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IMPLICIT ITERATION SCHEME WITH PERTURBED
MAPPING FOR COMMON FIXED POINTS OF A FINITE
FAMILY OF LIPSCHITZ PSEUDOCONTRACTIVE MAPPINGS

LuU-CHUAN CENG !, ADRIAN PETRUSEL AND JEN-CHIH YAO?

(communicated by R. Verma)

Abstract. Let E be a real Banach space, {Ti}ﬁ 1 be a finite family of continuous pseudocon-
tractive self mappings of E and G : E — E be a mapping which is both & -strongly accretive
and A -strictly pseudocontractive of Browder-Petryshyn type such that d +A > 1. We propose
a new implicit iteration scheme with perturbed mapping G for the approximation of common

fixed points of {Ti}f\i | - For an arbitrary initial point xo € E, the sequence {xp};2, is defined
by

Xn = On(Xp—1 = A G(xn—1)) + (1 = an) Tnxn
where Ty = Ty moa N» {On}ney C la,b] CJO,1[ and {A,};2, C [0, 1[. We establish some
weak convergence theorems for this implicit iteration scheme. Also, necessary and sufficient
conditions for strong convergence of this implicit iteration scheme are obtained.

1. Introduction

Let E be areal Banach space and E* be the dual space of E. Let I be the identity
operator of £. Denote by J the normalized duality set-valued mapping from E into
2E" given by

Jx)={f €E*: (x,f) = |x|> = |If|I’}, forallx€E,

where (-,-) denotes the generalized duality pairing between E and E*. If E is a
smooth Banach space, then J is single-valued. In the sequel, we shall denote the
single-valued duality mapping by j and by F(T) = {x € E : Tx = x} the fixed point
set of the mapping 7 : E — E.

When {x,} is a sequence in E, then x, — x (respectively, x, — x) will denote
strong (respectively, weak) convergence of the sequence {x,} to x.
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DEFINITION 1.1. Let T be a mapping with domain D(T) and range R(T) in E.
T is called
(i) nonexpansive if

ITx—Ty| < =yl forallx,y € D(T);
(i) Lipschitzian if there exists L > O such that
ITx — Ty|| < L||x —y||, forallx,y € D(T);

(iii) strongly accretive, if for each x,y € D(T), there exists 6 € (0,1) and
j(x—y) € J(x —y) such that

(Tx —Ty,j(x—y)) = 9d|x—y

(iv) pseudocontractive, if for each x,y € D(T), there exists j(x —y) € J(x — y)
such that

2,

(Tx = Ty,j(x—y)) < [lx =yl (1)

(v) strictly pseudocontractive in Browder-Petryshyn’ sense (for short, strictly

pseudocontractive), if for each x,y € D(T),there exists k € (0,1) and
Jj(x—y) € J(x —y) such that

(Tx =Ty, j(x —y)) < lx=yI> —kllx—y = (Tx=Ty)|>.  (2)

REMARK 1.1. Inequality (2) can be written in the form

(I =T)x— (I =T)y,j(x =) k[T = T)x— (1= T)y|>. 3)
Moreover, inequality (1) can be written in the form
(I =T)x = (I =T)y,jlx=y)) =0. )

It is easy to see from (3) that every strictly pseudocontractive map is f3 -Lipschitzian
with B <1+ 1.
It is also well-known (see [13]) that (1) is equivalent to
=yl < llx =y +slx = Tx) = (v = Ty, (4)
forany s > 0 and any x,y € D(T).

Let K be a nonempty convex subset of £ and 7 : K — K be a continuous
pseudocontractive mapping. For every u € K and ¢ € (0, 1), the operator 7, : K — K
defined by T)x = tu+ (1 —1)Tx, forall x € K, is strongly pseudocontractive. Indeed,
observe that for each x,y € K, there exists j(x —y) € J(x —y) such that

(Tix = Tiy,j(x = y)) = (1 = 0)(Tx = Ty, j(x = y)) < (1 =1)llx = yl*.

