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IMPLICIT ITERATION SCHEME WITH PERTURBED

MAPPING FOR COMMON FIXED POINTS OF A FINITE

FAMILY OF LIPSCHITZ PSEUDOCONTRACTIVE MAPPINGS

LU-CHUAN CENG 1 , ADRIAN PETRUŞEL AND JEN-CHIH YAO 2

(communicated by R. Verma)

Abstract. Let E be a real Banach space, {Ti}N
i=1 be a finite family of continuous pseudocon-

tractive self mappings of E and G : E → E be a mapping which is both δ -strongly accretive
and λ -strictly pseudocontractive of Browder-Petryshyn type such that δ + λ � 1 . We propose
a new implicit iteration scheme with perturbed mapping G for the approximation of common
fixed points of {Ti}N

i=1 . For an arbitrary initial point x0 ∈ E , the sequence {xn}∞n=1 is defined
by

xn = αn(xn−1 − λnG(xn−1)) + (1 − αn)Tnxn

where Tn = Tn mod N , {αn}∞n=1 ⊂ [a, b] ⊂]0, 1[ and {λn}∞n=1 ⊂ [0, 1[ . We establish some
weak convergence theorems for this implicit iteration scheme. Also, necessary and sufficient
conditions for strong convergence of this implicit iteration scheme are obtained.

1. Introduction

Let E be a real Banach space and E∗ be the dual space of E . Let I be the identity
operator of E . Denote by J the normalized duality set-valued mapping from E into
2E∗

given by

J(x) = {f ∈ E∗ : 〈 x, f 〉 = ‖x‖2 = ‖f ‖2}, for all x ∈ E,

where 〈 ·, ·〉 denotes the generalized duality pairing between E and E∗ . If E is a
smooth Banach space, then J is single-valued. In the sequel, we shall denote the
single-valued duality mapping by j and by F(T) = {x ∈ E : Tx = x} the fixed point
set of the mapping T : E → E .

When {xn} is a sequence in E , then xn → x (respectively, xn ⇀ x ) will denote
strong (respectively, weak) convergence of the sequence {xn} to x .
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DEFINITION 1.1. Let T be a mapping with domain D(T) and range R(T) in E .
T is called

(i) nonexpansive if

‖Tx − Ty‖ � ‖x − y‖, for all x, y ∈ D(T);

(ii) Lipschitzian if there exists L > 0 such that

‖Tx − Ty‖ � L‖x − y‖, for all x, y ∈ D(T);

(iii) strongly accretive, if for each x, y ∈ D(T) , there exists δ ∈ (0, 1) and
j(x − y) ∈ J(x − y) such that

〈Tx − Ty, j(x − y)〉 � δ‖x − y‖2;

(iv) pseudocontractive, if for each x, y ∈ D(T) , there exists j(x − y) ∈ J(x − y)
such that

〈Tx − Ty, j(x − y)〉 � ‖x − y‖2; (1)

(v) strictly pseudocontractive in Browder-Petryshyn’ sense (for short, strictly
pseudocontractive), if for each x, y ∈ D(T) ,there exists k ∈ (0, 1) and
j(x − y) ∈ J(x − y) such that

〈Tx − Ty, j(x − y)〉 � ‖x − y‖2 − k‖x − y − (Tx − Ty)‖2. (2)

REMARK 1.1. Inequality (2) can be written in the form

〈 (I − T)x − (I − T)y, j(x − y)〉 � k‖(I − T)x − (I − T)y‖2. (3)

Moreover, inequality (1) can be written in the form

〈 (I − T)x − (I − T)y, j(x − y)〉 � 0. (4)

It is easy to see from (3) that every strictly pseudocontractive map is β -Lipschitzian
with β � 1 + 1

k .
It is also well-known (see [13]) that (1) is equivalent to

‖x − y‖ � ‖x − y + s[(x − Tx) − (y − Ty)]‖, (4′)

for any s > 0 and any x, y ∈ D(T) .

Let K be a nonempty convex subset of E and T : K → K be a continuous
pseudocontractive mapping. For every u ∈ K and t ∈ (0, 1) , the operator Tt : K → K
defined by Ttx = tu + (1− t)Tx, for all x ∈ K , is strongly pseudocontractive. Indeed,
observe that for each x, y ∈ K , there exists j(x − y) ∈ J(x − y) such that

〈Ttx − Tty, j(x − y)〉 = (1 − t)〈Tx − Ty, j(x − y)〉 � (1 − t)‖x − y‖2.

Since Tt is also continuous, so we know from Deimling [15], that Tt has a unique fixed
point xt ∈ K (see also [4]), i.e.,

xt = tu + (1 − t)Txt. (5)
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Let {Ti}N
i=1 be a finite family of continuous pseudocontractive self-mappings of K .

Motivated by Xu and Ori’s implicit iteration process (see [3]), in order to approximate
a common fixed points of a finite family of nonexpansive mappings, Chen, Song and
Zhou [5] used (5) for constructing the following implicit iteration process. For x0 ∈ K
and {αn}∞n=1 ⊂ (0, 1) , the sequence {xn}∞n=1 is generalized as follows:

x1 = α1x0 + (1 − α1)T1x1,
x2 = α2x1 + (1 − α2)T2x2,

...
xN = αNxN−1 + (1 − αN)TNxN ,

...

