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Abstract. In this paper we introduce a viscosity relaxed-extragradient method for finding a
common element of the set of fixed points of a nonexpansive mapping and the set of solutions of
the variational inequality problem for a monotone, Lipschitz-continuous mapping in a real Hilbert
space H . The viscosity relaxed-extragradient method is based on two methods: extragradient-
like approximation method and viscosity approximation method. We derive a weak convergence
theorem for two sequences generated by this method. Utilizing this theorem we also construct
an iterative process for finding a common zero of two mappings, one of which is a monotone,
Lipschitz continuous mapping of H into itself and the other taken from the more general class
of maximal monotone mappings of H into 2H .

1. Introduction

Let H be a real Hilbert space with inner product 〈 ·, ·〉 and norm ‖·‖ , respectively.
Let C be a nonempty closed convex subset of H and let PC be the metric projection
from H onto C . When {xn} is a sequence in H , then xn → x (resp. xn ⇀ x ) will
denote strong (resp. weak) convergence of the sequence {xn} to x .

DEFINITION 1.1. Let A : C → H be a mapping. Then A is called
(i) monotone if

〈Au − Av, u − v〉 � 0 ∀u, v ∈ C;

(ii) α -inverse-strongly-monotone (see [1,2]) if there exists a positive constant α
such that

〈Au − Av, u − v〉 � α‖Au − Av‖2 ∀u, v ∈ C;

(iii) β -strongly-monotone if there exists a positive constant β such that

〈Au − Av, u − v〉 � β‖u − v‖2 ∀u, v ∈ C;
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(iv) k -Lipschitz-continuous if there exists a positive constant k such that

‖Au − Av‖ � k‖u − v‖ ∀u, v ∈ C.

Obviously, it is easy to see that every α -inverse-strongly-monotonemapping A is
monotone and Lipschitz-continuous. Let S : C → C be a self-mapping on C . Then S
is called nonexpansive if for all u, v ∈ C

‖Su − Sv‖ � ‖u − v‖.
We denote by F(S) the set of fixed points of S , i.e., F(S) = {u ∈ C : Su = u} .

Let A : C → H be a mapping. The variational inequality problem is to find a
u ∈ C such that

〈Au, v− u〉 � 0 ∀v ∈ C.

Following the notations in [4], the set of solutions of the variational inequality problem is
denoted by VI(C, A) . It is well known that, if A is a strongly monotone and Lipschitz-
continuousmapping on C , then the variational inequality problemhas a unique solution.
How to actually find a solution of the variational inequality problem is one of the best
important topics in the study of the variational inequality problem. Indeed, there are
a lot of different approaches towards solving this problem in finite-dimensional and
infinite-dimensional spaces, and the research is intensively continued. A great deal of
effort has gone into this problem; see e.g., [2–5, 9, 11, 12, 14–18, 20].

Recently, for finding an element of F(S) ∩ VI(C, A) under the assumption that a
set C ⊂ H is closed and convex, a mapping S of C into itself is nonexpansive, and a
mapping A of C into H is α -inverse-strongly-monotone, Takahashi and Toyoda [4]
introduced the following iterative scheme:{

x0 = x ∈ C,
xn+1 = αnxn + (1 − αn)SPC(xn − λnAxn) ∀n � 0,

(1.1)

where {αn} is a sequence in (0, 1) and {λn} is a sequence in (0, 2α) . They proved
that if F(S) ∩ VI(C, A) 
= ∅ , then the sequence {xn} generated by (1.1) converges
weakly to some z ∈ F(S) ∩ VI(C, A) .

In 1976, for finding a solution of the nonconstrained variational inequality problem
in the finite-dimensional Euclidean space R n under the assumption that a set C ⊂ R n

is closed and convex and a mapping A of C into R n is monotone and k -Lipschitz-
continuous, Korpelevich [5] introduced the following so-called extragradient method:⎧⎨

⎩
x0 = x ∈ C,
x̄n = PC(xn − λAxn),
xn+1 = PC(xn − λAx̄n) ∀n � 0,

(1.2)

where λ ∈ (0, 1/k) . He proved that if VI(C, A) 
= ∅ , then the sequences {xn} and
{x̄n} , generated by (1.2), converge to the same point z ∈ VI(C, A) .

Recently,motivated by the idea ofKorpelevich’s extragradientmethod [5],Nadezhk-
ina and Takahashi [3] introduced the following iterative scheme for finding an element
of F(S) ∩ VI(C, A) and proved the following weak convergence result.
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THEOREM 1.1. [3, Theorem 3.1]. Let C be a closed convex subset of a real Hilbert
space H . Let A be a monotone and k -Lipschitz-continuous mapping of C into H and
S be a nonexpansive mapping of C into itself such that F(S) ∩ VI(C, A) 
= ∅ . Let
{xn}, {yn} be the sequences generated by⎧⎨

⎩
x0 = x ∈ C,
yn = PC(xn − λnAxn),
xn+1 = αnxn + (1 − αn)SPC(xn − λAyn) ∀n � 0,

(1.3)

where {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k) and {αn} ⊂ [c, d] for some c, d ∈ (0, 1) .
Then the sequences {xn}, {yn} converge weakly to the same point z ∈ F(S)∩VI(C, A)
where z = limn→∞ PF(S)∩VI(C,A)xn .