Since T; is also continuous, so we know from Deimling [15], that T; has a unique fixed
point x, € K (see also [4]), i.e.,

x=tu+ (1—0Tx. (5)
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Let {T;}Y, beafinite family of continuous pseudocontractive self-mappings of K .
Motivated by Xu and Ori’s implicit iteration process (see [3]), in order to approximate
a common fixed points of a finite family of nonexpansive mappings, Chen, Song and
Zhou [5] used (5) for constructing the following implicit iteration process. For xy € K
and {0,}52, C (0, 1), the sequence {x,}22, is generalized as follows:

x1 = aixo + (1 — o) Tixy,
Xy = Ohxy + (1 - 052)T2x2>

xy = oyxn—1 + (1 — o) Tnxn,

The scheme is expressed in a compact form as
Xp = OpXp—1 + (1 — 0,)Tyx,, forallm > 1, (6)

where T, =Timod V-

In [5], necessary and sufficient conditions for the strong convergence to a common
fixed point of a finite family of continuous pseudocontractive mappings are established.
Also strong and weak convergence theorem for a finite family of strictly pseudocon-
tractive mappings of Browder-Petryshyn type are derived. Their results extended and
improved some corresponding ones in [1-3].

Very recently, Zhou [11] extended the above results of Chen, Song and Zhou to a
more general class of real reflexive Banach space, as well as, the results of Xu and Ori
to a more general class of Lipschitzian pseudocontractive mappings.

On the other hand, let {7;}¥, be a finite family of nonexpansive self mappings
of a real Hilbert space H and G : H — H. Suppose that there exists some constants
K,M > 0 such that the mapping G is k -Lipschitzian and 7 -strongly monotone. Let
{a,}22, € (0,1), {A.}52, C [0,1) and take a fixed number u € (0, ,2(—’27) . For the
approximation of common fixed points of {7;}¥ |, Zeng and Yao [6] introduced and
studied the following implicit iteration process with perturbed mapping G. For an
arbitrary initial point xy € H, the sequence {x,}>°, is generated as follows:

x1 = ouxo + (1 — o) [Tixr — AuG(Thxy)],
Xy = OhXx| + (1 — O!z)[Tz)Cz — AzMG(TzXz)]

xy = oyxn—1 + (1 — o) [Tvxy — ANuG(Tyxn)],

This scheme can be expressed in a concise form as follows
Xn = OpXp—1 + (1 — o) [Tyxn — AuuG(Tyxy,)], foralln > 1. (7)

It is clear that if A, = 0, forall n > 1, then the implicit iteration scheme (7) reduces
to the implicit iteration process (6).
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Inspired by the above implicit iteration schemes (6) and (7), we will use (5) to
propose a new implicit iteration scheme with perturbed mapping for approximation
of common fixed points of a finite family of continuous pseudocontractive mappings.
Let {T;}Y, be a finite family of continuous pseudocontractive self mappings of E
and G : E — E be a perturbed map which is both A -strictly pseudocontractive
and O-strongly accretive with A + 8 > 1. For xp € E and {o,}5°, C (0,1) and
{An}2, C[0,1), the sequence {x,}>°, is generated as follows:

X1 = OC](X() — AlG(X())) + (1 — OC])Tl)Cl7
Xy = OCz(xl — AzG(xl)) + (1 — OCz)szz,

XN = O(N(XN,1 — A,NG(XNfl)) + (1 — OCN)TN)CN7

The scheme could be expressed in a compact form as follows
Xn = O(xp—1 — 4G (xp—1)) + (1 — 04)Tyx,, foralln > 1, (8)

where T, = Tmoan . Clearly, if A, =0, foralln > 1, the implicit iteration scheme
(8) reduces to the implicit iteration process (6).

Let E be a real uniformly convex Banach space with a Fréchet differentiable
norm. The aim of this paper is to extend the results for continuous pseudocontractive
mappings [5, Theorem 2.3, as well as, that for Lipschitzian pseudocontractive mappings
[10, Theorem 3.1], to the case of implicit iteration process (8), where the perturbation
G satisfies the strict pseudocontractivity and the strong accretivity condition. We will
obtain weak convergence theorems for a finite family of Lipschitzian pseudocontractive
self mappings, as well as, necessary and sufficient conditions for the strong convergence
to acommon fixed point of a finite family of continuous pseudocontractive self mappings
in E. As consequences, we derive other results which extend and improve some
theorems in [1-3, 5-6, 11].

2. Preliminaries

In the sequel, we shall need the following definitions and results. We refer to
Takahashi [13] for details and related results.

DEFINITION 2.1. A Banach space E is called uniformly convex if for each € > 0
there is a § > 0 such that for each x,y € E with ||x||,[ly|| < I and |jx — y|| > € we
have ||x + y|| < 2(1 — §). The modulus of uniform convexity of E is defined by

_ 1
Og(e) = inf{1 — [|5 (e + W)l = [lxll, Iyl < 1, [lx =yl > €}, forall e & [0,2].

