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GENERALIZED WEIGHTED INEQUALITY WITH NEGATIVE POWERS

A. KUFNER, K. KULIEV, J. A. OGUNTUASE AND L.-E. PERSSON

(communicated by G. Sinnamon)

Abstract. In this paper necessary and sufficient conditions for the validity of the generalized
Hardy inequality for the case −∞ < q � p < 0 and 0 < p � q < 1 are derived. Furthermore,
some special cases are considered.

1. Introduction

Let us consider the inequality

⎛
⎝

b∫
a

⎛
⎝

x∫
a

k(x, t)f (t)dt

⎞
⎠

q

dx

⎞
⎠

1
q∗

� C

⎛
⎝

b∫
a

f p(x)dx

⎞
⎠

1
p∗

(1.1)

for functions f positive a.e. in (a, b), −∞ � a < b � ∞, where k(x, t) is a kernel,
i.e. a non-negative function defined in D = {(x, t), a < t � x < b}, and p, q , p∗, q∗

are real parameters.

If we consider a kernel k of the form K(x, t)u
1
q (x)v−

1
p (t) with u, v weight

functions (i.e. measurable, positive and finite a.e. in (a, b) ), then we can (1.1) easily
rewrite into the form

⎛
⎝

b∫
a

⎛
⎝

x∫
a

K(x, t)F(t)dt

⎞
⎠

q

u(x)dx

⎞
⎠

1
q∗

� C

⎛
⎝

b∫
a

Fp(x)v(x)dx

⎞
⎠

1
p∗

(1.2)

which is a Hardy-type inequality for the function F (= f v−
1
p ) with weights u, v. But

for simplicity, we will deal here with the "non-weighted" case (1.1).
If q = q∗ > 1 , p = p∗ > 1, then some necessary and sufficient condition for the

validity of (1.2) can be found in [2, Chapter 2]. Here, we are interested in the case of
negative powers inside the integrals, more precisely, in the case

q = −q∗, p = −p∗; q∗, p∗ > 0. (1.3)
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The corresponding inequality

⎛
⎜⎝

b∫
a

⎛
⎝

x∫
a

k(x, t)f (t)dt

⎞
⎠

−q∗

dx

⎞
⎟⎠

1
q∗

� C

⎛
⎝

b∫
a

f −p∗(x)dx

⎞
⎠

1
p∗

(1.4)

can be easily rewritten as

⎛
⎝

b∫
a

f p(x)dx

⎞
⎠

1
p

� C

⎛
⎝

b∫
a

⎛
⎝

x∫
a

k(x, t)f (t)dt

⎞
⎠

q

dx

⎞
⎠

1
q

(1.5)

which is the so-called reverse inequality to (1.1), this time with p, q < 0. Indeed:
Taking (1.4) to the power (−1) , we obtain (1.5) due to (1.3).

Together with inequality (1.5), we will consider also its counterpart

⎛
⎝

b∫
a

f p(x)dx

⎞
⎠

1
p

� C

⎛
⎝

b∫
a

⎛
⎝

b∫
x

k(x, t)f (t)dt

⎞
⎠

q

dx

⎞
⎠

1
q

. (1.6)

In this paper, we obtain a whole scale of conditions for (1.5) and (1.6) to hold for
the case

−∞ < q � p < 0.

REMARK 1.1. In [4, Theorem 3], it is shown that inequalities (1.5) and (1.6) hold
if and only if the dual inequalities

⎛
⎝

b∫
a

f q′(x)dx

⎞
⎠

1
q′

� C

⎛
⎜⎝

b∫
a

⎛
⎝

b∫
x

k(t, x)f (t)dt

⎞
⎠

p′

dx

⎞
⎟⎠

1
p′

(1.7)

and ⎛
⎝

b∫
a

f q′(x)dx

⎞
⎠

1
q′

� C

⎛
⎜⎝

b∫
a

⎛
⎝

x∫
a

k(t, x)f (t)dt

⎞
⎠

p′

dx

⎞
⎟⎠

1
p′

(1.8)

hold, respectively, with p′ = p
p−1 , q′ = q

q−1 , and the constants C in (1.5) and (1.7),
(1.6) and (1.8) are equal. Since for p, q ∈ (0, 1) we have p′, q′ < 0 , we can also
formulate results for the case