At the same time, the idea of the extragradient iterative process introduced by
Korpelevich was successively generalized and extended not only in Euclidean but also
in Hilbert and Banach spaces; see e.g., [11,12,15,19].

Very recently, inspired by Nadezhkina and Takahashi’s iterative scheme [3], Zeng
and Yao [12] introduced another iterative scheme for finding an element of F(S) ∩
VI(C, A) and established the following strong convergence theorem.

THEOREM 1.2. [12, Theorem 3.1]. Let C be a nonempty closed convex subset of a
real Hilbert space H . Let A : C → H be a monotone, k -Lipschitz-continuousmapping
and let S : C → C be a nonexpansive mapping such that F(S) ∩ VI(C, A) 
= ∅ . Let
{xn} and {yn} be sequences generated by⎧⎨

⎩
x0 = x ∈ C,
yn = PC(xn − λnAxn),
xn+1 = αnx0 + (1 − αn)SPC(xn − λnAyn) ∀n � 0,

(1.4)

where {λn} and {αn} satisfy the conditions:
(a) {λnk} ⊂ (0, 1 − δ) for some δ ∈ (0, 1) ;
(b) {αn} ⊂ (0, 1),

∑∞
n=0 αn = ∞, limn→∞ αn = 0 .

Then the sequences {xn}, {yn} converge strongly to the same point PF(S)∩VI(C,A)(x0)
provided limn→∞ ‖xn − xn+1‖ = 0 .

On the other hand, in 2004, Xu [21] also considered so-called viscosity approxi-
mation method for finding a fixed point of a nonexpansive self-mapping on C which
solves some variational inequality. Motivated by Nadezhkina and Takahashi’s extra-
gradient method [3] and Xu’s viscosity approximation method [21], Ceng and Yao [11]
introduced an extragradient-like approximationmethod and proved the following strong
convergence theorem.

THEOREM 1.3. [11, Theorem 3.1]. Let C be a nonempty closed convex subset of
a real Hilbert space H . Let f : C → C be a contractive mapping with a contractive
constant α ∈ (0, 1) , A : C → H be a monotone, k -Lipschitz continuous mapping and
S : C → C be a nonexpansive mapping such that F(S)∩VI(C, A) 
= ∅ . Let {xn}, {yn}
be the sequences generated by⎧⎨

⎩
x0 = x ∈ C,
yn = (1 − γn)xn + γnPC(xn − λnAxn),
xn+1 = (1 − αn − βn)xn + αnf (yn) + βnSPC(xn − λnAyn) ∀n � 0,

(1.5)
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where {λn} is a sequence in (0, 1) with
∑∞

n=0 λn < ∞ , and {αn}, {βn}, {γn} are
three sequences in [0, 1] satisfying the conditions:

(i) αn + βn � 1 for all n � 0 ;
(ii) limn→∞ αn = 0,

∑∞
n=0 αn = ∞ ;

(iii) 0 < lim infn→∞ βn � lim supn→∞ βn < 1 .
(iv) {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k) .

Then the sequences {xn}, {yn} converge strongly to the samepoint q = PF(S)∩VI(C,A)f (q)
if and only if {Axn} is bounded and lim infn→∞〈Axn, y − xn〉 � 0 for all y ∈ C .

In this paper, we introduce a viscosity relaxed-extragradientmethod which is based
on the above extragradient-like approximation method and viscosity approximation
method, i.e.,

⎧⎪⎪⎨
⎪⎪⎩

x0 = x ∈ C,
yn = PC(xn − λnμnAxn − λn(1 − μn)Ayn),
tn = PC(xn − λnAyn − λn(1 − μn)Atn),
xn+1 = (1 − αn − βn)xn + αnf (tn) + βnStn ∀n � 0,

where {λn}, {μn} is sequences in (0, 1] and {αn}, {βn} are sequences in [0, 1] satis-
fying the conditions:

(i) αn + βn � τ < 1 ∀n � 0 for some τ ∈ (0, 1) ;
(ii)

∑∞
n=0 αn < ∞ and 0 < σ � βn ∀n � 0 for some σ ∈ (0, 1) ;

(iii) limn→∞ μn = 1 ;
(iv) {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k) .

It is shown that the sequences {xn}, {yn} generated by the above method converge
weakly to the same point u ∈ F(S) ∩ VI(C, A) . Utilizing this result we also construct
an iterative process for finding a common zero of two mappings, one of which is a
monotone, k -Lipschitz continuous mapping of H into itself and the other taken from
the more general class of maximal monotone mappings of H into 2H .

2. Preliminaries

Let H be a real Hilbert space with inner product 〈 ·, ·〉 and norm ‖·‖ , respectively.
Let C be a nonempty closed convex subset of H . For every point x ∈ H there exists
a unique nearest point in C , denoted by PCx , such that ‖x − PCx‖ � ‖x − y‖ for all
y ∈ C . PC is called the metric projection of H onto C . It is known that PC is a
nonexpansive mapping from H onto C . It is also known that PCx ∈ C and

〈 x − PCx, PCx − y〉 � 0 (2.1)

for all x ∈ H, y ∈ C ; see [13] for more details. It is easy to see that (2.1) is equivalent
to

‖x − y‖2 � ‖x − PCx‖2 + ‖y − PCx‖2 (2.2)

for all x ∈ H, y ∈ C .
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Let A be a monotone mapping of C into H . In the context of the variational
inequality problem the characterization of projection (2.1) implies

u ∈ VI(C, A) ⇔ u = PC(u − λAu) ∀λ > 0.