The scheme is expressed in a compact form as

xn = αnxn−1 + (1 − αn)Tnxn, for all n � 1, (6)

where Tn = Tn mod N .
In [5], necessary and sufficient conditions for the strong convergence to a common

fixed point of a finite family of continuous pseudocontractivemappings are established.
Also strong and weak convergence theorem for a finite family of strictly pseudocon-
tractive mappings of Browder-Petryshyn type are derived. Their results extended and
improved some corresponding ones in [1-3].

Very recently, Zhou [11] extended the above results of Chen, Song and Zhou to a
more general class of real reflexive Banach space, as well as, the results of Xu and Ori
to a more general class of Lipschitzian pseudocontractive mappings.

On the other hand, let {Ti}N
i=1 be a finite family of nonexpansive self mappings

of a real Hilbert space H and G : H → H . Suppose that there exists some constants
κ ,η > 0 such that the mapping G is κ -Lipschitzian and η -strongly monotone. Let
{αn}∞n=1 ⊂ (0, 1), {λn}∞n=1 ⊂ [0, 1) and take a fixed number μ ∈ (0, 2η

κ2 ) . For the
approximation of common fixed points of {Ti}N

i=1 , Zeng and Yao [6] introduced and
studied the following implicit iteration process with perturbed mapping G . For an
arbitrary initial point x0 ∈ H , the sequence {xn}∞n=1 is generated as follows:

x1 = α1x0 + (1 − α1)[T1x1 − λ1μG(T1x1)],
x2 = α2x1 + (1 − α2)[T2x2 − λ2μG(T2x2)]

...
xN = αNxN−1 + (1 − αN)[TNxN − λNμG(TNxN)],

...

This scheme can be expressed in a concise form as follows

xn = αnxn−1 + (1 − αn)[Tnxn − λnμG(Tnxn)], for all n � 1. (7)

It is clear that if λn = 0, for all n � 1 , then the implicit iteration scheme (7) reduces
to the implicit iteration process (6).
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Inspired by the above implicit iteration schemes (6) and (7), we will use (5) to
propose a new implicit iteration scheme with perturbed mapping for approximation
of common fixed points of a finite family of continuous pseudocontractive mappings.
Let {Ti}N

i=1 be a finite family of continuous pseudocontractive self mappings of E
and G : E → E be a perturbed map which is both λ -strictly pseudocontractive
and δ -strongly accretive with λ + δ � 1 . For x0 ∈ E and {αn}∞n=1 ⊂ (0, 1) and
{λn}∞n=1 ⊂ [0, 1) , the sequence {xn}∞n=1 is generated as follows:

x1 = α1(x0 − λ1G(x0)) + (1 − α1)T1x1,
x2 = α2(x1 − λ2G(x1)) + (1 − α2)T2x2,

...
xN = αN(xN−1 − λNG(xN−1)) + (1 − αN)TNxN ,

...

The scheme could be expressed in a compact form as follows

xn = αn(xn−1 − λnG(xn−1)) + (1 − αn)Tnxn, for all n � 1, (8)

where Tn = Tn mod N . Clearly, if λn = 0, for all n � 1 , the implicit iteration scheme
(8) reduces to the implicit iteration process (6).

Let E be a real uniformly convex Banach space with a Fréchet differentiable
norm. The aim of this paper is to extend the results for continuous pseudocontractive
mappings [5, Theorem2.3], as well as, that for Lipschitzian pseudocontractivemappings
[10, Theorem 3.1], to the case of implicit iteration process (8), where the perturbation
G satisfies the strict pseudocontractivity and the strong accretivity condition. We will
obtain weak convergence theorems for a finite family of Lipschitzian pseudocontractive
self mappings, as well as, necessary and sufficient conditions for the strong convergence
to a common fixed point of a finite family of continuous pseudocontractive selfmappings
in E . As consequences, we derive other results which extend and improve some
theorems in [1-3, 5-6, 11].

2. Preliminaries

In the sequel, we shall need the following definitions and results. We refer to
Takahashi [13] for details and related results.

DEFINITION 2.1. A Banach space E is called uniformly convex if for each ε > 0
there is a δ > 0 such that for each x, y ∈ E with ‖x‖, ‖y‖ � 1 and ‖x − y‖ � ε we
have ‖x + y‖ � 2(1 − δ) . The modulus of uniform convexity of E is defined by

δE(ε) := inf{1 − ‖1
2
(x + y)‖ : ‖x‖, ‖y‖ � 1, ‖x− y‖ � ε}, for all ε ∈ [0, 2].

Hence, E is uniformly convex if δE(0) = 0 and δE(ε) > 0 for ε ∈ [0, 2] .