Hence, E is uniformly convex if dg(0) = 0 and Og(e) > 0 for € € [0,2].

The following result is useful in the sequel.
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PROPOSITION 2.1. (Bruck [12]) Let E be a uniformly convex Banach space with
modulus of uniform convexity 8g. Then O : [0,2] — [0, 1] is continuous, monotone
increasing and satisfies the following assertions

(a) Og(0) =0 and 5g(g) > 0 for € > 0;

(b) |lou+ (1—a)v|| <1—-2min{e, 1 — o} Op(||u—v|

and u,v € E with |jul|, ||v|] < 1.

), for each o € [0, 1]

DEFINITION 2.2. Let K be a closed subset of a Banach space E. A mapping
T : K — K is said to to be semi-compact, if for any bounded sequence {x,} in K such
that ||x, — Tx,|| — 0 as n — 400, there exists a subsequence {x,;} C {x,} such that
Xy = X* € Kasi— +o00.

DEFINITION 2.3. A Banach space E is said to satisfy Opial’s condition, if whenever
{xn} is a sequence in E which converges weakly to x, as n — +oo, then

limsup ||x, — x|| <limsup ||x, —y||, forally € E, y#x.

n—o0 n—o0

Itis well known that every Hilbert space satisfies Opial’s condition (see for instance
[9]). Throughout the paper, for the weak  -limit set of a sequence {x,} in E we shall
use the following notation

Wy (xn) := {x € E|{x,;} — x, for some subsequence {n;} of {n}}.

Let U = {x € E : ||x|| = 1} be the unit sphere of E. The norm of E is said to be
Gateaux differentiable if the limit

t _
o] — ]
t—0 t

exists for each x,y € U. In this case E is said to be smooth. We know (see [10]) that
if E is smooth then the normalized duality mapping J is single-valued and continuous
from the strong topology to the weak * topology. The norm of E is called Fréchet
differentiable if for each x € U the above limit is attained uniformly for y € U.
The norm of E is called uniformly Fréchet differentiable if the above limit is attained
uniformly for x,y € U.

DEFINITION 2.4. A Banach space E is said to be
(i) uniformly smooth if PET(’) — 0 as t — 0, where pg(?) is the modulus of

smoothness of E defined by
1
pe(r) = sup{z (Ix+y[ +lx=yl) =12 [lxll = 1, [lyll =}, forallz > 0;

(ii) g-uniformly smooth (g > 1), if there exists a constant ¢ > 0 such that
pE(I) < ctl.

Typical examples of both uniformly convex and uniformly smooth Banach spaces
are the LP spaces with p > 1. Itis also known that a Banach space is uniformly smooth
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if and only if the norm of E is uniformly Fréchet differentiable. If E is g-uniformly
smooth then the norm of E is Fréchet differentiable.
In E is a Banach space, x € E and F a nonempty subset of E, then, throughout
the paper, we will denote d(x, F) := inIf: lx—pll
V4SS
The following results will be used in the sequel.

THEOREM 2.1. (Osilike, Udomene [2]) Let E be a real q-uniformly smooth Ba-
nach space which is also uniformly convex. Let K be a nonempty closed convex subset
of E and T : K — K be a strictly pseudocontractive mapping in the terminology of
Browder-Petryshyn. Then (I — T) is demiclosed at zero, i.e., {x,} C D(T) such that
{x,} comverges weakly to x € D(T) and {(I — T)x,} converges strongly to 0, then
x—Tx=0.

THEOREM 2.2. (Zhou [11]) Let E be a real reflexive Banach space which satisfies
Opial’s condition. Let K be a nonempty closed convex subset of E and T : K — K be
a continuous pseudocontractive mapping. Then (I — T) is demiclosed at zero.

THEOREM 2.3. (Zhou [11]) Let E be a real uniformly convex Banach space.
Let K be a nonempty closed convex subset of E and T : K — K be a continuous
pseudocontractive mapping. Then (I — T) is demiclosed at zero.