It is also known that H satisfies Opial’s condition [10], i.e., for any sequence {xn} with
xn ⇀ x the inequality

lim inf
n→∞ ‖xn − x‖ < lim inf

n→∞ ‖xn − y‖

holds for every y ∈ H with y 
= x .
The following results will be used in the rest of this paper.

LEMMA 2.1. (Tan and Xu [6, p. 303]). Let {an} and {bn} be two sequences of
nonnegative real numbers satisfying the inequality

an+1 � an + bn ∀n � 0.

If
∑∞

n=0 bn converges, then limn→∞ an exists.

LEMMA 2.2. (Demiclosedness Principle [13]). Assume that S is a nonexpansive
self-mapping of a closed convex subset C of a Hilbert space H . If S has a fixed point,
then I−S is demiclosed; that is, whenever {xn} is a sequence in C converging weakly
to some x ∈ C and the sequence {(I − S)xn} converges strongly to some y ∈ H , it
follows that (I − S)x = y . Here I is the identity operator of H .

A set-valued mapping T : H → 2H is called monotone if for all x, y ∈ H, f ∈ Tx
and g ∈ Ty imply 〈 x− y, f − g〉 � 0 . A monotone mapping T : H → 2H is maximal
if its graph G(T) is not properly contained in the graph of any other monotonemapping.
It is known that a monotone mapping T is maximal if and only if for (x, f ) ∈ H × H ,
〈 x − y, f − g〉 � 0 for all (y, g) ∈ G(T) implies f ∈ Tx . Let A be a monotone,
k -Lipschitz-continuous mapping of C into H and let NCv be the normal cone to C at
v ∈ C , i.e., NCv = {w ∈ H : 〈 v − u, w〉 � 0 for all u ∈ C} . Define

Tv =
{

Av + NCv if v ∈ C,
∅ if v 
∈ C.

It is known that in this case T is maximal monotone, and 0 ∈ Tv if and only if
v ∈ VI(C, A) ; see [7].

Throughout the rest of the paper, we shall use the following notation: for a given
sequence {xn} ⊂ H, ωw(xn) denotes the weak ω -limit set of {xn} ; that is,

ωw(xn) := {x ∈ H : {xnj} converges weakly to x for some subsequence {nj} of {n}}.
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3. Weak Convergence Theorem

We are now in a position to prove our main results in this paper. To prove it,
we need two lemmas. The first lemma was proved by Schu [8] in a uniformly convex
Banach space.

LEMMA 3.1. Let H be a real Hilbert space, let {�n} be a sequence of real numbers
such that 0 < a � �n � b < 1 for all n � 0 , and let {vn} and {wn} be sequences in
H such that

lim sup
n→∞

‖vn‖ � c,

lim sup
n→∞

‖wn‖ � c,

lim
n→∞ ‖�nvn + (1 − �n)wn‖ = c,

for some c � 0 . Then,
lim

n→∞ ‖vn − wn‖ = 0.

THEOREM 3.1. Let C be a nonempty closed convex subset of a real Hilbert space
H . Let f : C → C be a contractive mapping with a contractive constant α ∈ (0, 1) ,
A : C → H be a monotone and k -Lipschitz continuous mapping and S : C → C
be a nonexpansive mapping such that F(S) ∩ VI(C, A) 
= ∅ . Let {xn}, {yn} be the
sequences generated by

⎧⎪⎪⎨
⎪⎪⎩

x0 = x ∈ C,
yn = PC(xn − λnμnAxn − λn(1 − μn)Ayn),
tn = PC(xn − λnAyn − λn(1 − μn)Atn),
xn+1 = (1 − αn − βn)xn + αnf (tn) + βnStn ∀n � 0,

(3.1)

where {λn}, {μn} is sequences in (0, 1] and {αn}, {βn} are sequences in [0, 1] satis-
fying the conditions:

(i) αn + βn � τ < 1 ∀n � 0 for some τ ∈ (0, 1) ;
(ii)

∑∞
n=0 αn < ∞ and 0 < σ � βn ∀n � 0 for some σ ∈ (0, 1) ;

(iii) limn→∞ μn = 1 ;
(iv) {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k) .

Then the sequences {xn}, {yn} converge weakly to the same point u ∈ F(S)∩VI(C, A) .

REMARK 3.1. First, observe that for all x, y ∈ C and all n � 0

‖PC(xn − λnμAxn − λn(1 − μn)Ax) − PC(xn − λnμAxn − λn(1 − μn)Ay)‖
� ‖(xn − λnμnAxn − λn(1 − μn)Ax) − (xn − λnμnAxn − λn(1 − μn)Ay)‖
= λn(1 − μn)‖Ax − Ay‖
� λnk‖x − y‖.