0 < p � q < 1,
using results for the corresponding dual inequality with negative parameters p′, q′

satisfying −∞ < q′ � p′ < 0. The formulation is left to the reader. Let us emphasize
that in (1.7) and (1.8), we have to deal with the kernel k(t, x) instead of k(x, t).

The paper is organized as follows: In the next section we present and discuss our
results while Section 3 contains detailed proofs.

Products of the form 0 · ∞ are taken to be zero.
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2. The Main Results

We will consider inequality (1.5); inequality (1.6) can be considered analogously
(see Remark 2.5 below).

Let us denote

K(x, t) :=

t∫
a

kp′(x, τ)dτ, a < t � x < b,

and

Bs(t) :=

⎛
⎝

b∫
t

K
(1−s)q

p (x, t)K
p−(1−s)p′

p
q
p′ (x, x)dx

⎞
⎠

− 1
q

.

In what follows, we will assume that

0 < K(x, t) < ∞, a < t � x < b.

Our first result reads:

THEOREM 2.1. Let −∞ < q � p < 0 and s ∈ (−∞, 2 − p). Suppose that

Bs := sup
a<t<b

Bs(t) < ∞. (2.1)

Then inequality (1.5) holds, and for the best constant C, we have

C �
(

p
p − (1 − s)p′

)− 1
p′

Bs.

Condition (2.1) is only sufficient for inequality (1.5) to hold. To find necessary
and sufficient conditions, we need some additional assumptions about k(x, t) .

Let
k(x, t) = h(x, t)u

1
q (x),

where h(x, t) and u(x) are positive and finite functions and h(x, t) satisfies the follow-
ing condition:

• If we define

H(x, t) =

t∫
a

hp′(x, τ)dτ, a < t � x < b

then H(x, x) is an absolutely continuous function in (a, b) and

Hp := sup
a<t<b

Hp(t) = sup
a<t<b

⎛
⎝−

b∫
t

H
− q

p′ (x, t) dH
q
p′ (x, x)

⎞
⎠ < ∞. (2.2)
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Then our next results reads:

THEOREM 2.2. Let −∞ < q � p < 0, s ∈ [p, 1) . Suppose that h(x, t)
is nondecreasing in x and satisfies (2.2). Then inequality (1.5) [or the equivalent
inequality

⎛
⎝

b∫
a

f p(x)dx

⎞
⎠

1
p

� C

⎛
⎝

b∫
a

⎛
⎝

x∫
a

h(x, t)f (t)dt

⎞
⎠

q

u(x)dx

⎞
⎠

1
q

] (2.3)

holds for all positive measurable functions f if and only if

As := sup
a<t<b

As(t) = sup
a<t<b

H
1−s
p (t, t)

⎛
⎝

t∫
a

H
(p−s)q

p (x, x)u(x)dx

⎞
⎠

− 1
q

< ∞. (2.4)

Moreover, if C is the best possible constant in (2.3), then C ≈ As.

THEOREM 2.3. Under the assumptions of Theorem 2.2, condition (2.1), i.e. the
equivalent condition

Bs := sup
a<t<b

Bs(t) = sup
a<t<b

⎛
⎝

b∫
t

H
(1−s)q

p (x, t)H
p−(1−s)p′

p
q
p′ (x, x)u(x)dx

⎞
⎠

− 1
q

< ∞ (2.5)

is necessary and sufficient for inequality (2.3) to hold.

REMARK 2.4. Suppose that h(x, t) depends only on t, h(x, t) = v(t), and denote

V(x) =
∫ x

a
vp′(t)dt.