THEOREM 2.4. (Tan, Xu [14]) Let E be a real uniformly convex Banach space
whose norm is Fréchet differentialble. Let K be a nonempty closed convex subset of E
and T; : K — K, i € {1,2,---} be a family of L, -Lipschitzian mappings such that

Z(L” —1) < +4ooand F := mF(T,-) # (). Forarbitrary x; € K define the sequence
n=1 i=1

{xa}52, by Xuy1 = Toxy, forall n € {1,2,---}. Then lim (x,,j(p — q)) exists for
all p,q € F andforall u,v € w,(x,) andall p,q € F we have (u—v,j(p—q)) =0.

LEMMA2.1. IfJ : E — 2E isa normalized duality mapping, then forall x,y € E,
b+ lI? < 5l + 2(y,j(x + ) , for all j(x +y) € J(x+).

LEMMA 2.2. Let E be a smooth Banach space and F : E — E be both A -strictly
pseudocontractive and & -strongly accretive with A + 8 > 1. Then
(i) I—F is nonexpansive;
(if) Foreach t € [0, 1] the mapping S; : E — E defined by
Six =x—1G(x), forall x € E, is nonexpansive.
Proof. Since E is smooth, J is single-valued. Utilizing the A -strict pseudocon-
tractivity and 0 -strong accretivity of F', we have for all x,y € E

AT = F)x = (I = F)y|I? <{(U=F)x—(I—F)y,jlx—y)

= |lx = y|P* = (Fx — Fy,j(x —y))
< (1= 8)x —ylI*.

Note that A + 6 > 1. So, we derive for all x,y € E

1-6
1= F)x = (1 = F)yll < \f =l =yl < [lx =]
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and hence I — F' is nonexpansive. On the other hand, since
Sx=x—1tG(x)=(1—t)x+t(I—F)x, Vx€E,
it follows from the nonexpansivity of I — F that for all x,y € E
(1 =0)(x —y) +1((I = F)x = (I = F)y)|
L=0)llx =yl +2l( = F)x = (I = F)y]

(
(L —1)]lx = yll +tllx — y||
[lx =yl

[Six — Spy|

[[I/ANV/AN

This shows that S, : E — E is nonexpansive. The proof is complete. [

LEMMA 2.3. (Osilike et al. [7, p. 80]) Let {an}22,, {ba}22, and {8,}2

sequences of nonnegative real numbers satisfying the inequality
a1 < (L+0p)an + by,  foralln>1

If 26 < oo and Zb < 00, then hm ay, exists. If in addition {a,}>°, has a

n=1 n=1
subsequence which converges to zero, then lim a, = 0.

n—oo

LEMMA 2.4. (Tan, Xu [8, p. 303]) Let {a,}2°, and {b,}3°, be two sequences of
nonnegative real numbers satisfying the mequallty

apy1 < ap+ by, foralln > 1.

o0
If an converges, then lim a, exists.
n—o0o

n=1
3. Main Results

We start with the following lemma.

LEMMA 3.1. Let E be a real smooth Banach space, G : E — E be § -strongly
accretive and A -strictly pseudocontractive with § + A > 1 andlet T; : E — E, i €
{1,2,...,N}, be a finite family of continuous pseudocontractive mappings, such that

F:= mF # 0. Suppose {a,}5°, and {A,}32, are real sequences satisfying the

followmg conditions
(i) oy € [a,b] for some a,b € (0,1);

(ii) An€1[0,1) and Y A, < 0.
n=1
Let xo € E and let {x,} be defined by
Xn = Oy(Xn—1 — MG (xn—1)) + (1 — 04) Ty, foralln >1 (8),
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where T, = Ty moa n- Then
(a) lim ||x, — p|| exists, forall p € F;
n—o0o

(b) lim d(x,, F) exists.

Proof. Since E is smooth, the normalized duality mapping J is single-valued.
Let p € F and n > 1. Then, utilizing (1) and Lemma 2.2 (ii) we have

1% = Pl = (1 = G (xu—1) = p) + (1 = 04)(Tuxn — p),j (%0 — p))
= 0u[(S3, X1 = S22, (6 — P)) — (MG(p),j(xn — )]
+(1 - an)<Tnxn - Tnp7j(xn _p)>
< O [[I1S3,%0—1 = Sx2 | 1xn = Pl + Aul|G(P) [ [|x2 — Pl]
+(1 = aw)|lxn *PHZ
< olllxa—1 = plllln = pll + Al GP) | [ln — plI] + (1 = o) [lx0 — pII?
= 0lx0 = pll{n—1 = pll + 2lIGP) ] + (1 = ) % — pII?,

where S;,x,—1 = Xy—1 — AuG(xn—1) and Sy, p =p — L,G(p). So

[lxn = pI1? < [bew = Pl [lxn—1 =PIl + 2l G- ©)