Thus, by Banach Contraction Principle, we know that for each n � 0 there exists a
unique yn ∈ C such that

yn = PC(xn − λnμnAxn − λn(1 − μn)Ayn). (3.2)
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Also, observe that for all x, y ∈ C and all n � 0

‖PC(xn − λnAyn − λn(1 − μn)Ax) − PC(xn − λnAyn − λn(1 − μn)Ay)‖
� ‖(xn − λnAyn − λn(1 − μn)Ax) − (xn − λnAyn − λn(1 − μn)Ay)‖
= λn(1 − μn)‖Ax − Ay‖
� λnk‖x − y‖.

Utilizing Banach Contraction Principle, we know that for each n � 0 there exists a
unique tn ∈ C such that

tn = PC(xn − λnAyn − λn(1 − μn)Atn). (3.3)

Proof of Theorem 3.1. We divide the proof into several steps.

Step 1. We claim that {xn}, {yn} and {tn} are bounded. Indeed, note that
tn = PC(xn − λnAyn − λn(1 − μn)Atn) for all n � 0 . Let u ∈ F(S) ∩ VI(C, A) be an
arbitrary element. From (2.2), monotonicity of A , and u ∈ VI(C, A) , we have

‖tn − u‖2 � ‖(xn − λnAyn − λn(1 − μn)Atn) − u‖2

−‖(xn − λnAyn − λn(1 − μn)Atn) − tn‖2

= ‖xn − λn(1 − μn)Atn − u‖2

−‖xn − λn(1 − μn)Atn − tn‖2 + 2λn〈Ayn, u − tn〉
= ‖xn − λn(1 − μn)Atn − u‖2 − ‖xn − λn(1 − μn)Atn − tn‖2

+2λn(〈Ayn, u − yn〉 + 〈Ayn, yn − tn〉 )
= ‖xn − λn(1 − μn)Atn − u‖2 − ‖xn − λn(1 − μn)Atn − tn‖2

+2λn(〈Ayn − Au, u − yn〉 + 〈Au, u − yn〉 + 〈Ayn, yn − tn〉 )
� ‖xn − λn(1 − μn)Atn − u‖2 − ‖xn − λn(1 − μn)Atn − tn‖2

+2λn〈Ayn, yn − tn〉
= ‖xn − u‖2 − ‖xn − tn‖2 − 2λn(1 − μn)〈Atn, tn − u〉

+2λn〈Ayn, yn − tn〉
= ‖xn − u‖2 − ‖xn − yn‖2 − 2〈 xn − yn, yn − tn〉 − ‖yn − tn‖2

+2λn〈Ayn, yn − tn〉 − 2λn(1 − μn)(〈Atn − Au, tn − u〉
+〈Au, tn − u〉 )

� ‖xn − u‖2 − ‖xn − yn‖2 − ‖yn − tn‖2 + 2〈 xn − λnAyn − yn, tn − yn〉 .

Since yn = PC(xn − λnμnAxn − λn(1 − μn)Ayn) and A is k -Lipschitz continuous, we
have

〈 xn − λnAyn − yn, tn − yn〉
= 〈 xn − λnμnAxn − λn(1 − μn)Ayn − yn, tn − yn〉 + λnμn〈Axn − Ayn, tn − yn〉
� λnμn〈Axn − Ayn, tn − yn〉
� λnk‖xn − yn‖‖tn − yn‖.

So, we have

‖tn − u‖2 � ‖xn − u‖2 − ‖xn − yn‖2 − ‖yn − tn‖2 + 2λnk‖xn − yn‖‖tn − yn‖
� ‖xn − u‖2 − ‖xn − yn‖2 − ‖yn − tn‖2 + λ 2

n k2‖xn − yn‖2 + ‖yn − tn‖2

= ‖xn − u‖2 + (λ 2
n k2 − 1)‖xn − yn‖2

� ‖xn − u‖2.
(3.4)
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Therefore, from (3.4), xn+1 = (1 − αn − βn)xn + αnf (tn) + βnStn , and u = Su , we
have

‖xn+1 − u‖ = ‖(1 − αn − βn)xn + αnf (tn) + βnStn − u‖
� (1 − αn − βn)‖xn − u‖ + αn‖f (tn) − u‖ + βn‖Stn − u‖
� (1 − αn − βn)‖xn − u‖ + αn{‖f (tn) − f (u)‖ + ‖f (u) − u‖} + βn‖tn − u‖
� (1 − αn − βn)‖xn − u‖ + αn{α‖tn − u‖ + ‖f (u) − u‖} + βn‖tn − u‖
� (1 − αn − βn)‖xn − u‖ + αn{α‖xn − u‖ + ‖f (u) − u‖} + βn‖xn − u‖
= (1 − (1 − α)αn)‖xn − u‖ + (1 − α)αn · 1

1−α ‖f (u) − u‖
� max{‖xn − u‖, 1

1−α ‖f (u) − u‖}
(3.5)

for all n � 0 . Obviously, it is easy to see that

‖xn − u‖ � max{‖x0 − u‖, 1
1 − α

‖f (u) − u‖} ∀n � 0.

This shows that {xn} is bounded and so are {tn}, {yn} due to (3.4).