The following result is useful in the sequel.
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PROPOSITION 2.1. (Bruck [12]) Let E be a uniformly convex Banach space with
modulus of uniform convexity δE . Then δE : [0, 2] → [0, 1] is continuous, monotone
increasing and satisfies the following assertions

(a) δE(0) = 0 and δE(ε) > 0 for ε > 0 ;
(b) ‖αu + (1− α)v‖ � 1− 2 min{α, 1− α} · δE(‖u− v‖) , for each α ∈ [0, 1]

and u, v ∈ E with ‖u‖, ‖v‖ � 1 .

DEFINITION 2.2. Let K be a closed subset of a Banach space E . A mapping
T : K → K is said to to be semi-compact, if for any bounded sequence {xn} in K such
that ‖xn − Txn‖ → 0 as n → +∞ , there exists a subsequence {xni} ⊂ {xn} such that
xni → x∗ ∈ K as i → +∞ .

DEFINITION 2.3. A Banach space E is said to satisfy Opial’s condition, if whenever
{xn} is a sequence in E which converges weakly to x , as n → +∞ , then

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖, for all y ∈ E, y 	= x.

It is well known that everyHilbert space satisfies Opial’s condition (see for instance
[9]). Throughout the paper, for the weak ω -limit set of a sequence {xn} in E we shall
use the following notation

ωω(xn) := {x ∈ E|{xnj} ⇀ x, for some subsequence {nj} of {n}}.
Let U = {x ∈ E : ‖x‖ = 1} be the unit sphere of E . The norm of E is said to be

Gâteaux differentiable if the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x, y ∈ U. In this case E is said to be smooth. We know (see [10]) that
if E is smooth then the normalized duality mapping J is single-valued and continuous
from the strong topology to the weak ∗ topology. The norm of E is called Fréchet
differentiable if for each x ∈ U the above limit is attained uniformly for y ∈ U .
The norm of E is called uniformly Fréchet differentiable if the above limit is attained
uniformly for x, y ∈ U .

DEFINITION 2.4. A Banach space E is said to be
(i) uniformly smooth if ρE(t)

t → 0 as t → 0 , where ρE(t) is the modulus of
smoothness of E defined by

ρE(t) = sup{1
2
(‖x + y‖+ ‖x− y‖)− 1 : ‖x‖ = 1, ‖y‖ = t}, for all t > 0;

(ii) q -uniformly smooth (q > 1 ), if there exists a constant c > 0 such that
ρE(t) � ctq.

Typical examples of both uniformly convex and uniformly smooth Banach spaces
are the LP spaces with p > 1 . It is also known that a Banach space is uniformly smooth
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if and only if the norm of E is uniformly Fréchet differentiable. If E is q -uniformly
smooth then the norm of E is Fréchet differentiable.

In E is a Banach space, x ∈ E and F a nonempty subset of E , then, throughout
the paper, we will denote d(x, F) := inf

p∈F
‖x − p‖ .

The following results will be used in the sequel.

THEOREM 2.1. (Osilike, Udomene [2]) Let E be a real q -uniformly smooth Ba-
nach space which is also uniformly convex. Let K be a nonempty closed convex subset
of E and T : K → K be a strictly pseudocontractive mapping in the terminology of
Browder-Petryshyn. Then (I − T) is demiclosed at zero, i.e., {xn} ⊂ D(T) such that
{xn} converges weakly to x ∈ D(T) and {(I − T)xn} converges strongly to 0 , then
x − Tx = 0 .

THEOREM 2.2. (Zhou [11]) Let E be a real reflexive Banach space which satisfies
Opial’s condition. Let K be a nonempty closed convex subset of E and T : K → K be
a continuous pseudocontractive mapping. Then (I − T) is demiclosed at zero.

THEOREM 2.3. (Zhou [11]) Let E be a real uniformly convex Banach space.
Let K be a nonempty closed convex subset of E and T : K → K be a continuous
pseudocontractive mapping. Then (I − T) is demiclosed at zero.

THEOREM 2.4. (Tan, Xu [14]) Let E be a real uniformly convex Banach space
whose norm is Fréchet differentialble. Let K be a nonempty closed convex subset of E
and Ti : K → K , i ∈ {1, 2, · · · } be a family of Ln -Lipschitzian mappings such that
∞∑

n=1

(Ln−1) < +∞ and F :=
∞⋂
i=1

F(Ti) 	= ∅ . For arbitrary x1 ∈ K define the sequence

{xn}∞n=1 by xn+1 = Tnxn , for all n ∈ {1, 2, · · · } . Then lim
n→∞〈 xn, j(p − q)〉 exists for

all p, q ∈ F and for all u, v ∈ ωω(xn) and all p, q ∈ F we have 〈 u− v, j(p−q)〉 = 0 .

LEMMA 2.1. If J : E → 2E∗
is a normalized duality mapping, then for all x, y ∈ E ,

‖x + y‖2 � ‖x‖2 + 2〈 y, j(x + y)〉 , for all j(x + y) ∈ J(x + y).

LEMMA 2.2. Let E be a smooth Banach space and F : E → E be both λ -strictly
pseudocontractive and δ -strongly accretive with λ + δ � 1 . Then

(i) I − F is nonexpansive;
(ii) For each t ∈ [0, 1] the mapping St : E → E defined by

Stx = x − tG(x), for all x ∈ E , is nonexpansive.