If ||x, — p|| = 0, the result is follows. Next, let ||x, — p|| > 0. Then from (9) we have

2% = Pl < -1 = Pl + 2l|G(P)]- (10)

Notice that condition (ii) implies that lim A, = 0. By Lemma 2.4 we get that

n—oo

lim ||x, — p|| exists. Thus {x,} is bounded and so is {G(x,)} due to the fact that G
is B -Lipschitzian with < 1+ ;. On the other hand, from (10) we obtain

[, =Pl < X1 — pll + AlIG(p) — G(xn—1) + G(xa—1)|
< a1 = pll + AaBllxa—1 = pll + Aal|G(xa—1) |
< (1 +AnB)Hxn71 7PH +Aan

where ||G(x,)|| < M, foralln > 1, forsome M > 0.
Taking the infimum over all p € F, we have

d(xn, F) < (1 4+ AB)d(xn—1, F) + AM.

Therefore, by applying Lemma 2.3 implies that lim d(x,, F) exists. The proof is

n—oo

complete. [J
First main result of this paper is the following.

THEOREM 3.1. Let E be a real uniformly convex Banach space whose norm
is Fréchet differentiable and G : E — E be & -strongly accretive and A -strictly
pseudocontractive mapping with 6 + A > 1. Let T; : E — E be a finite family
of L;-Lipschitzian pseudocontractive mappings, where i € {1,2,...,N}, such that

N
F:= ﬂF(Ti) #0.
i=1
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Suppose {0, }2°, and {A,}3°, are real sequences satisfying the following condi-
tions
(i) o € |a,b] for some a,b € (0,1) and limsup o, < 1;

(if) A, €10,1) and Z)L,, < 0.
n=1
Let xo € E and let {x,} be defined by
Xn = Oy (Xn—1 — AG(xn—1)) + (1 — 0)Tuxn, foralln > 1 (3),

where T, = Ty mod N -
Then the sequence {x,} converges weakly to a common fixed point of the family
{Tn}ne{l,Z,---N} .
Proof. Since the norm of E is Fréchet differentiable, the space E is also smooth,
and then the normalized duality mapping J is single-valued.
Also from Lemma 3.1, lim |lx, — p|| exists, where p € F. In particular, the
sequences {x,} and {G(x,)} are bounded.
We organize the proof in three steps.
Step 1. ||xy—1 — x4|| — O asn — +oo.
For p € F and each n > 1, using (4’) with s :=

[(n = Tuxa) — (p = Tp)]|

=% —p+ m,,” (%0 = Txa) |

= [lx — P+ 52 [0 (X1 — MG (xa—1)) + (1 = 00) Ty — Tuxs |
= | = p+ 52 (01 — MG (x1) — Tux)|

= || ay (Xn—1—AnG (x—1))+ (l—ocn)Tnxn—pl_zo‘”(xn_l—/lnG(xn_l)—Tnxn)H

1—ay
20y °

loc,,

||xﬂ 7PH g ||xn

= || (et 152 ) %01 =2 (0152 ) G (01 )+ (1 — 04— 552 ) T, —p |
= [0t = A2 G 1) + 5 T — p|
= %Hxn—l =X = MG (1) — 27|
< 31 = x = 2l + 2G|
< Joner = pll - [1 = s(t==l)) 4 &)1, )|
<y —pl| - [1 = S(Re==elyy 4 Zuy,

where ||G(x,)|| < M, foralln > 1, for some M > 0.

Hence for any n > 1 we get
I = x| A

n—1 = pl| - 8( ) < o1 = pll =l = pll + 5M.

[[%2—1 — Pl
Letting n — +oo and using the properties of § and hypothesis (ii), we obtain

[l—1 — xn]] — 0 asn — +oo.
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Step 2. lim ||x, — Tixy|| = O foreach ! € {1,2,...,N}.

