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Abstract. In this paper we shall study the generalized Hyers-Ulam stability of Swiatak’s func-
tional equation

f (x + y) + f (x − y) = 2f (x) + 2f (y) + g(x)g(y), x, y ∈ G,

where G is an abelian group and f , g : G −→ C are complex-valued functions satisfying the
condition g(e) �= 0.

1. Introduction

The following question concerning the stability of mappings has been raised by S.
M. Ulam [27]:

Given a group G , a metric group (G′, d) and a number ε > 0 , does there exist a
δ > 0 such that if f : G −→ G′ satisfies the inequality

d(f (xy), f (x)f (y)) < ε for all x, y ∈ G,

then a homomorphism h : G −→ G′ exists such that

d(f (x), h(x)) < δ for all x ∈ G?

The first affirmative partial answer to the question of Ulam was given in 1941 by
D. H. Hyers [11] in the following result:

THEOREM 1.1. If f : V −→ X is a mapping satisfying

‖f (x + y) − f (x) − f (y)‖ � δ,

for all x, y ∈ V , where V and X are Banach spaces and δ is a given positive number,
then there exists a unique additive mapping T : V −→ X such that

‖f (x) − T(x)‖ � δ,

for all x ∈ V . Also, if the function t −→ f (tx) from R to X is continuous for each
fixed x in V , then T is linear.
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Hyers’s result was extended and generalized in several directions. In [3] Bourgin
treated the problem for additive mappings. In [17] Th. M. Rassias provided a general-
ization of the Hyers’s Theorem by allowing the Cauchy difference to be unbounded as
follows.

THEOREM 1.2. Let f : V −→ X be a mapping between Banach spaces and let
p < 1 be fixed. If f satisfies the inequality

‖f (x + y) − f (x) − f (y)‖ � θ(‖x‖p + ‖x‖p)

for some θ � 0 and for all x, y ∈ V ( x, y ∈ V \ {0} if p < 0 ). Then there exists a
unique additive mapping T : V −→ X such that

‖f (x) − T(x)‖ � 2θ
|2 − 2p| ‖x‖

p (1.1)

for all x ∈ V ( x ∈ V \ {0} if p < 0 ).
If, in addition, f (tx) is continuous in t for each fixed x in V , then T is linear.

In [1] T. Aoki treated the problem for additive mappings. However T. Aoki had
claimed the wrong result of the existence of a unique linear mapping. His claim is not
true because he did not allow the mapping f to satisfy some continuity assumption.
Thus it was proved for the first time by Th. M. Rassias [17] that there exists a unique
linear mapping T satisfying (1.1).

Th. M. Rassias during the 27th International Symposium on functional equations
asked the question whether such a theorem can also be proved for p � 1 . Z. Gajda [10]
following the same approach as in [17], gave an affirmative solution to Rassias’question
for p > 1 . However, it was showed that a similar result for the case p = 1 does not hold.
The reader can be refered to [12,13,14,18,19,23,24,25,26] for a comprehensive account
of the Hyers-Ulam stability of functional equations. In [6,7] I. Fenyö established the
stability of the Ulam problem for quadratic and other mappings. In [9] Z. Gajda and R.
Ger showed that one can get analogous stability results for a subadditive multifunction.
Some other stability results have been achieved also by the following authors: In [16]
S.-M. Jung investigated the Hyers-Ulam-Rassias stability for more general mappings
on restricted domains. In [21] F. Skof solved the Ulam problem on a restricted domain
and she proved the stability problem for the quadratic equation

q(x + y) + q(x − y) = 2q(x) + 2q(y), x, y ∈ G, (1.2)

where q : V −→ X and V , X are Banach spaces. In [4] P. W. Cholewa extended Skof’s
result to the case where V is an abelian group G . In fact he proved the following result

THEOREM 1.3. Let η > 0 be a real number. If f : G −→ X satisfies the inequality

‖f (x + y) + f (x − y) − 2f (x) − 2f (y)‖ � η, x, y ∈ G, (1.3)

then for every x ∈ G the limit q(x) = limn→+∞
f (2nx)

22n exists and q : G −→ X is the
unique solution of (1.2) satisfying

|f (x) − q(x)| � η
2

, x ∈ G. (1.4)
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Later, I. Fenyö [7] improved the above boundobtained by F. Skof and P.W. Cholewa
from η

2 to η+‖f (0)‖
2 .