Then condition (2.2) is satisfied, since

Hs(t) = 1 − V
q(1−s)

p (t) lim
x→b−

V
q(s−1)

p (x) � 1

and inequality (2.3) as well as condition (2.4) take the form:

⎛
⎝

b∫
a

f p(x)dx

⎞
⎠

1
p

� C

⎛
⎝

b∫
a

⎛
⎝

x∫
a

v(t)f (t)dt

⎞
⎠

q

u(x)dx

⎞
⎠

1
q

and

As = sup
a<t<b

V
1−s
p (t)

⎛
⎝

t∫
a

u(x)V
(p−s)q

p (x)dx

⎞
⎠

− 1
q

< ∞. (2.6)

In this case, observe that our result generalizes the results of [1] and [4] for the case
−∞ < q � p < 0.
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REMARK 2.5. All the considerations above can be repeated for inequality (1.6).
The counterpart of Theorem 2.1 reads as:

• Let −∞ < q � p < 0 and s ∈ (−∞, 2 − p). Denote

K(x, t) =
∫ b

t
kp′(τ, x)dτ a < x � t < b.

Then inequality (1.6) holds provided

Bs := sup
a<t<b

Bs(t) = sup
a<t<b

⎛
⎝

t∫
a

K
(1−s)q

p (x, t)K
p−(1−s)p′

p
q
p′ (x, x)dx

⎞
⎠

− 1
q

< ∞.

The counterpart of Theorems 2.2 and 2.3 reads as:

• Let −∞ < q � p < 0, s ∈ [0, p). Suppose that k(x, t) = h(x, t)u
1
q (t), where

h(x, t) is positive and nonincreasing in t, and satisfies the conditions

Hs := sup
a<t<b

Hs(t) = sup
a<t<b

⎛
⎝

t∫
a

H
q(1−s)

p (x, t) dH
q(s−1)

p (x, x)

⎞
⎠ < ∞,

with

H(x, t) =
∫ b

t
hp′(τ, x) dτ, a < x � t < b

and H(x, x) is absolutely continuous in (a, b) .

Then inequality (1.6) holds for all positive functions f if and only if

As := sup
a<t<b

As(t) = sup
a<t<b

H
1−s
p (t, t)

⎛
⎝

b∫
t

u(x)H
(p−s)q

p (x, x)dx

⎞
⎠

− 1
q

< ∞

or

Bs := sup
a<t<b

Bs(t) = sup
a<t<b

⎛
⎝

t∫
a

H
(1−s)q

p (x, t)H
p−(1−s)p′

p
q
p′ (x, x)u(x)dx

⎞
⎠

− 1
q

< ∞.

Moreover, if C is the best possible constant in (1.6), then C ≈ As ≈ Bs.

REMARK 2.6. As already mentioned in Remark 1.1, Theorems 2.1, 2.2, 2.3 and
Remark 2.5 allow us to obtain necessary and sufficient conditions for the case 0 < p �
q < 1 via the dual inequalities (1.7) and (1.8). For details see Theorem 3 in [4].

Now, let us consider inequality (2.3) with the very special kernel

h(x, t) = (V(x) − V(t))αv(t),
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α > −1, where v(t) is a weight function and

V(t) =
∫ t

a
vp′(τ)dτ.

This case is interesting since – in comparison with the assumptions of Theorem 2.2 –
the kernel h(x, t) need not to be nondecreasing in x and the function H(x, x) need not
to be absolutely continuous in (a, b) . Our result reads:

THEOREM 2.7. Let −∞ < q � p < 0, α > −1 and u, v be positive and finite
weight functions. Then the inequality

⎛
⎝

b∫
a

f p(t)dt

⎞
⎠

1
p

� C

⎛
⎝

b∫
a

⎛
⎝

x∫
a

(V(x) − V(t))αv(t)f (t)dt

⎞
⎠

q

u(x)dx

⎞
⎠

1
q

(2.7)

holds for all functions f > 0 if and only if the function

A(x) := V(x)
−(α+ 1

p′ )

⎛
⎝

x∫
a

u(t)dt

⎞
⎠

− 1
q

(2.8)

is bounded on (a, b). Moreover, if C is the best possible constant in (2.7), then

C ≈ A := sup
a<x<b

A(x).