Step 2. We claim that the following statements hold:
(i) limn→∞ ‖xn − u‖ exists for each u ∈ F(S) ∩ VI(C, A) ;
(ii) limn→∞ ‖xn − yn‖ = 0 ;
(iii) limn→∞ ‖xn − tn‖ = 0 .
Indeed, let u ∈ F(S)∩ VI(C, A) be an arbitrary element. Utilizing (3.4) we know

that

‖xn+1 − u‖2 = ‖(1 − αn − βn)xn + αnf (tn) + βnStn − u‖2

� (1 − αn − βn)‖xn − u‖2 + αn‖f (tn) − u‖2 + βn‖Stn − u‖2

� (1 − αn − βn)‖xn − u‖2 + αn‖f (tn) − u‖2 + βn‖tn − u‖2

� (1 − αn − βn)‖xn − u‖2 + αn‖f (tn) − u‖2

+βn[‖xn − u‖2 + (λ 2
n k2 − 1)‖xn − yn‖2]

� ‖xn − u‖2 + αn‖f (tn) − u‖2 + βn(λ 2
n k2 − 1)‖xn − yn‖2

� ‖xn − u‖2 + αn‖f (tn) − u‖2.

(3.6)

Since
∑∞

n=0 αn < ∞ and {f (tn) − u} is bounded, we deduce from Lemma 2.1 that
limn→∞ ‖xn − u‖ exists. From the last relations, we obtain also

σ(1 − λ 2
n k2)‖xn − yn‖2 � βn(1 − λ 2

n k2)‖xn − yn‖2

� ‖xn − u‖2 − ‖xn+1 − u‖2 + αn‖f (tn) − u‖2.

So we have

‖xn − yn‖2 � 1
σ(1 − λ 2

n k2)
{‖xn − u‖2 − ‖xn+1 − u‖2 + αn‖f (tn) − u‖2}.

Hence,

xn − yn → 0 as n → ∞.
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Further, we obtain

‖yn − tn‖ = ‖PC(xn − λnμnAxn − λn(1 − μn)Ayn) − PC(xn − λnAyn − λn(1 − μn)Atn)‖
� ‖(xn − λnμnAxn − λn(1 − μn)Ayn) − (xn − λnAyn − λn(1 − μn)Atn)‖
= ‖λnμn(Ayn − Axn) + λn(1 − μn)Atn‖
� λnμn‖Ayn − Axn‖ + λn(1 − μn)‖Atn‖
� λnk‖yn − xn‖ + λn(1 − μn)‖Atn‖.

Since xn − yn → 0 , μn → 1 and {Atn} is bounded, we get

yn − tn → 0 as n → ∞.

From
‖xn − tn‖ � ‖xn − yn‖ + ‖yn − tn‖,

we have also
xn − tn → 0 as n → ∞.

Step 3. We claim that the following statements hold:
(i) limn→∞ ‖xn+1 − xn‖ = 0 ;
(ii) limn→∞ ‖Sxn − xn‖ = 0 .
Indeed, according to Step 2 (i) we denotes

lim
n→∞ ‖xn − u‖ = d.

Now put �n = αn + βn for all n � 0 . Then we write

xn+1 = (1 − �n)xn + �nzn,

where

zn =
αnf (tn) + βnStn

αn + βn
=

αn

αn + βn
f (tn) +

βn

αn + βn
Stn.

Let u ∈ F(S) ∩ VI(C, A) be an arbitrary element. Since

‖zn − u‖ � αn
αn+βn

‖f (tn) − u‖ + βn
αn+βn

‖Stn − u‖
� αn

σ ‖f (tn) − u‖ + ‖tn − u‖
� αn

σ ‖f (tn) − u‖ + ‖xn − u‖,
we have

lim sup
n→∞

‖zn − u‖ � d.

Further, we have

lim
n→∞ ‖(1 − �n)(xn − u) + �n(zn − u)‖ = lim

n→∞ ‖xn+1 − u‖ = d.

Note that conditions (i) , (ii) imply that 0 < σ � �n � τ < 1 for all n � 0 . Thus, by
Lemma 3.1, we obtain

lim
n→∞ ‖zn − xn‖ = 0
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which implies that

lim
n→∞ ‖xn+1 − xn‖ = lim

n→∞ �n‖zn − xn‖ = 0.

Observe that

σ
τ ‖Stn − xn‖ � βn

αn+βn
‖Stn − xn‖

= ‖ αn
αn+βn

(f (tn) − xn) + βn
αn+βn

(Stn − xn) − αn
αn+βn

(f (tn) − xn)‖
� ‖zn − xn‖ + αn

αn+βn
‖f (tn) − xn‖

� ‖zn − xn‖ + αn
σ ‖f (tn) − xn‖,

and hence
lim

n→∞ ‖Stn − xn‖ = 0

due to the boundedness of {f (tn)} and {xn} . Since

‖Sxn − xn‖ � ‖Sxn − Stn‖ + ‖Stn − xn‖ � ‖xn − tn‖ + ‖Stn − xn‖,

we have from Step 2 (iii)
lim

n→∞ ‖Sxn − xn‖ = 0.

Step 4. We claim that ωw(xn) ⊂ F(S)∩VI(C, A) , where ωw(xn) denotes the weak
ω -limit set of {xn} , i.e.,

ωw(xn) = {u ∈ H : {xnj} converges weakly to u for some subsequence {nj} of {n}}.