In [15] K. W. Jun and Y.-H. Lee obtained the Hyers-Ulam-Rassias stability of the
Pexider equations f (x+y)+f (x−y) = 2g(x)+2g(y), x, y ∈ G and f (x+y)+g(x−y) =
2h(x) + 2k(y), x, y ∈ G .

Recently B. Bouikhalene, E. Elqorachi and A. Redouani [2] proved the Hyers-
Ulam-Rassias stability of O’Connor’s and Gajda’s type functional equations f (x−y) =
a(x)a(y) and f (x + y) + f (x− y) = 2a(x)a(y), x, y ∈ G . Following this investigation
we deal with the stability of the functional equation

f (x + y) + f (x − y) = 2f (x) + 2f (y) + g(x)g(y), x, y ∈ G, (1.5)

where G is an abelian group and f , g : G −→ C . This equation was introduced by
Swiatak [22] as a generalization of the equation (1.2) (parallelogram law for which
g = 0 ). In the case where G = K = R , it is a characteristic of even polynomial of
order 2 . Swiatak found the general solution of (1.5), where f , g : G −→ K and K is a
commutative ring without zero divisors, under the additional hypothesis that g(e) �= 0 .
Later the functional equation (1.5) was completely solved by J. K. Chung , B. R. Ebank,
C. T. Ng and P. K. Sahoo [5].

In this paper we study the stability of this equation under the assumption of Swiatak,
namely g(e) �= 0 and K = C .

2. Main results

In the following theorems we investigate the generalized Hyers-Ulam stability of
the functional equation (1.5).

THEOREM 2.1. Let δ > 0 and f , g : G −→ C be mappings which satisfy the
inequality

|f (x + y) + f (x − y) − 2f (x) − 2f (y) − g(x)g(y)| � δ, (2.1)

for all x, y ∈ G and g(e) �= 0 . Then there exists a unique mapping q : G −→ C , given

by q(x) = limn→+∞
f (2nx)

22n , which satisfies the quadratic functional equation

q(x + y) + q(x − y) = 2q(x) + 2q(y), x, y ∈ G,

such that

|g(x) − g(e)| � 2δ
|g(e)| , x ∈ G, (2.2)

and

|f (x) − q(x) − f (e)| � 2δ 2

|g(e)|2 + 2δ, x ∈ G. (2.3)

Proof. Let {f , g} be a solution of inequality (2.1). Suppose

θ(x, y) = g(x)g(y) + 2f (x) + 2f (y) − f (x + y) − f (x − y), (2.4)

for all x, y ∈ G .
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We note that for all x, y ∈ G one has

|θ(x, y)| � δ.

Setting x = y = e in (2.4) yields

θ(e, e) = g(e)2 + 2f (e). (2.5)
By taking y = e we get from (2.4) that

θ(x, e) = g(x)g(e) + 2f (e), x ∈ G. (2.6)

From (2.5) and (2.6) we deduce that

θ(x, e) − θ(e, e) = g(x)g(e) − g(e)2 (2.7)
= g(e)(g(x) − g(e)). (2.8)

Since g(e) �= 0 it follows that

|g(x) − g(e)| � 2δ
|g(e)| , x ∈ G, (2.9)

which establishes (2.2).
Now, equality (2.4) implies that

(f − f (e))(x + y) + (f − f (e))(x − y) = 2(f − f (e))(x) + 2(f − f (e))(y)
+g(x)g(y) + 2f (e) − θ(x, y).

We get

(f − f (e))(x + y) + (f − f (e))(x − y) = 2(f − f (e))(x) + 2(f − f (e))(y)
+g(x)g(y) − g(x)g(e) + θ(x, e) − θ(x, y)

= 2(f − f (e))(x) + 2(f − f (e))(y)
+g(x)(g(y) − g(e)) + θ(x, e) − θ(x, y)

= 2(f − f (e))(x) + 2(f − f (e))(y)

+g(x)
θ(y, e) − θ(e, e)

g(e)
+ θ(x, e) − θ(x, y).