Proof. Since E is smooth, J is single-valued. Utilizing the λ -strict pseudocon-
tractivity and δ -strong accretivity of F , we have for all x, y ∈ E

λ‖(I − F)x − (I − F)y‖2 � 〈 (I − F)x − (I − F)y, j(x − y)〉
= ‖x − y‖2 − 〈Fx − Fy, j(x − y)〉
� (1 − δ)‖x − y‖2.

Note that λ + δ � 1 . So, we derive for all x, y ∈ E

‖(I − F)x − (I − F)y‖ �
√

1 − δ
λ

‖x − y‖ � ‖x − y‖
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and hence I − F is nonexpansive. On the other hand, since

Stx = x − tG(x) = (1 − t)x + t(I − F)x, ∀x ∈ E,

it follows from the nonexpansivity of I − F that for all x, y ∈ E

‖Stx − Sty‖ = ‖(1 − t)(x − y) + t((I − F)x − (I − F)y)‖
� (1 − t)‖x − y‖ + t‖(I − F)x − (I − F)y‖
� (1 − t)‖x − y‖ + t‖x − y‖
= ‖x − y‖.

This shows that St : E → E is nonexpansive. The proof is complete. �

LEMMA 2.3. (Osilike et al. [7, p. 80]) Let {an}∞n=1, {bn}∞n=1 and {δn}∞n=1 be
sequences of nonnegative real numbers satisfying the inequality

an+1 � (1 + δn)an + bn, for all n � 1.

If
∞∑
n=1

δn < ∞ and
∞∑
n=1

bn < ∞ , then lim
n→∞ an exists. If in addition {an}∞n=1 has a

subsequence which converges to zero, then lim
n→∞ an = 0 .

LEMMA 2.4. (Tan, Xu [8, p. 303]) Let {an}∞n=1 and {bn}∞n=1 be two sequences of
nonnegative real numbers satisfying the inequality

an+1 � an + bn, for all n � 1.

If
∞∑

n=1

bn converges, then lim
n→∞ an exists.

3. Main Results

We start with the following lemma.

LEMMA 3.1. Let E be a real smooth Banach space, G : E → E be δ -strongly
accretive and λ -strictly pseudocontractive with δ + λ � 1 and let Ti : E → E, i ∈
{1, 2, ..., N} , be a finite family of continuous pseudocontractive mappings, such that

F :=
N⋂

i=1

F(Ti) 	= ∅ . Suppose {αn}∞n=1 and {λn}∞n=1 are real sequences satisfying the

following conditions
(i) αn ∈ [a, b] for some a, b ∈ (0, 1) ;

(ii) λn ∈ [0, 1) and
∞∑

n=1

λn < ∞ .

Let x0 ∈ E and let {xn} be defined by

xn = αn(xn−1 − λnG(xn−1)) + (1 − αn)Tnxn, for all n � 1 (8),
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where Tn = Tn mod N . Then
(a) lim

n→∞ ‖xn − p‖ exists, for all p ∈ F ;

(b) lim
n→∞ d(xn, F) exists.

Proof. Since E is smooth, the normalized duality mapping J is single-valued.
Let p ∈ F and n � 1 . Then, utilizing (1) and Lemma 2.2 (ii) we have

‖xn − p‖2 = 〈αn(xn−1 − λnG(xn−1) − p) + (1 − αn)(Tnxn − p), j(xn − p)〉
= αn[〈 Sλnxn−1 − Sλnp, j(xn − p)〉 − 〈 λnG(p), j(xn − p)〉 ]

+(1 − αn)〈Tnxn − Tnp, j(xn − p)〉
� αn[‖Sλnxn−1 − Sλnp‖‖xn − p‖ + λn‖G(p)‖‖xn − p‖]

+(1 − αn)‖xn − p‖2

� αn[‖xn−1 − p‖‖xn − p‖ + λn‖G(p)‖‖xn − p‖] + (1 − αn)‖xn − p‖2

= αn‖xn − p‖[‖xn−1 − p‖ + λn‖G(p)‖] + (1 − αn)‖xn − p‖2,

where Sλnxn−1 = xn−1 − λnG(xn−1) and Sλnp = p − λnG(p) . So

‖xn − p‖2 � ‖xn − p‖[‖xn−1 − p‖ + λn‖G(p)‖]. (9)

If ‖xn − p‖ = 0 , the result is follows. Next, let ‖xn − p‖ > 0 . Then from (9) we have

‖xn − p‖ � ‖xn−1 − p‖ + λn‖G(p)‖. (10)

Notice that condition ( ii ) implies that lim
n→∞ λn = 0 . By Lemma 2.4 we get that

lim
n→∞ ‖xn − p‖ exists. Thus {xn} is bounded and so is {G(xn)} due to the fact that G

is β -Lipschitzian with β � 1 + 1
λ . On the other hand, from (10) we obtain

‖xn − p‖ � ‖xn−1 − p‖ + λn‖G(p) − G(xn−1) + G(xn−1)‖
� ‖xn−1 − p‖ + λnβ‖xn−1 − p‖ + λn‖G(xn−1)‖
� (1 + λnβ)‖xn−1 − p‖ + λnM

where ‖G(xn)‖ � M, for all n � 1 , for some M > 0 .
Taking the infimum over all p ∈ F , we have

d(xn, F) � (1 + λnβ)d(xn−1, F) + λnM.