3. Proofs

Proof of Theorem 2.1.
Assume that (2.1) holds and let f p(x) = g(x) in (1.5). Then inequality (1.5) can

be rewritten as

b∫
a

⎛
⎝

x∫
a

k(x, t)g
1
p (t)dt

⎞
⎠

q

dx � C−q

⎛
⎝

b∫
a

g(x)dx

⎞
⎠

q
p

. (3.1)

By applying the reverse Hölder inequality and Minkowski’s integral inequality to the
left hand side of (3.1), one obtains

b∫
a

⎛
⎝

x∫
a

k(x, t)g
1
p (t)dt

⎞
⎠

q

dx

=

b∫
a

⎛
⎝

x∫
a

g
1
p (t)K

1−s
p (x, t)K− (1−s)

p (x, t)k(x, t)dt

⎞
⎠

q

dx

�
b∫

a

⎛
⎝

x∫
a

g(t)K1−s(x, t)dt

⎞
⎠

q
p
⎛
⎝

x∫
a

K− (1−s)p′
p (x, t)kp′ (x, t)dt

⎞
⎠

q
p′

dx
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=

b∫
a

⎛
⎝

x∫
a

g(t)K1−s(x, t)dt

⎞
⎠

q
p
⎛
⎝

x∫
a

K− (1−s)p′
p (x, t)dK(x, t)

⎞
⎠

q
p′

dx

=
(

p
p − (1 − s)p′

) q
p′

b∫
a

⎛
⎝

x∫
a

g(t)K1−s(x, t)dt

⎞
⎠

q
p

K
p−(1−s)p′

p
q
p′ (x, x)dx

=
(

p
p − (1 − s)p′

) q
p′

⎡
⎢⎢⎣
⎛
⎜⎝

b∫
a

⎛
⎝

x∫
a

g(t)K1−s(x, t)K
p−(1−s)p′

p
p
p′ (x, x)dt

⎞
⎠

q
p

dx

⎞
⎟⎠

p
q
⎤
⎥⎥⎦

q
p

�
(

p
p − (1 − s)p′

) q
p′

⎡
⎢⎣

b∫
a

g(t)

⎛
⎝

b∫
t

K
(1−s)q

p (x, t)K
p−(1−s)p′

p
q
p′ (x, x)dx

⎞
⎠

p
q

dt

⎤
⎥⎦

q
p

�
(

p
p − (1 − s)p′

) q
p′

⎡
⎣

b∫
a

g(t)Bs(t)−pdt

⎤
⎦

q
p

�
(

p
p − (1 − s)p′

) q
p′

B−q
s

( b∫
a

g(t)dt
) q

p
.

(3.2)
The theorem is proved. �

Proof of Theorem 2.2.
First we consider the case when s = p.

Sufficiency: Let condition (2.4) be satisfied. The definition of the functions K and
H, integration by parts and the monotonicity of h yield

B−q
p (t) =

b∫
t

K
− q

p′ (x, t)K
2 q

p′ (x, x)dx =

b∫
t

H
− q

p′ (x, t)H
2 q

p′ (x, x)u(x)dx

=

b∫
t

H
2 q

p′ (x, x) d

⎛
⎝

x∫
t

u(τ)H− q
p′ (τ, t)dτ

⎞
⎠

� lim
x→b−

H
2 q

p′ (x, x)

x∫
t

u(τ)H− q
p′ (τ, t)dτ

−
b∫

t

⎛
⎝

x∫
t

u(τ)H− q
p′ (τ, t)dτ

⎞
⎠ d

(
H

2 q
p′ (x, x)

)
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� lim
x→b−

H
− q

p′ (x, t)H
q
p′ (x, x)A−q

p (x)

−2

b∫
t

A−q
p (x)H

− q
p′ (x, t) dH

q
p′ (x, x).