By using the inequality (2.9) we get

|g(x)| � |g(e)| + 2δ
|g(e)| .

Hence,

|g(x)
θ(y, e) − θ(e, e)

g(e)
| � 2δ +

4δ 2

|g(e)|2
and consequently, we obtain

|(f − f (e))(x + y) + (f − f (e))(x − y) − 2(f − f (e))(x) − 2(f − f (e))(y)|
� 4δ

(
δ

|g(e)|2 + 1

)
(2.10)
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for all x, y ∈ G . From Theorem 1.3 there exists a unique mapping q : G −→ C given
by q(x) = limn→+∞

f (2nx)
22n satisfying the functional equation (1.2) and

|f (x) − q(x) − f (e)| � 2δ
(

δ
|g(e)|2 + 1

)

for all x ∈ G , which establishes (2.3). This completes the proof of the theorem. �

THEOREM 2.2. Let f , g : G −→ C and ϕ : G × G −→ [0, +∞[ be mappings
which satisfy the inequality

|f (x + y) + f (x − y) − 2f (x) − 2f (y) − g(x)g(y)| � ϕ(x, y), (2.11)

for all x, y ∈ G and g(e) �= 0 . Suppose also that ϕ satisfies the following inequalities
i)

∞∑
i=0

1
4i+1

ϕ(2ix, 2iy) < +∞, x, y ∈ G.

ii)
∞∑
i=0

1
4i+1

ϕ(2ix, e)2 < +∞, x ∈ G.

Then

|g(x) − g(e)| � ϕ(e, e) + ϕ(x, e)
|g(e)| , (2.12)

and the function q : G −→ C , given by q(x) = limn→+∞
f (2nx)

22n defines a unique
quadratic function such that

∣∣∣f (x) − q(x) − 1
3
f (e)

∣∣∣ � 1
|g(e)|2

∞∑
i=0

1
4i+1

(ϕ(2ix, e) + 2 | f (e) |)2

+
∞∑
i=0

1
4i+1

ϕ(2ix, 2ix), x ∈ G. (2.13)

Proof. Substituting x in place of y in (2.11), we easily obtain

|f (2x) + f (e) − 4f (x) − g(x)2| � ϕ(x, x), x ∈ G. (2.14)

By setting y = e , respectively x = y = e in (2.11), we obtain

| − 2f (e) − g(x)g(e)| � ϕ(x, e), x ∈ G, (2.15)

and
| − 2f (e) − g(e)2| � ϕ(e, e), x ∈ G. (2.16)

Adding (2.15) and (2.16) by the triangle inequality yields for all x ∈ G

|g(x) − g(e)| � ϕ(e, e) + ϕ(x, e)
|g(e)| ,
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which establishes (2.12).
From (2.15) and (2.14), we get for all x ∈ G that

|g(x)| � ϕ(x, e) + 2|f (e)|
|g(e)| (2.17)

and∣∣∣f (x)−1
4
f (2x)−1

3

(
1 − 1

4

)
f (e)

∣∣∣ � 1
4
ϕ(x, x)+

(ϕ(x, e) + 2|f (e)|)2

4|g(e)|2 , x ∈ G. (2.18)

Making the inductive assumption we obtain

∣∣∣f (x) − 1
4n

f (2nx) − 1
3

(
1 − 1

4n

)
f (e)

∣∣∣ � 1
|g(e)|2

n−1∑
i=0

1
4i+1

(ϕ(2ix, e) + 2|f (e)|)2

+
n−1∑
i=0

1
4i+1

ϕ(2ix, 2ix), x ∈ G, (2.19)

for any positive integer n . Clearly (2.19) is true for the case n = 1 , since setting n = 1
in (2.19) implies (2.18). We now assume that the inductive assumption is true for n−1
i.e. that∣∣∣f (x) − 1

4n−1
f (2n−1x) − 1

3
(1 − 1

4n−1
)f (e)

∣∣∣
� 1

|g(e)|2
n−2∑
i=0

1
4i+1

(ϕ(2ix, e) + 2|f (e)|)2 +
n−2∑
i=0

1
4i+1

ϕ(2ix, 2ix).

