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NEW WEIGHTED SIMPSON TYPE
INEQUALITIES AND THEIR APPLICATIONS

J. PECARIC AND KUEI-LIN TSENG

(communicated by A. Cizmesija)

Abstract. In this paper, we establish some weighted Simpson type inequalities and give several
applications for Euler’s Beta mapping and special means.

1. Introduction

The following inequality is well known in the literature as Simpson’s inequality:

/abf(X)dx e {f(a) 0 +2f<“+b)}|

2 2

1
il 0o |
2880Hf L B-ay (1.1)

where the mapping f : [a,b] — R is assumed to be four times continuously differen-
tiable on the interval and f ) to be bounded on (a,D), that is,

Hf(‘”H = sup <4)(t)‘<oo.
o0 1€ (a,b)

For some recent results which generalize, improve and extend the inequality (1.1),
see the papers [2-7] and [9-14].

2. Notation

We introduce the following notation:

Generalized Partition: [(71,1,,13): t1,02,t3 € R, 1 € [a,]].

Canonical partition: I*(f,6,13): 11,113 ER,a<t) <1, <13 < b.

Functions: (1) g; : R — R is integrable and k; : R — R is differentiable with
ki=g (i=1,---,4).

Mathematics subject classification (2000): 26D15, 26D10.

Key words and phrases: Simpson’s inequality, function of bounded variation, Euler’s Beta function,
special means.
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(2) Let a < ry < 12 < 13 < b. Define

ki(x), x¢€la,n)

o kz(x), XG[
SO =0 ), xel
[

ky(x), x € [r3,Db].
(3) Let x,y,z € R and x < y. Define

‘:I-—

([ |t — 2" dr)

t— if 4 = oo.
mphod ife=o

if u € [1,00),
O(x,y,z, 1) := {

(4) Leta<n <t <b, w;>1 (i=1,---,4) and u > 1. Define

tl—a““
( w1 ) o) =

h — [2 u+1 . .
( p+1 ) ’ )=
Hy o= (W), ha(), ha (1),

W= (U, M2, U3, Ma);

7= (hi(w), ha(W2), h3(U3), ha(ua))- (2.4)
(5) Let c < d in R Define

ha(p
a(u)); (2.3)

1

I ) dx)F i e [1,00),

WHM,[c,d} = sup |f ()] if u = oo. (2.5)
t€c,d)

Total variation: Let ¢ < d in R and let the function f be bounded variation on
[c,d]. Define VY(f) to be the total variation of f on [c,d].

3. Dragomir and Culjak-Petarié-Persson’s Inequalities

In [6], Dragomir established the following two Simpson type inequalities:

THEOREM A. Let f : [a,b] — R be a function with bounded variation on [a, D).
Then we have the inequality

b —a a a
/fwﬁ_b f(a)+1(b) 2f(+b)H

3 2

< 30— aQVA). (3.1)

The constant § is the best possible in (2.1).
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THEOREM B. Let f : I C R — R be a differentiable function in Int(I) and
a,b € Int(I) with a <b. If f € Ly [a,b], then we have the inequality

b
/f(x)dx_b—a f(a) +£(b) +2f(a+b)H

3 2 2

1
< g(b —a) Il 0y - (32)

In [3], Culjak, Peari¢ and Pessson established the following Simpson type in-
equalities:

THEOREM C. Let f be a function with bounded variation on [a,b] and f have
no discontinuity in ty. Then the inequality

b
/ fx)dx —[(t = a)f (@) + (b — 13)f (b) + (13 — 11)f ()]

< Q(d,lz,ll,OO)Vélz(f)+Q(l2,b,[3700)vg(f) (33)

holds in the generalized partition (11,1, 13), and the inequality

b
/ F)dx— (1 — a)f (@) + (b~ ) (B) + (1 — 1) (1)]
<G-V (3.4)

holds in the canonical partition I*(t\,t,13), where G := (t; —a,tp —t),t3 —th, b —13)
and V := (V;l(f)> Vt’f(f)7 V;;(f), Vg(f))

THEOREM D. Soppose pi,qi > 1 (i = 1,---,4) with [%+% =1 (¢ =
oo if pi=1). Let f : [a,b] — R. In the generalized partition 1(t\,12,13), if f is
differentiable with f' € Ly, [a,t:] N Ly, [t2,b], then we have the inequality

b
/ fx)dx — [t —a)f (@) + (b — 63)f (b) + (15 — 11)f ()]

< 0(a, 12, 11,91) 1l as) + Q120,13 @) I [l 110 - 6s)
3.5

In the canonical partition I*(t;,12,13), if f is differentiable with f' € Ly [a,1;] N
Ly, [t1, 0] N Ly, [t2,13] N Ly, [13, b], then we have the inequality

b
/ F)dx— (1 — a)f (@) + (b~ ) (B) + (1 — 1) (1)]

<H; T, (3.6)

where g = (CII>CI27Q37Q4) and 717 = (Hf/le,[a,rl] ) Hf/HpZ,[tl,tZ] ) Hf/||p3,[t2,r3] ) Hf/||p4,[r3,b])'
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THEOREME. Let f : [a,b] — R. Inthe generalized partition 1(t),tp,t3), if f is
L, -Lipschitzian on [a, t;] and L, -Lipschitzian on [ty, b], then we have the inequality

b
/ fx)dx —[(t = a)f (@) + (b — 13)f (b) + (1 — 11)f ()]