Therefore, by applying Lemma 2.3 implies that lim
n→∞ d(xn, F) exists. The proof is

complete. �
First main result of this paper is the following.

THEOREM 3.1. Let E be a real uniformly convex Banach space whose norm
is Fréchet differentiable and G : E → E be δ -strongly accretive and λ -strictly
pseudocontractive mapping with δ + λ � 1 . Let Ti : E → E be a finite family
of Li -Lipschitzian pseudocontractive mappings, where i ∈ {1, 2, ..., N} , such that

F :=
N⋂

i=1

F(Ti) 	= ∅ .
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Suppose {αn}∞n=1 and {λn}∞n=1 are real sequences satisfying the following condi-
tions

(i) αn ∈ [a, b] for some a, b ∈ (0, 1) and lim sup
n→∞

αn < 1 ;

(ii) λn ∈ [0, 1) and
∞∑

n=1

λn < ∞ .

Let x0 ∈ E and let {xn} be defined by

xn = αn(xn−1 − λnG(xn−1)) + (1 − αn)Tnxn, for all n � 1 (8),

where Tn = Tn mod N .
Then the sequence {xn} converges weakly to a common fixed point of the family

{Tn}n∈{1,2,···N} .

Proof. Since the norm of E is Fréchet differentiable, the space E is also smooth,
and then the normalized duality mapping J is single-valued.

Also from Lemma 3.1, lim
n→∞ ‖xn − p‖ exists, where p ∈ F . In particular, the

sequences {xn} and {G(xn)} are bounded.
We organize the proof in three steps.

Step 1. ‖xn−1 − xn‖ → 0 as n → +∞.
For p ∈ F and each n � 1 , using (4′) with s := 1−αn

2αn
, we have

‖xn − p‖ � ‖xn − p + 1−αn
2αn

[(xn − Tnxn) − (p − Tp)]‖
= ‖xn − p + 1−αn

2αn
(xn − Tnxn)‖

= ‖xn − p + 1−αn
2αn

[αn(xn−1 − λnG(xn−1)) + (1 − αn)Tnxn − Tnxn]‖
= ‖xn − p + 1−αn

2 (xn−1 − λnG(xn−1) − Tnxn)‖
= ‖αn(xn−1−λnG(xn−1))+(1−αn)Tnxn−p 1−αn

2 (xn−1−λnG(xn−1)−Tnxn)‖
= ‖(αn+ 1−αn

2 )xn−1−λn(αn+ 1−αn
2 )G(xn−1)+(1−αn− 1−αn

2 )Tnxn−p‖
= ‖ 1+αn

2 xn−1 − λn
1+αn

2 G(xn−1) + 1−αn
2 Tnxn − p‖

= 1
2‖xn−1 − xn − λnG(xn−1) − 2p‖

� 1
2‖xn−1 − xn − 2p‖ + λn

2 ‖G(xn−1)‖
� ‖xn−1 − p‖ · [1 − δ(‖xn−1−xn‖

‖xn−1−p‖ )] + λn
2 ‖G(xn−1)‖

� ‖xn−1 − p‖ · [1 − δ(‖xn−1−xn‖
‖xn−1−p‖ )] + λn

2 M,

where ‖G(xn)‖ � M, for all n � 1 , for some M > 0 .
Hence for any n � 1 we get

|xn−1 − p‖ · δ(
‖xn−1 − xn‖
‖xn−1 − p‖ ) � ‖xn−1 − p‖ − ‖xn − p‖ +

λn

2
M.

Letting n → +∞ and using the properties of δ and hypothesis (ii), we obtain

‖xn−1 − xn‖ → 0 as n → +∞.
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Step 2. lim
n→∞ ‖xn − Tlxn‖ = 0 for each l ∈ {1, 2, ..., N}.

Using by the assumptions (i) and (ii), we have

‖xn−1 − Tnxn‖ � 1
1−αn

‖xn−1 − xn‖ + αnλn
1−αn

‖G(xn)‖
� 1

1−αn
‖xn−1 − xn‖ + ‖Gn‖

1−αn
λn → 0,

as n → +∞ .
Also

‖xn − Tnxn‖ = ‖αn(xn−1 − λnG(xn−1)) + (1 − αn)Tnxn − Tnxn‖
= αn‖xn−1 − λnG(xn−1) − Tnxn‖
� αn‖xn−1 − Tnxn‖ + αnλn‖G(xn−1)‖
� αn‖xn−1 − Tnxn‖ + λnM → 0,

as n → +∞ .
Then, for i ∈ {1, 2, · · · , N} we have

‖xn − Tn+ixn‖ � (1 + L)‖xn − xn+i‖ + ‖xn+i − Tn+ixn+i‖ → 0,

where L := max
1�i�N

Li .

Letting n → +∞ in the previous relation, we obtain ‖xn −Tn+ixn‖ → 0 , for each
i ∈ {1, 2, · · · , N} .