Then for any positive integer n we get by using the triangle inequality that∣∣∣∣f (x) − 1
4n

f (2nx) − 1
3

(
1 − 1

4n

)
f (e)

∣∣∣∣
�

∣∣∣∣f (x) − 1
4n−1

f (2n−1x) − 1
3
(1 − 1

4n−1
)f (e)

∣∣∣∣
+

∣∣∣∣ 1
4n−1

f (2n−1x) +
1
3
(1 − 1

4n−1
)f (e) − 1

4n
f (2nx) − 1

3

(
1 − 1

4n

)
f (e)

∣∣∣∣
� 1

|g(e)|2
n−2∑
i=0

1
4i+1

(ϕ(2ix, e) + 2|f (e)|)2 +
n−2∑
i=0

1
4i+1

ϕ(2ix, 2ix)

+
1

4n−1

∣∣∣∣f (2n−1x) − 1
4
f (22n−1x) − 1

4
f (e)

∣∣∣∣
� 1

|g(e)|2
n−2∑
i=0

1
4i+1

(ϕ(2ix, e) + 2|f (e)|)2 +
n−2∑
i=0

1
4i+1

ϕ(2ix, 2ix)

+
1

4n−1

[
1
4
ϕ(2n−1x, 2n−1x) +

(ϕ(2n−1x, e) + 2|f (e)|)2

4|g(e)|2
]



HYERS-ULAM STABILITY 297

=
1

|g(e)|2
n−1∑
i=0

1
4i+1

(ϕ(2ix, e) + 2|f (e)|)2 +
n−1∑
i=0

1
4i+1

ϕ(2ix, 2ix), x ∈ G.

Thus the inductive assumption (2.19) applies for all positive integer values of n . We
now wish to construct a Cauchy sequence of functional values. If m > n > 0 , then
m − n ∈ N . Replacing n by m − n in (2.19) one has

∣∣∣f (x) − 1
4m−n

f (2m−nx)
∣∣∣ � 1

3

(
1 − 1

4m−n

)
|f (e)|

+
1

|g(e)|2
m−n−1∑

i=0

1
4i+1

(ϕ(2ix, e) + 2|f (e)|)2 +
m−n−1∑

i=0

1
4i+1

ϕ(2ix, 2ix).

If we replace x by 2nx , we obtain

∣∣∣f (2nx) − 1
4m−n

f (2mx)
∣∣∣ � 1

3

(
1 − 1

4m−n

)
|f (e)|

+
1

|g(e)|2
m−n−1∑

i=0

1
4i+1

(ϕ(2i+nx, e) + 2|f (e)|)2

+
m−n−1∑

i=0

1
4i+1

ϕ(2i+nx, 2i+nx). (2.20)

Dividing (2.20) by 22n yields∣∣∣∣ 1
4n

f (2nx) − 1
4m

f (2mx)
∣∣∣∣ � 1

3

(
1
4n

− 1
4m

)
|f (e)|

+
1

|g(e)|2
m−1∑
i=n

1
4i+1

(ϕ(2ix, e) + 2|f (e)|)2 +
m−1∑
i=n

1
4i+1

ϕ(2ix, 2ix).

The last inequality and the assumptions of the theorem show that the sequence { f (2nx)
22n }

is a Cauchy sequence for each fixed x ∈ G . We call this limit q(x) = limn→+∞
f (2nx)

22n .
Next, we will show that q(x) is a quadratic function. From (2.11) and (2.17), we get∣∣∣∣ f (2n(x + y)) + f (2n(x − y)) − 2f (2nx) − 2f (2ny)

4n

∣∣∣∣
� (ϕ(2nx, e) + 2|f (e)|)(ϕ(2ny, e) + 2|f (e)|)

4n|g(e)|2 +
ϕ(2nx, 2ny)

