn - Afn(l - .un)Atna

Xn+1 = (1 — Oy — ﬁn)xn + Oty + BnStn Vn 2 0,

where {A,},{t} is sequencesin (0,1] and {0y}, {B.} are sequencesin [0,1] satis-
fying the conditions:

(i) o+ Py <T<1VYn>=0 forsome t€(0,1);

(ii) 0< o< B,Vn=0 forsome o€ (0,1);

(iii) TiMp_oo thp = 1;

(iv) {A} C la,b] for some a,b € (0,1/k).
Then the sequences {x,},{y.} converge weakly to the same point u € F(S) N A~!0,
where u = lim,, oo Pp(5)na—10Xn -

Proof. We have A~'0 = VI(H,A) and Py = I. By Theorem 3.2, we obtain the
desired result. [J

REMARK 4.1. Notice that F(S) NA~!0 C VI(F(S),A). See also Yamada [9] for
the case when A : H — H is a strongly monotone and Lipschitz continuous mapping
and S : H — H is a nonexpansive mapping.

THEOREM 4.3. Let H be a real Hilbert space. Let f : H — H be a contractive
mapping with a contractive constant o, € (0,1), A : H — H be a monotone and
k -Lipschitz continuous mapping and B : H — 2 be a maximal monotone mapping
such that A='0 N B~'0 # (). Let JB be the resolvent of B for each r > 0. Let
{xa},{yn} be the sequences generated by

xo=x€ C,

yn = Xp — An“nAxn - An(l - “n)AyM

Iy = Xp — AnAyn - An(l - .un)Atm

Xn+1 = (1 — Oy — ﬁn)xn + anf(tn) + ﬁn];?tn Vn 2 0,

where {A,}, {tn} is sequencesin (0,1] and {04}, {B.} are sequencesin [0, 1] satis-
fying the conditions:
(i) a4+ B <T<1VYn=0 forsome 7€ (0,1);
(i) Y2g0 < oo and 0 < o <P, Vn>0 forsome 6 € (0,1);
(iii) 1Mooty = 1;
(iv) {A} C la,b] for some a,b € (0,1/k).
Then the sequences {x,},{y,} converge weakly to the same point u € A~'0 N B~'0.

Proof. We have A~'0 = VI(H,A) and F(J®) = B~!0. Putting Py = I, by
Theorem 3.1 we obtain the desired result. [
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THEOREM 4.4. Let H be a real Hilbert space. Let A : H — H be a monotone
and k -Lipschitz continuous mapping and let B : H — 2 be a maximal monotone
mapping such that A='0 N B~'0 # (). Let J? be the resolvent of B for each r > 0.
Let {x,},{y.} be the sequences generated by

Xo=x€ H,

Yo = Xpn — Afn.unAxn - Afn(l - .un)Ayna

In = Xp — AnAyn - An(l - Mn)Atm

X1 = (1= 0y — B)xn + Gt + Bul 1y Vn > 0,

where {A,}, {t,} is sequencesin (0,1] and {04}, {B.} are sequencesin [0, 1] satis-
fying the conditions:

(@) a4+ B <T<1Vn=0 forsome 7€ (0,1);

(ii) 0< o< B,Vn=0 forsome o€ (0,1);

(iii) liMp—oo thy = 1;

(iv) {A} C la,b] for some a,b € (0,1/k).
Then the sequences {x,},{y,} converge weakly to the same point u € A~'0 N B~10,
where u = lim, oo Py—19ng—10%n -

Proof. We have A~'0 = VI(H,A) and F(J®) = B~'0. Putting Py = I, by
Theorem 3.2 we obtain the desired result. [
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