Without loss of generality, we can assume that nk = j (modN) for all k and some
j ∈ {1, 2, ..., N} . For any fixed l ∈ {1, 2, ..., N} , we can find an i ∈ {1, 2, ..., N} ,
independent of k , such that nk + i = l (modN) for all k . It then follows from (16) that

lim
nk→∞ ‖xnk − Tlxnk‖ = 0 for each l ∈ {1, 2, ..., N}.

Thus

lim
n→∞ ‖xn − Tlxn‖ = 0 for each l ∈ {1, 2, ..., N}.

Step 3. {xn} ⇀ p as n → +∞ .
Theorem 2.3 implies ωω(xn) ⊂ F . By Theorem 2.4 we get that ωω(xn) is a

singleton. Hence, from Step 2, we get {xn} ⇀ p as n → +∞ .
The proof is now complete. �

REMARK 3.1. Theorem 3.1 extends Theorem 2.6 in Chen, Song, Zhou [5] and
Theorem 3.1 in Zhou [11] to the case of an implicit iteration process (see (8)) with a
perturbation. Also, Theorem 3.1 holds in weaker assumptions on the space E , on the
mappings Tn and on the parameters {αn} than in Theorem 2 from Xu, Ori [3] and than
in Theorem 2.6 from Chen, Song, Zhou [5].
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THEOREM 3.2. Let E be a real reflexive and smooth Banach space which satisfies
Opial’s condition and G : E → E be δ -strongly accretive and λ -strictly pseudo-
contractive mapping with δ + λ � 1 . Let Ti : E → E be a finite family of strictly

pseudocontractive mappings, where i ∈ {1, 2, ..., N} , such that F :=
N⋂

i=1

F(Ti) 	= ∅ .

Suppose {αn}∞n=1 and {λn}∞n=1 are real sequences satisfying the following condi-
tions

(i) αn ∈ [a, b] for some a, b ∈ (0, 1) ;

(ii) λn ∈ [0, 1) and
∞∑

n=1

λn < ∞ .

Let x0 ∈ E and let {xn} be defined by

xn = αn(xn−1 − λnG(xn−1)) + (1 − αn)Tnxn, for all n � 1 (8),

where Tn = Tn mod N .
Then the sequence {xn} converges weakly to a common fixed point of the family

{Tn}n∈{1,2,···N} .

Proof. Since E is smooth, the normalized duality mapping J is single-valued.
Also, since the mappings Ti : E → E are strictly pseudocontractive for each i ∈
{1, 2, ..., N} , we deduce from (3) that

〈 (I − Ti)x − (I − Ti)y, j(x − y)〉 � ki‖(I − Ti)x − (I − Ti)y‖2, for all x, y ∈ E

where ki ∈ (0, 1) , for i ∈ {1, 2, ..., N} .
Put k = min

1�i�N
{ki} . Then k ∈ (0, 1) and

〈 (I − Ti)x− (I − Ti)y, j(x− y)〉 � k‖(I − Ti)x− (I − Ti)y‖2, for all x, y ∈ E (11)

for each i ∈ {1, 2, ..., N} . Moreover, it is easy to see that each Ti (where 1 � i � N )
is β -Lipschitzian with β � 1 + 1

k . Hence it is obvious that Ti is a continuous pseu-
docontractive self mapping on E for each i ∈ {1, 2, ..., N} . Hence all the conditions
of Lemma 3.1 are satisfied. Thus, by Lemma 3.1 we conclude that limn→∞ ‖xn − p‖
exists, where p ∈ Ω . Consequently, {xn} and {G(xn)} are bounded, due to the fact
that G is β -Lipschitzian with β � 1 + 1

λ .
Since xn = αn(xn−1 − λnG(xn−1)) + (1 − αn)Tnxn, for all n � 1 , we have

xn−1 =
1
αn

xn + (1 − 1
αn

)Tnxn + λnG(xn−1). (12)

It now follows from (12) that

xn − xn−1 = (1 − 1
αn

)(xn − Tnxn) − λnG(xn−1),

〈 xn−xn−1, j(xn−p)〉 = (1− 1
αn

)〈 xn−Tnxn, j(xn−p)〉−λn〈G(xn−1), j(xn−p)〉

= −1−αn

αn
〈 xn−Tnxn, j(xn−p)〉−λn〈F(xn−1), j(xn−p)〉 .

(13)
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By Lemma 2.1, using (13) and (11), we get that for each n � 1 we have

‖xn − p‖2 = ‖xn−1 − p + xn − xn−1‖2

� ‖xn−1 − p‖2 + 2〈 xn − xn−1, j(xn − p)〉
= ‖xn−1 − p‖2 − 21−αn

αn
〈 xn − Tnxn − (p − Tnp), j(xn − p)〉

−2λn〈G(xn−1), j(xn − p)〉
� ‖xn−1 − p‖2 − 2k 1−αn

αn
‖xn − Tnxn‖2 + 2λn‖G(xn−1)‖‖xn − p‖.