Indeed, since {xn} is bounded, it has a subsequence which converges weakly to
some point in C and hence ωw(xn) 
= ∅ . Let u ∈ ωw(xn) be an arbitrary point. Then
there exists a subsequence {xnj} ⊂ {xn} which converges weakly to u and hence we
have limj→∞ ‖xnj − Sxnj‖ = 0 . Note that from Lemma 2.2 it follows that I − S is
demiclosed at zero. Thus u ∈ F(S) . Now, we show u ∈ VI(C, A) . Let

Tv =
{

Av + NCv if v ∈ C,
∅ if v 
∈ C.

Then T is maximal monotone and 0 ∈ Tv if and only if v ∈ VI(C, A) ; see [7]. Let
(v, w) ∈ G(T) . Then we have w ∈ Tv = Av + NCv and hence w − Av ∈ NCv .
So, we have 〈 v − t, w − Av〉 � 0 for all t ∈ C . On the other hand, from tn =
PC(xn − λnAyn − λn(1 − μn)Atn) and v ∈ C we have

〈 xn − λnAyn − λn(1 − μn)Atn − tn, tn − v〉 � 0

and hence

〈 v − tn,
tn − xn

λn
+ Ayn + (1 − μn)Atn〉 � 0.
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From 〈 v − t, w − Av〉 � 0 for all t ∈ C and tnj ∈ C , we have

〈 v − tnj , w〉 � 〈 v − tnj , Av〉
� 〈 v − tnj , Av〉 − 〈 v − tnj ,

tnj−xnj
λnj

+ Aynj + (1 − μnj)Atnj〉
= 〈 v − tnj , Av− Atnj〉 + 〈 v − tnj , Atnj − Aynj〉

−〈 v− tnj ,
tnj−xnj
λnj

〉 − (1 − μnj)〈 v − tnj , Atnj〉
� 〈 v − tnj , Atnj − Aynj〉 − 〈 v − tnj ,

tnj−xnj
λnj

〉 − (1 − μnj)〈 v − tnj , Atnj〉 .

Since A is Lipschitz continuous, we have

Atnj − Aynj → 0 as j → ∞.

So, we obtain 〈 v − u, w〉 � 0 as j → ∞ . Since T is maximal monotone, we have
u ∈ T−10 and hence u ∈ VI(C, A) . Therefore, u ∈ F(S) ∩ VI(C, A) . This shows that
ωw(xn) ⊂ F(S) ∩ VI(C, A) .

Step 5. We claim that {xn} and {yn} converge weakly to the same point u ∈
F(S) ∩ VI(C, A) .

Indeed, it is sufficient to show that ωw(xn) is a single-point set because xn−yn → 0
as n → ∞ . Since ωw(xn) 
= ∅ , let us take two points u, û ∈ ωw(xn) arbitrarily. Then
there exist two subsequences {xnj} and {xmk} of {xn} such that xnj ⇀ u and xmk ⇀ û ,
respectively. In terms of Step 4, we know that u, û ∈ F(S) ∩ VI(C, A) . Meantime,
according to Step 2 (i) we also know that there exist both limn→∞ ‖xn − u‖ and
limn→∞ ‖xn − û‖ . Let us show that u = û . Assume that u 
= û . From the Opial
condition [10] it follows that

lim
n→∞ ‖xn − u‖ = lim inf

j→∞
‖xnj − u‖ < lim inf

j→∞
‖xnj − û‖

= lim
n→∞ ‖xn − û‖ = lim inf

k→∞
‖xmk − û‖

< lim inf
k→∞

‖xmk − u‖ = lim
n→∞ ‖xn − u‖.

This leads to a contradiction. Thus,we have u = û . This implies that ωw(xn) is a single-
point set. Without loss of generality, we may write ωw(xn) = {u} . Consequently, {xn}
converges weakly to u ∈ F(S) ∩ VI(C, A) . Since xn − yn → 0 as n → ∞ , we have
also

yn ⇀ u ∈ F(S) ∩ VI(C, A).

This completes the proof. �
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The second lemma was proved by Takahashi and Toyoda [4].

LEMMA 3.2. Let H be a real Hilbert space and let D be a nonempty closed convex
subset of H . Let {xn} be a sequence in H . Suppose that, for all u ∈ D,

‖xn+1 − u‖ � ‖xn − u‖ ∀n � 0.

Then, the sequence {PDxn} converges strongly to some z ∈ D.

By the careful analysis of the proof of Theorem 3.1, we can state another weak
convergence theorem.

THEOREM 3.2.. Let C be a nonempty closed convex subset of a real Hilbert space
H . Let A : C → H be a monotone and k -Lipschitz continuousmapping and S : C → C
be a nonexpansive mapping such that F(S) ∩ VI(C, A) 
= ∅ . Let {xn}, {yn} be the
sequences generated by⎧⎪⎪⎨

⎪⎪⎩

x0 = x ∈ C,
yn = PC(xn − λnμnAxn − λn(1 − μn)Ayn),
tn = PC(xn − λnAyn − λn(1 − μn)Atn),
xn+1 = (1 − αn − βn)xn + αntn + βnStn ∀n � 0,

(3.7)

where {λn}, {μn} is sequences in (0, 1] and {αn}, {βn} are sequences in [0, 1] satis-
fying the conditions:

(i) αn + βn � τ < 1 ∀n � 0 for some τ ∈ (0, 1) ;
(ii) 0 < σ � βn ∀n � 0 for some σ ∈ (0, 1) ;
(iii) limn→∞ μn = 1 ;
(iv) {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k) .