Consequently

B−q
p (t) � sup

a<x<b
A−q

p (x)

⎡
⎣ lim

x→b−
H

− q
p′ (x, t)H

q
p′ (x, x) − 2

b∫
t

H
− q

p′ (x, t) dH
q
p′ (x, x)

⎤
⎦ ,

i.e.
Bp � (1 + 2Hp)

− 1
q Ap (3.3)

and sufficiency follows from Theorem 2.1.
Necessity: Assume that inequality (1.5), i.e. the equivalent inequality (2.3), holds.

Using the test function

gτ(t) = hp′−1(τ, t)χ(a,τ)(t) + ∞χ(τ,b)(t) t ∈ (a, b),

where τ ∈ (a, b) is fixed, the right hand side of (2.3) reads

τ∫
a

⎛
⎝

x∫
a

h(x, t)hp′−1(τ, t) dt

⎞
⎠

q

u(x)dx �
τ∫

a

⎛
⎝

τ∫
a

h(τ, t)hp′−1(τ, t) dt

⎞
⎠

q

u(x)dx

= Hq(τ, τ)
τ∫

a

u(x)dx.

(3.4)

Similarly, the left hand side of (2.3) becomes

C−q

⎛
⎝

τ∫
a

hp′(τ, x)dx

⎞
⎠

q
p

= C−qH
q
p (τ, τ). (3.5)

Consequently, from (3.4) and (3.5), inequality (2.3) yields

Hq(τ, τ)
τ∫

a

u(x)dx � C−qH
q
p (τ, τ),

i.e.

Ap(τ) = H
− 1

p′ (τ, τ)

⎛
⎝

τ∫
a

u(x)dx

⎞
⎠

− 1
q

� C.

The necessity is proved.
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So we have proved the sufficiency and necessity of the condition (2.4) for the case
s = p. The case s ∈ (p, 1) follows from Theorem 2.1 in [1] (see also Remark 2.4).
Here, we choose

V(x) := H(x, x).

Applying now Theorem 2.1 in [1], we obtain that

C′
sAp � As � C′′

s Ap,

where C′
s , C′′

s depend on s ∈ (p, 1).
The proof is complete. �

Proof of Theorem 2.3.
The proof immediately follows by applying Theorems 2.1 and 2.2.
Necessity: Let inequality (2.3) hold. Then, by Theorem 2.2, As is finite. Since we

can easily derive an analogue of (3.3) with p replaced by s , we have that also Bs < ∞.
Sufficiency: Let Bs < ∞. Then according to Theorem 2.1, inequality (1.5), i.e.

(2.3), holds.
The proof is complete. �

Proof of Theorem 2.7.
Necessity: Assume that inequality (2.7) holds. Let us choose for f the function

f τ(t) = v(t)p′−1χ(a,τ)(t) + ∞χ(τ,b)(t). (3.6)

Substituting (3.6) into (2.7), the left hand side of (2.7) yields

b∫
a

f p(t)dt =

τ∫
a

v(t)(p′−1)p dt = V(τ). (3.7)

Similarly, by substituting (3.6) into the right hand side of (2.7) we obtain

b∫
a

u(x)

⎛
⎝

x∫
a

(V(x) − V(t))αv(t)f τ(t)dt

⎞
⎠

q

dx

=

τ∫
a

u(x)

⎛
⎝

x∫
a

(V(x) − V(t))αdV(t)

⎞
⎠

q

dx

=
1

(1 + α)q

⎛
⎝

τ∫
a

u(x)dx

⎞
⎠V(τ)(α+1)q.