4n
, (2.21)

for all x, y ∈ G and for all n ∈ N. By the assumptions of the theorem, the right-hand
side of (2.21) converges to zero as n tends to infinity, so that

q(x + y) + q(x − y) − 2q(x) − 2q(y) = 0, (2.22)

for all x, y ∈ G. Hence q is indeed a quadratic function.
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From (2.19) we get

∣∣∣f (x) − q(x) − 1
3
f (e)

∣∣∣ � 1
|g(e)|2

∞∑
i=0

1
4i+1

(ϕ(2ix, e) + 2|f (e)|)2

+
∞∑
i=0

1
4i+1

ϕ(2ix, 2ix), x ∈ G.

To prove the uniqueness, suppose that there exists another quadratic function B such
that

∣∣∣f (x) − B(x) − 1
3
f (e)

∣∣∣ � 1
|g(e)|2

∞∑
i=0

1
4i+1

(ϕ(2ix, e) + 2|f (e)|)2

+
∞∑
i=0

1
4i+1

ϕ(2ix, 2ix), x ∈ G.

For all x ∈ G and for all n ∈ N , we have

|q(x) − B(x)| =
1
4n

|q(2nx) − B(2nx)| � 1
4n

[|f (2nx) − q(2nx)| + |f (2nx) − B(2nx)|]

� 2
4n

{
1
3
|f (e)| + 1

|g(e)|2
∞∑
i=0

1
4i+1

(ϕ(2ix, e) + 2|f (e)|)2 +
∞∑
i=0

1
4i+1

ϕ(2ix, 2ix)

}

(2.23)
by the triangle inequality. Since the right-hand side of (2.23) converges to zero as n
tends to infinity, one gets that q(x) = B(x) for all x ∈ G , so that q is unique. This
completes the proof. �

THEOREM 2.3. Let f , g : G −→ C and ϕ : G × G −→ [0, +∞[ be mappings
which satisfy the inequality

|f (x + y) + f (x − y) − 2f (x) − 2f (y) − g(x)g(y)| � ϕ(x, y), (2.24)

for all x, y ∈ G and g(e) �= 0 . Suppose also that ϕ satisfies the following inequalities
i)

∞∑
i=0

4iϕ
( x

2i+1
,

y
2i+1

)
< +∞, x, y ∈ G.

ii)
∞∑
i=0

4iϕ
( x

2i+1
, e

)2
< +∞, x ∈ G.

Then

|g(x) − g(e)| � ϕ(e, e) + ϕ(x, e)
|g(e)| , (2.25)
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and the function q : G −→ C , given by q(x) = limn→+∞ 22n[f (2nx)+ 1
3 (1−22n)f (e)]

defines a unique quadratic function such that

|f (x) − q(x)| � 1
|g(e)|2

∞∑
i=0

4i
(
ϕ

( x
2i+1

, e
)

+ 2 | f (e) |
)2

+
∞∑
i=0

4iϕ
( x

2i+1
,

x
2i+1

)
, x ∈ G. (2.26)

In the next corollary one has the Hyers-Ulam-Rassias stability of the Swiatak’s
functional equation (1.5) on a normed space G .

COROLLARY 2.4. Let k < 1 , θ � 0 be real numbers. Suppose that the functions
p, q : G −→ C are such that

|p(x + y) + p(x − y) − 2p(x) − 2p(y) − q(x)q(y)| � θ(|x|k + |y|k), (2.27)

for all x, y ∈ R and q(0) �= 0 . Then

|q(x) − q(0)| � θ|x|k
|q(0)| , (2.28)

and the function B : G −→ C , given by B(x) = limn→+∞
p(2nx)

22n defines a unique
quadratic function such that

|p(x) − B(x) − 1
3
p(0)| � 1

|q(0)|2
∞∑
i=0

1
4i+1

(θ | 2ix |k +2|p(0)|)2

+
θ|x|k

2
1

1 − 2k−2
, x ∈ R. (2.29)
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[7] FENYÖ I., On an inequality of P. W. Cholewa, in: General Inequalities, 5, Internat. Schriftenreiche
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