Using by the assumptions (i) and (i), we have

ln1 = Tuxall < = et — 2l + 221 G(x,) |

g L ||xnfl *an + MA’n - Oa

1—a, 1—op

as n — +00.
Also

160 — Toxull = 1|00 (Xu—1 — AuG(x0—-1)) + (1 — ) Ty — TpXs||
= Op[Xn—1 — AnG(xa—1) — Ton]|
< Ol[xn—1 = T || + 0wl [|G (1) ||

< Oy l|xn—1 — Tpxp|| + AuM — 0,

as n — +00.
Then, for i € {1,2,--- ,N} we have

[0 = Taixall < (14 L) |10 = Xnill + [1%01i — Tasidnri]| — 0,

where L := max L;.
1<i<N

Letting n — —+o00 in the previous relation, we obtain ||x, — T},4:x,|| — 0, for each
ie{l,2,---,N}.

Without loss of generality, we can assume that n; = j (modN) for all k and some
j€{1,2,..N}. Forany fixed [ € {1,2,...,N}, we can find an i € {1,2,....N},
independent of k, such that n; +i = [ (modN) for all k. It then follows from (16) that

lim |[x,, — Tix, || = O foreach € {1,2,...,N}.

ng— 00

Thus
lim ||x, — Tix,|| =0 foreach! € {1,2,...,N}.

Step 3. {x,} = p asn— 4oo.
Theorem 2.3 implies @, (x,) C F. By Theorem 2.4 we get that @ (x,) is a
singleton. Hence, from Step 2, we get {x,} — p as n — +oo.
The proof is now complete. [

REMARK 3.1. Theorem 3.1 extends Theorem 2.6 in Chen, Song, Zhou [5] and
Theorem 3.1 in Zhou [11] to the case of an implicit iteration process (see (8)) with a
perturbation. Also, Theorem 3.1 holds in weaker assumptions on the space E, on the
mappings T, and on the parameters { o, } than in Theorem 2 from Xu, Ori [3] and than
in Theorem 2.6 from Chen, Song, Zhou [3].
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THEOREM 3.2. Let E be a real reflexive and smooth Banach space which satisfies
Opial’s condition and G : E — E be §-strongly accretive and A -strictly pseudo-
contractive mapping with § + A > 1. Let T; : E — E be a finite family of strictly

N

pseudocontractive mappings, where i € {1,2,..., N}, such that F := ﬂF(Ti) £0.
i=1
Suppose {0, }2°, and {A,}3°, are real sequences satisfying the following condi-
tions
(i) oy € [a,b] for some a,b € (0,1);

(if) A, €10,1) and Z)L,, < 00.
n=1
Let xo € E and let {x,} be defined by
Xn = Oy (Xn—1 — MG (xn—1)) + (1 — 04) Ty, foralln > 1 (8),

where T,, = T}, mod N -

Then the sequence {x,} converges weakly to a common fixed point of the family
{Tn}nG{l,Z,---N} .

Proof. Since E is smooth, the normalized duality mapping J is single-valued.

Also, since the mappings 7; : E — E are strictly pseudocontractive for each i €
{1,2,...,N}, we deduce from (3) that

(I =T)x = (I =T)y,jx=y) Zkll(I = Tx = (I = Toyl’, forallx,y € E

where k; € (0,1), for i € {1,2,...,N}.
Put k = 11211<11N{ki}. Then k € (0,1) and

(= T)x— (I =Ty, j(x =) > K|~ Tx— (I~ Ty, forallx,y € E (11)

foreach i € {1,2,...,N}. Moreover, it is easy to see that each 7; (where 1 <i < N)
is B -Lipschitzian with f < 1 + % Hence it is obvious that 7; is a continuous pseu-
docontractive self mapping on E for each i € {1,2,...,N}. Hence all the conditions
of Lemma 3.1 are satisfied. Thus, by Lemma 3.1 we conclude that lim,_. ||x, — p||
exists, where p € Q. Consequently, {x,} and {G(x,)} are bounded, due to the fact
that G is B-Lipschitzian with B < 1+ 1.

Since x, = 04 (xp—1 — 4G (x,—1)) + (1 — o) Tyx, foralln > 1, we have

Xp_1 = inx,, +(1 - ain)Tnx,, + G (x0—1). (12)
It now follows from (12) that
Xn — Xp—1 = (1 — ain)(xn = Tuxn) = 2 G(xn—1),
(1. d=0)) = (1= ) (=Tt =)~ Gl )i C5sp)) (13)
I—ay,

(X0 =TXn, j(Xn—P)) —An{ F(Xn—1),j(xa—p)) -

Oy
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By Lemma 2.1, using (13) and (11), we get that for each n > 1 we have