(14)

Thus,from (14) and condition 0 < a � αn � b < 1 , we obtain that

2k(1−b)
b ‖xn − Tnxn‖2 � 2k 1−αn

αn
‖xn − Tnxn‖2

� ‖xn−1 − p‖2 − ‖xn − p‖2 + 2λn‖G(xn−1)‖‖xn − p‖
and hence

n∑
i=1

2k(1 − b)
b

‖xi − Tixi‖2 � ‖x0 − p‖2 − ‖xn − p‖2

+
n∑

i=1

2λi‖G(xi−1)‖‖xi − p‖.
(15)

Since both {xn} and {G(xn)} are bounded, we may assume that ‖xn − p‖ � M and

‖G(xn)‖ � M , for some M > 0 . Thus since
∞∑

n=1

λn < ∞ it follows from (15) that

2k(1 − b)
b

∞∑
n=1

‖xn − Tnxn‖2 � ‖x0 − p‖2 + 2M2
∞∑
n=1

λn < ∞.

Consequently

lim
n→∞ ‖xn − Tnxn‖2 = 0, i.e., lim

n→∞ ‖xn − Tnxn‖ = 0.

Therefore,

‖xn−1 − Tnxn‖ = ‖ 1
αn

(xn − Tnxn) + λnG(xn−1)‖
� 1

a‖xn − Tnxn‖ + λnM → 0 as n → ∞
and

‖xn − xn−1‖ = ‖(1 − αn)(Tnxn − xn−1) − αnλnG(xn−1)‖
� (1 − αn)‖xn−1 − Tnxn‖ + αnλn‖G(xn−1)‖
� ‖xn−1 − Tnxn‖ + λnM → 0 as n → ∞.

This implies that
‖xn+i − xn‖ → 0 as n → ∞,

for each i ∈ {1, 2, ..., N} . Since each Ti is β -Lipschitzian with β � 1 + 1
k , we have

for each i ∈ {1, 2, · · · , N} that

‖Tix − Tiy‖ � β‖x − y‖ for all x, y ∈ E.
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Therefore,

‖xn − Tn+ixn‖ � ‖xn − xn+i‖ + ‖xn+i − Tn+ixn+i‖ + ‖Tn+ixn+i − Tn+ixn‖
� ‖xn − xn+i‖ + ‖xn+i − Tn+ixn+i‖ + β‖xn+i − xn‖
= (1 + β)‖xn+i − xn‖ + ‖xn+i − Tn+ixn+i‖ → 0 as n → ∞.

Then
lim

n→∞ ‖xn − Tn+ixn‖ = 0 for each i ∈ {1, 2, · · · , N}. (16)

Without loss of generality, we can assume that nk = j (modN) for all k and some
j ∈ {1, 2, ..., N} . For any fixed l ∈ {1, 2, ..., N} , we can find an i ∈ {1, 2, ..., N}
independent of k , such that nk + i = l (modN) for all k . It then follows from (16) that

lim
nk→∞ ‖xnk − Tlxnk‖ = 0 for each l ∈ {1, 2, ..., N}.

Thus
lim

n→∞ ‖xn − Tlxn‖ = 0 for each l ∈ {1, 2, ..., N}.
The proof is complete. �

REMARK 3.2. Theorem 3.2 extends Theorem 2.6 in Chen, Song, Zhou [5] and
Theorem 3.2 in Zhou [11] to the case of an implicit iteration process (see (8)) with a
perturbation. Also, Theorem 3.2 holds in weaker assumptions on the space E , than in
Theorem 2.6 in Chen, Song, Zhou [5], where E is supposed to be q -uniformly smooth
and uniformly convex.

In a similar way to Chen, Song, Zhou [5] we can establish the following strong
convergence result.

THEOREM 3.3. Let E be a real smooth Banach space, G : E → E be δ -strongly
accretive and λ -strictly pseudocontractive with δ + λ � 1 and let Ti : E → E, i ∈
{1, 2, ..., N} , be continuouspseudocontractive self mappings such that F =

N⋂
i=1

F(Ti) 	=
∅ . Suppose {αn}∞n=1 and {λn}∞n=1 are real sequences satisfying the following conditions

(i) αn ∈ [a, b] for some a, b ∈ (0, 1) ;

(ii) λn ∈ [0, 1) and
∞∑

n=1

λn < ∞ .

Let x0 ∈ E and let {xn} be defined by

xn = αn(xn−1 − λnG(xn−1)) + (1 − αn)Tnxn, ∀n � 1,

where Tn = Tn mod N .
Then {xn} converges strongly to a common fixed point of the mappings {Ti}N

i=1 if
and only if lim inf

n→∞ d(xn, F) = 0 .