(3.8)

Now, by substituting (3.7) and (3.8) into (2.7) we have

V(τ)
1
p � C

⎡
⎣ 1

(1 + α)q

⎛
⎝

τ∫
a

u(x)dx

⎞
⎠V(τ)(α+1)q

⎤
⎦

1
q

,
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hence

(α + 1)

⎛
⎝

τ∫
a

u(x)dx

⎞
⎠

− 1
q

V(τ)−α− 1
p′ � C.

The necessity part is proved.
Sufficiency: Assume that (2.7) holds. Using integration by parts and the mono-

tonicity of V, we can easily show that

x∫
a

(V(x) − V(t))γ Vβ(t)dV(t) ≈ Vγ+β+1(x) (3.9)

for −∞ < p < 0 and with γ > −1, β � 0 or γ � 0, β > −1. For easy computation,
we rewrite (2.7) in the form

b∫
a

u(x)

⎛
⎝

x∫
a

(V(x) − V(t))αv(t)f (t)dt

⎞
⎠

q

dx � C−q

⎛
⎝

b∫
a

f p(t)dt

⎞
⎠

q
p

. (3.10)

Let β > 0. By applying the reverse Hölder inequality, formula (3.9) and Minkowski’s
integral inequality to the left hand side of (3.10), we have

b∫
a

u(x)

⎛
⎝

x∫
a

(V(x) − V(t))αV(t)βV(t)−βv(t)f (t)dt

⎞
⎠

q

dx

�
b∫

a

u(x)

⎛
⎝

x∫
a

(V(x) − V(t))αp′V(t)βp′dV(t)

⎞
⎠

q
p′

⎛
⎝

x∫
a

V(t)−βpf p(t)dt

⎞
⎠

q
p

dx

� C1

b∫
a

u(x)V(x)
(α+β)q+ q

p′

⎛
⎝

x∫
a

V(t)−βpf p(t)dt

⎞
⎠

q
p

dx

= C1

⎡
⎢⎢⎣
⎛
⎜⎝

b∫
a

⎛
⎝

x∫
a

u(x)
p
q V(x)

(α+β)p+ p
p′ V(t)−βpf p(t)dt

⎞
⎠

q
p

dx

⎞
⎟⎠

p
q
⎤
⎥⎥⎦

q
p

� C1

⎡
⎢⎣

b∫
a

V(t)−βpf p(t)

⎛
⎝

b∫
t

u(x)V(x)
(α+β)q+ q

p′ dx

⎞
⎠

p
q

dt

⎤
⎥⎦

q
p

� C1B
−q

⎛
⎝

b∫
a

f p(t)dt

⎞
⎠

q
p

,
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where

B−q = sup
a<t<b

⎡
⎣V(t)−βq

b∫
t

u(x)V(x)
(α+β)q+ q

p′ dx

⎤
⎦ . (3.11)

Next, we show that
B−q � C2A

−q.

We do this by estimating the integral on the right hand side of (3.11) as follows

b∫
t

u(x)V(x)
(α+β)q+ q

p′ dx

=

b∫
t

V(x)
(α+β)q+ q

p′ d

x∫
t

u(t)dt

= lim
x→b−

V(x)
(α+β)q+ q

p′
x∫

t

u(t)dt −
b∫

t

( x∫
t

u(t)dt
)
d V(x)

(α+β)q+ q
p′

� lim
x→b−

[
A(x)−qV(x)βq

]
− A−q

(
α + β +

1
p′

)
q

b∫
t

V(x)βq−1dV(x)

�
(
1 −

α + β + 1
p′

β

)
A−q lim

x→b−
V(x)βq +

α + β + 1
p′

β
A−qV(t)βq

�
α + β + 1

p′

β
A−qV(t)βq

(3.12)

Combining inequalities (3.11) and (3.12) we have

B−q �
α + β + 1

p′

β
A−q

and the sufficiency part is proved. The proof is complete. �
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