Hxn *I’”Z = ||xn,1 —p+x *xnflllz
< -1 *I’”Z +2(xp — Xp—1,J (X0 — p))
= ||xn—1 _p||2_2%<xn_ nXn — (p_Tnp)>j(xn_p)> (14)

=225 G(xp—1),J(xn — P))
< a1 *I’”Z kl o ||xn - TnanZ + 244/| G (xn—1) [ [|xn — pI-

Thus,from (14) and condition 0 < a < o, < b < 1, we obtain that

2D g, — T < 2615% |x, — Ty

< a1 = pIP = [ = plI* + 224 GOea— )l |x0 — Pl
and hence

n
2k(1
||xz Tl < o = plI” = Il — pI?

i=1 n (15)
+> 226G (xi-1)[]xi = pll-

i=1
Since both {x,} and {G(x,)} are bounded, we may assume that [|x, — p|| < M and

|G(x,)]] < M, for some M > 0. Thus since Z/l < oo it follows from (15) that

n=1
2k(1 — b) )
% Z ||xn - Tnxn||2 g HX() 7[)H2 + 2M2 an < Q.
n=1 n=1
Consequently
lim ||x, — Tox,||> = 0, ie., lim |jx, — Tx,| = O.
n— 00 n— 00
Therefore,
Hxnfl - T”x”” = HaLn(xn - Tnxn) + AfnG(xnfl)”
< i”xn —Twxal| + AsM — 0 asn — oo
and
Hx" B x”*IH = ”(1 - an)(Tnxn - xnfl) - OC,,A,,,G(X,,,O”

(1 - an)Hxnfl - Tnxn” + anAn”G(xnfl)H

NN

-1 — Tpxul] + AuM — 0 asn — oc.
This implies that
|[*nti — Xul] = 0 asn — oo,
foreach i € {1,2,...,N}. Since each T; is B -Lipschitzian with § < 1 + %, we have
foreach i € {1,2,--- N} that

|Tix — Tiy|| < Bllx—y|| forallx,y € E.
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Therefore,
[0 — Tosixnll < M2 = Xnill + [1%01i = T idnrill + (| Tt idXnri — Tag il
< on = Xl + 11%ni = T | + Bllxasi — xall
= (L+ B)xusi = Xall + [|X¥nsi = Tasitnsi| = 0 asn — oo.
Then
nli{go |y — Tutixn|| =0 foreachi e {1,2,--- N}. (16)

Without loss of generality, we can assume that n; = j (modN) for all £ and some
Jj € {L,2,..,N}. For any fixed [ € {1,2,..., N}, we can find an i € {1,2,....N}
independent of k, such that nx 4+ i = [ (modN) forall k. It then follows from (16) that
hm X, — Tixy, || = Oforeachl e {1,2,...,N}.
np—
Thus
lim ||x, — Tix,|| =0 foreachl € {1,2,...,N}.

The proof is complete. [

REMARK 3.2. Theorem 3.2 extends Theorem 2.6 in Chen, Song, Zhou [5] and
Theorem 3.2 in Zhou [11] to the case of an implicit iteration process (see (8)) with a
perturbation. Also, Theorem 3.2 holds in weaker assumptions on the space E, than in
Theorem 2.6 in Chen, Song, Zhou [5], where E is supposed to be g -uniformly smooth
and uniformly convex.

In a similar way to Chen, Song, Zhou [5] we can establish the following strong
convergence result.

THEOREM 3.3. Let E be a real smooth Banach space, G : E — E be 0 -strongly

accretive and A -strictly pseudocontractive with § + A > 1 andlet T; : E — E, i €
N

{1,2,...,N}, be continuous pseudocontractive self mappings such that F = ﬂ F(T;) #
i=1
0. Suppose {,}5°, and {A,}5°, are real sequences satisfying the following conditions
(i) o€ [a b] for some a,b € (0,1);

(ii) A, €10,1) and Z/ln < 00.
n=1
Let xy € E and let {x,} be defined by
Xn = OCn(xnfl - AnG(xnfl)) + (1 - an)Tnxm Vn 2 1a

where T, = Ty mod N -
Then {x,} converges strongly to a common fixed point of the mappings {T:}Y_, if
and only if liminf d(x,, F) = 0.
n— o0