Proof. Clearly, the necessity is obvious.
We will show the sufficiency. Suppose lim inf

n→∞ d(xn, F) = 0 . Then Lemma 3.1 implies
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that lim
n→∞ d(xn, F) = 0 . Since {G(xn)} is bounded, we may assume that there exists

M > 0 such that ‖G(xn)‖ � M, for all n � 1 . Hence it follows from (10) that, for all
n � 1 and p ∈ F , we have

‖xn+m − p‖ � ‖xn+m−1 − p‖ + λn+m‖G(p)‖
� ‖xn+m−2 − p‖ + λn+m−1‖G(p)‖ + λn+m‖G(p)‖
...
� ‖xn − p‖ + λn+1‖G(p)‖ + λn+2‖G(p)‖ + · · · + λn+m‖G(p)‖
= ‖xn − p‖ + ‖G(p)‖

n+m∑
i=n+1

λi,

and so

‖xn+m − xn‖ � ‖xn+m − p‖ + ‖xn − p‖
� 2‖xn − p‖ + ‖G(p)‖

n+m∑
i=n+1

λi

� 2‖xn − p‖ + ‖G(p) − G(xn)‖
n+m∑

i=n+1

λi + ‖G(xn)‖
n+m∑

i=n+1

λi

� (2 + L‖
n+m∑

i=n+1

λi)‖xn − p‖ + M
n+m∑

i=n+1

λi.

(17)

Taking the infimum over all p ∈ F , we obtain from from (17) that

‖xn+m − xn‖ � (2 + L
n+m∑

i=n+1

λi)d(xn, F) + M
n+m∑

i=n+1

λi → 0 as n → ∞.

Thus {xn}∞n=1 is a Cauchy sequence. Suppose lim
n→∞ xn = u . Then

d(u, F) = lim
n→∞ d(xn, F) = 0.

As each Ti (1 � i � N ) is continuous pseudocontractive mapping, we claim that
F(Ti) is closed. Indeed, note that F(Ti) 	= ∅ for each i . Let {pn}∞n=1 ⊂ F(Ti) such
that lim

n→∞ pn = p . Then we have Tip = lim
n→∞Tipn = lim

n→∞ pn = p. Thus p ∈ F(Ti)

for each i ∈ {1, 2, · · ·N} . This shows that F(Ti) is closed, for each i ∈ {1, 2, · · ·N} .
Consequently, F is closed and hence u ∈ F . The proof is complete. �

COROLLARY 3.1. Let E be a real smooth Banach space, let G : E → E be
δ -strongly accretive and λ -strictly pseudocontractive with δ + λ � 1 , and let Ti :
E → E, i = 1, 2, ..., N , be continuous pseudocontractive self mapping such that

F :=
N⋂

i=1

F(Ti) 	= ∅ . Suppose {αn}∞n=1 and {λn}∞n=1 are real sequences satisfying the

following conditions:
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(i) αn ∈ [a, b] for some a, b ∈ (0, 1) ;

(ii) λn ∈ [0, 1) and
∞∑

n=1

λn < ∞ .

Let x0 ∈ E and let {xn} be defined by

xn = αn(xn−1 − λnG(xn−1)) + (1 − αn)Tnxn, for all n � 1,

where Tn = Tn mod N .
Then {xn} converges strongly to a common fixed point of the mappings {Ti}N

i=1 if
and only if {xn} has a subsequence which converges strongly to some u ∈ F .

As a particular case we have the following result.

THEOREM 3.4. Let E be a real smooth Banach space, G : E → E be δ -strongly
accretive and λ -strictly pseudocontractive with δ + λ � 1 and let Ti : E → E, i ∈
{1, 2, ..., N} , be strictly pseudocontractive self mappings such that F :=

N⋂
i=1

F(Ti) 	= ∅ .

Suppose that at least one mapping T ∈ {T1, T2, ..., TN} is semi-compact. Let {αn}∞n=1
and {λn}∞n=1 be real sequences satisfying the following conditions:

(i) λn ∈ [0, 1) and αn ∈ [a, b] for some a, b ∈ (0, 1) ;

(ii)
∞∑
n=1

λn < ∞ .

Let x0 ∈ E and let {xn} be defined by

xn = αn(xn−1 − λnG(xn−1)) + (1 − αn)Tnxn, for all n � 1,

where Tn = Tn mod N .
Then {xn} converges strongly to a common fixed point of the mappings {Ti}N

i=1 .

Proof. We follow the approach given in [5, Theorem 2.5]. First, we notice that
from Lemma 3.1 and Theorem 3.1 we have that lim

n→∞ ‖xn − p‖ exists (where p ∈ F )

and lim
n→∞ ‖xn − Tlxn‖ = 0, for all l ∈ {1, 2, ..., N} . Thus {xn} is bounded. Then,

by hypothesis, there exists a semi-compact mapping T ∈ {T1, T2, ..., TN} . We may
assume, without loss of generality, that T := T1 is semi-compact. Therefore,
lim

n→∞ ‖xn − T1xn‖ = 0 and by the definition of semi-compactness there exists a subse-

quence {xni} ⊂ {xn} such that xni → x∗ ∈ E as i → ∞ .
Thus

‖x∗ − Tlx
∗‖ = lim

i→∞ ‖xni − Tlxni‖ = 0, for all l ∈ {1, 2, ..., N}.

Thus x∗ ∈ F . Then

lim inf
n→∞ d(xn, F) � lim inf

n→∞ ‖xn − x∗‖ � lim
i→∞ ‖xni − x∗‖ = 0.

By Theorem 3.3 we have that lim
n→∞ xn = x∗ ∈ F . The proof is complete. �
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