Then the sequences {xn}, {yn} converge weakly to the same point u ∈ F(S)∩VI(C, A) ,
where u = limn→∞ PF(S)∩VI(C,A)xn .

Proof. We divide the proof into several steps.

Step 1. We claim that the following statements hold:
(i) limn→∞ ‖xn − u‖ exists for each u ∈ F(S) ∩ VI(C, A) ;
(ii) {xn}, {yn} and {tn} are bounded.
Indeed, let u ∈ F(S)∩VI(C, A) be an arbitrary element. As in Step 1 of the proof

of Theorem 3.1, we can derive

‖tn − u‖2 � ‖xn − u‖2 + (λ 2
n k2 − 1)‖xn − yn‖2

� ‖xn − u‖2.

Moreover, we can obtain

‖xn+1 − u‖2 � ‖xn − u‖2 + (αn + βn)(λ 2
n k2 − 1)‖xn − yn‖2

� ‖xn − u‖2.
(3.8)

This implies that limn→∞ ‖xn − u‖ exists. Hence {xn} is bounded and so is {tn} .
Consequently, from (3.8) it follows that {yn} is bounded.

Step 2. We claim that the following statements hold:
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(i) limn→∞ ‖xn − yn‖ = 0 ;
(ii) limn→∞ ‖xn − tn‖ = 0 .
Indeed, utilizing (3.8) we have

‖xn − yn‖2 � 1
(αn + βn)(1 − λ 2

n k2)
{‖xn − u‖2 − ‖xn+1 − u‖2},

and hence xn − yn → 0 as n → ∞ . As in Step 2 of the proof of Theorem 3.1, we can
obtain yn − tn → 0 as n → ∞ . Thus, from

‖xn − tn‖ � ‖xn − yn‖ + ‖yn − tn‖
we get xn − tn → 0 as n → ∞ .

Step 3. We claim that the following statements hold:
(i) limn→∞ ‖xn+1 − xn‖ = 0 ;
(ii) limn→∞ ‖Sxn − xn‖ = 0 .
Indeed, put �n = αn + βn for all n � 0 . Then we write

xn+1 = (1 − �n)xn + �nzn,

where

zn =
αntn + βnStn
αn + βn

=
αn

αn + βn
tn +

βn

αn + βn
Stn.

As in Step 3 of the proof of Theorem 3.1, we can obtain zn − xn → 0 as n → ∞ .
Hence, xn+1 − xn → 0 as n → ∞ .

Observe that

σ
τ ‖Stn − xn‖ � βn

αn+βn
‖Stn − xn‖

= ‖ αn
αn+βn

(tn − xn) + βn
αn+βn

(Stn − xn) − αn
αn+βn

(tn − xn)‖
� ‖zn − xn‖ + αn

αn+βn
‖tn − xn‖

� ‖zn − xn‖ + ‖tn − xn‖,
and hence

lim
n→∞ ‖Stn − xn‖ = 0.

Since

‖Sxn − xn‖ � ‖Sxn − Stn‖ + ‖Stn − xn‖ � ‖xn − tn‖ + ‖Stn − xn‖,
we have

lim
n→∞ ‖Sxn − xn‖ = 0.

Step 4. We claim that ωw(xn) ⊂ F(S) ∩ VI(C, A) .
Indeed, the proof of this step is the same as in Step 4 of the proof of Theorem 3.1.
Step 5. We claim that the following statements hold:
(i) {xn} and {yn} converge weakly to the same point u ∈ F(S) ∩ VI(C, A) ;
(ii) {PF(S)∩VI(C,A)xn} converges strongly to such a u ∈ F(S) ∩ VI(C, A) .
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Indeed, the proof of statement (i) is the same as in Step 5 of the proof of Theorem
3.1. Now, put

un = PF(S)∩VI(C,A)xn.

We show that

u = lim
n→∞ un.

From

un = PF(S)∩VI(C,A)xn and u ∈ F(S) ∩ VI(C, A),

we have

〈 u − un, un − xn〉 � 0.

By Lemma 3.2, {un} converges strongly to some z ∈ F(S)∩VI(C, A) . Then, we have

〈 u − z, z − u〉 � 0

and hence u = z . This completes the proof. �

4. Applications

Utilizing Theorems 3.1 and 3.2 in the above section, we prove several weak
convergence theorems in a real Hilbert space.

THEOREM 4.1. Let H be a real Hilbert space. Let f : H → H be a contractive
mapping with a contractive constant α ∈ (0, 1) , A : H → H be a monotone and
k -Lipschitz continuous mapping and S : H → H be a nonexpansive mapping such that
F(S) ∩ A−1 
= ∅ . Let {xn}, {yn} be the sequences generated by

⎧⎪⎪⎨
⎪⎪⎩

x0 = x ∈ H,
yn = xn − λnμnAxn − λn(1 − μn)Ayn,
tn = xn − λnAyn − λn(1 − μn)Atn,
xn+1 = (1 − αn − βn)xn + αnf (tn) + βnStn ∀n � 0,

where {λn}, {μn} is sequences in (0, 1] and {αn}, {βn} are sequences in [0, 1] satis-
fying the conditions:

(i) αn + βn � τ < 1 ∀n � 0 for some τ ∈ (0, 1) ;
(ii)

∑∞
n=0 αn < ∞ and 0 < σ � βn ∀n � 0 for some σ ∈ (0, 1) ;

(iii) limn→∞ μn = 1 ;
(iv) {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k) .