Proof. Clearly, the necessity is obvious.
We will show the sufficiency. Suppose liminf d(x,, F) = 0. Then Lemma 3.1 implies
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that lim d(x,,F) = 0. Since {G(x,)} is bounded, we may assume that there exists
M > 0 such that ||G(x,)|| < M, foralln > 1. Hence it follows from (10) that, for all

n =1 and p € F, we have
[Xasm =PIl < Pnsm—1 = Pl + Ausn |G|
< [Pntm—2 = pll + Antmt|[GP) | + 2 [G ()]

< P =Pl + 2t [GO) + Ani2l |G + -+ + Anim [GD)

n+m

= =Pl + 1G@)I D A

i=n+1
and so

[Xntm = Xl < Xt — Pl + (122 — Pl

n+m
<2l =Pl + 1GE) D A
i=n+1
n+m n+m (17)
<2lx% = pll +1G(P) = G| Y A+ GG D A
i=n+1 i=n+1
n+m n+m
<@L, M) —pll+M S A
i=n+1 i=n+1

Taking the infimum over all p € F, we obtain from from (17) that

n+m n+m

1n6m — Xal] < 2+LZ/1 (xn, F +MZ)Li—>O asn — oo.

i=n+1 i=n+1

Thus {x,}52, is a Cauchy sequence. Suppose lim x, = u. Then

d(u,F) = lim d(x,,F) =0.

n—oo

As each T; (1 < i < N) is continuous pseudocontractive mapping, we claim that
F(T;) is closed. Indeed, note that F(T;) # () for each i. Let {p,}°, C F(T;) such
that lim p, = p. Then we have T)p = lim Tj;p, = lim p, = p. Thus p € F(T})

foreach i € {1,2,---N}. This shows that F(T;) is closed, foreach i € {1,2,---N}.
Consequently, F is closed and hence u € F'. The proof is complete. [

COROLLARY 3.1. Let E be a real smooth Banach space, let G : E — E be
0 -strongly accretive and A -strictly pseudocontractive with 6 + A > 1, and let T; :
E — E i = 1,2,...,N, be continuous pseudocontractive self mapping such that

F:= mF ) # 0. Suppose {0, }5°, and {A,}°, are real sequences satisfying the

followmg conditions:
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(i) oy € la,b] forsome a,b € (0,1);
(if) A, €10,1) and i/l,, < 00.
Let xo € E and let {x,} b::dleﬁned by
Xn = Oy (Xn—1 — MG (xn—1)) + (1 — o) Ty, foralln > 1,

where T, = Ty mod N -
Then {x,} converges strongly to a common fixed point of the mappings {T:}Y, if
and only if {x,} has a subsequence which converges strongly to some u € F.

As a particular case we have the following result.

THEOREM 3.4. Let E be a real smooth Banach space, G : E — E be § -strongly

accretive and A -strictly pseudocontractive with § + A > 1 andlet T; : E — E, i €
N

{1,2,...,N}, be strictly pseudocontractive self mappings such that F := ﬂ F(T;)) #0.
i-1
Suppose that at least one mapping T € {Ty, Ty, ..., Ty} is semi-compact. Let {04,}5°,
and {A,}22, be real sequences satisfying the following conditions:
(i) A, €10,1) and oy, € [a,b] for some a,b € (0,1);
o0

(ii) Y In < 0.
Let xg € Enzlnd let {x,} be defined by
Xn = Oy(xn—1 — 4G (xp—1)) + (1 — o)) Tyxn, foralln > 1,
where T,, = T), mod N -
Then {x,} converges strongly to a common fixed point of the mappings {T:}Y_, .

Proof. We follow the approach given in [5, Theorem 2.5]. First, we notice that
from Lemma 3.1 and Theorem 3.1 we have that lim ||x, — p|| exists (where p € F)
and lim ||x, — Tix,|| =0, foralll € {1,2,...,N}. Thus {x,} is bounded. Then,

by hypothesis, there exists a semi-compact mapping T € {T1,7T,...,Tny}. We may
assume, without loss of generality, that T := T is semi-compact. Therefore,

lim ||x, — T\x,|| = 0 and by the definition of semi-compactness there exists a subse-
n—o0

quence {x,,} C {x,} suchthat x,, > x* € E asi— oo.
Thus

|x* — Tix*|| = lim ||x,;, — Tixy || =0, foralll € {1,2,...,N}.
Thus x* € F. Then
liminf d(x,, F) < liminf ||x, — x*|| < lim [jx,, —x¥|| = 0.

By Theorem 3.3 we have that lim x, = x* € F. The proof is complete. [

n—o0
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