Then the sequences {xn}, {yn} converge weakly to the same point u ∈ F(S) ∩ A−10 .

Proof. We have A−10 = VI(H, A) and PH = I . By Theorem 3.1, we obtain the
desired result. �
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THEOREM 4.2. Let H be a real Hilbert space. Let A : H → H be a monotone and
k -Lipschitz continuous mapping and S : H → H be a nonexpansive mapping such that
F(S) ∩ A−10 
= ∅ . Let {xn}, {yn} be the sequences generated by

⎧⎪⎪⎨
⎪⎪⎩

x0 = x ∈ H,
yn = xn − λnμnAxn − λn(1 − μn)Ayn,
tn = xn − λnAyn − λn(1 − μn)Atn,
xn+1 = (1 − αn − βn)xn + αntn + βnStn ∀n � 0,

where {λn}, {μn} is sequences in (0, 1] and {αn}, {βn} are sequences in [0, 1] satis-
fying the conditions:

(i) αn + βn � τ < 1 ∀n � 0 for some τ ∈ (0, 1) ;
(ii) 0 < σ � βn ∀n � 0 for some σ ∈ (0, 1) ;
(iii) limn→∞ μn = 1 ;
(iv) {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k) .

Then the sequences {xn}, {yn} converge weakly to the same point u ∈ F(S) ∩ A−10 ,
where u = limn→∞ PF(S)∩A−10xn .

Proof. We have A−10 = VI(H, A) and PH = I . By Theorem 3.2, we obtain the
desired result. �

REMARK 4.1. Notice that F(S) ∩ A−10 ⊂ VI(F(S), A) . See also Yamada [9] for
the case when A : H → H is a strongly monotone and Lipschitz continuous mapping
and S : H → H is a nonexpansive mapping.

THEOREM 4.3. Let H be a real Hilbert space. Let f : H → H be a contractive
mapping with a contractive constant α ∈ (0, 1) , A : H → H be a monotone and
k -Lipschitz continuous mapping and B : H → 2H be a maximal monotone mapping
such that A−10 ∩ B−10 
= ∅ . Let JB

r be the resolvent of B for each r > 0 . Let
{xn}, {yn} be the sequences generated by

⎧⎪⎪⎨
⎪⎪⎩

x0 = x ∈ C,
yn = xn − λnμnAxn − λn(1 − μn)Ayn,
tn = xn − λnAyn − λn(1 − μn)Atn,
xn+1 = (1 − αn − βn)xn + αnf (tn) + βnJB

r tn ∀n � 0,

where {λn}, {μn} is sequences in (0, 1] and {αn}, {βn} are sequences in [0, 1] satis-
fying the conditions:

(i) αn + βn � τ < 1 ∀n � 0 for some τ ∈ (0, 1) ;
(ii)

∑∞
n=0 αn < ∞ and 0 < σ � βn ∀n � 0 for some σ ∈ (0, 1) ;

(iii) limn→∞ μn = 1 ;
(iv) {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k) .

Then the sequences {xn}, {yn} converge weakly to the same point u ∈ A−10 ∩ B−10 .

Proof. We have A−10 = VI(H, A) and F(JB
r ) = B−10 . Putting PH = I , by

Theorem 3.1 we obtain the desired result. �



240 LU-CHUAN CENG AND JEN-CHIH YAO

THEOREM 4.4. Let H be a real Hilbert space. Let A : H → H be a monotone
and k -Lipschitz continuous mapping and let B : H → 2H be a maximal monotone
mapping such that A−10 ∩ B−10 
= ∅ . Let JB

r be the resolvent of B for each r > 0 .
Let {xn}, {yn} be the sequences generated by⎧⎪⎪⎨

⎪⎪⎩

x0 = x ∈ H,
yn = xn − λnμnAxn − λn(1 − μn)Ayn,
tn = xn − λnAyn − λn(1 − μn)Atn,
xn+1 = (1 − αn − βn)xn + αntn + βnJB

r tn ∀n � 0,

where {λn}, {μn} is sequences in (0, 1] and {αn}, {βn} are sequences in [0, 1] satis-
fying the conditions:

(i) αn + βn � τ < 1 ∀n � 0 for some τ ∈ (0, 1) ;
(ii) 0 < σ � βn ∀n � 0 for some σ ∈ (0, 1) ;
(iii) limn→∞ μn = 1 ;
(iv) {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k) .

Then the sequences {xn}, {yn} converge weakly to the same point u ∈ A−10 ∩ B−10 ,
where u = limn→∞ PA−10∩B−10xn .

Proof. We have A−10 = VI(H, A) and F(JB
r ) = B−10 . Putting PH = I , by

Theorem 3.2 we obtain the desired result. �
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