< 0(a,t2,11, 1)Ly + Q(t2, b, 13, 1)Ly (3.7)
In the canonical partition I*(t1,t,t3), if f is Ly -Lipschitzian on [a,t], L -
Lipschitzian on [t1,t], Ls -Lipschitzian on [ty,t3] and Ly -Lipschitzian on |t3,b],
then we have the inequality

b
/f@ﬂmﬂm—@ﬂ@+w—gyw»ug—nvmﬂ

where Z = (L17L27L3,L4).
4. Main Results

THEOREM 1. Let a < ry < ry < r3 < b, the functions s, ki, g (i=1,---,4)
be defined as above, f be a function with bounded variation on [a,b], and let f and
s have no common point of discontinuity on [a, b]. Then we have the inequality

(Wil < i llog fary Va' OF) + k2l gy ) Vi (OF)
H Kl ) Vi OF) + 1Kl oy Vi ) (4.1)

where
Wy = —ki(a)f (a) + (ki (r1) — ka(r1))f (1) + (ka(r2) — ks(r2))f (r2)
+ (k3(r3) — ka(r3))f (r3) + ka (b / f(x)g1(x)dx

A?w&wwl3w&@wéfw&ww

Proof. Using the integration by parts formula, we have the following identity

L%w#w—hu ” Lf Jealx

T (x /f Xl
= —ki(a)f (a) + (kl( ) ka(ri))f (n) + (ka(r2) k%(rz))f(rz)
+ (k3(r3) — ka(r3))f (r3) + ka(b / f(x)g1(x)dx

/f x)g1 (¥)dt + ko (x)

f )83 (x)dx + kq(x)

fow&wwfwa&wwf/fw&ww:m- (42)
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It is well known [1, p. 159] that if @, v : [c,d] — R are such that u is continuous

on [c¢,d] and v is of bounded variation on [c,d], then f u(r)dv(r) exists and [,
p. 177]

d
/ HOIAV()| < 1 g VECV): (4.3)
Using (4.2) and (4.3), we have
wi<|/ "k ()dr ()] + / " la()df (x)
r b
+/ k3 (x)df (x)| + / ka(x)df (x)

S kil gy Ve OF) + k2l o g Vi)
+||k3|| Vfi(f)+\|k4\| froy Vi)

which is the inequality (4.1).
This completes the proof. [

Under the conditions of Theorem 1, we have the following corollary and remarks.
COROLLARY 1. In Theorem 1, let ki(x) = kp(x) (x € R) and k3(x) = ka(x)
(x € R) . Then we have the inequality
(Wil < i llog oy Va' OF) + Tkl gy ) Vi (OF)

F K3l frarg V) + 13l sy Vi F ) (4.4)
where

Wr = —ki(a)f (a) + (ki(r2) — ks(r2))f (r2) + ks(b)f ()

/f x)g1(x dxf/f x)83(x

REMARK 1. In Corollary 1, let 71,3 € R, 1 = B, ki(x) = ka(x) = x — 1
(x € R) and k3(x) = ka(x) = x — 13 (x € R). Then we have the inequality

b
[ £ = (0= alf @)+ (b= () + (1 = 0)F (1)
gQ(aarlathoo)vsl(f)+Q(r17t2atla )Vz(f)
+Q(t2,73,13,00) V2 (f ) + Q(r3, b, 13,00) V). (f )
< Q(a,12,01,00) V() + Q12 b,13,00) Vi (f )
which refines the inequality (3.3).

REMARK 2. InCorollary 1,1et r; =1; (j=1,2,3), ki(x) =k(x) =x—1t1(x €
R), k3(x) = ks(x) =x—13 (x €R) and g;(x) = 1(i=1,--- ,4; x € R). Then the
inequality (4.4) reduces to the inequality (3.4).
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THEOREM 2. Let a < r; < rp < r3 < b, and let the functions [, s, ki, g
(i=1,---,4) bedefined as in Theorem 1. Further, let g;(x) >0 (x eR;i=1,---,4)
and ky(r1) = ka(r1) = ks(r3) = ka(r3) = 0. Then we have the inequality

(Wi | < (—ki(@) V' (F) + ka(r2) V()
+ (=ks(r))VE(F) + ka(D)VL () — [M1+Mo]
)

< (ki @)V () + ka(r) V() + (=ks(r2)) Vi (F) + ka(D)VI(F ), 45)

where

Wi = —ki(a)f (a) + (ka(r2) — ks(r2))f (r2) + ka(D)f (b)

/f x)g1(x dx—/ f(x)ga(x
- [ s / F (@)

[ki(a) + ka(r)] ViI(f), as N

M,
=hla) = k()] Ve (1), as ) 2 )1 (Chy(r)

and

7](3(/‘2) g k4(b) and
k ka(b)] Ve
M, = alr2) + KBV (), - as di = (ka)~'(—ks(r2))
- e k4(b) g 7/(3(/‘2) and
— _ 3
[ k3(7‘2) k4(b)} de(f)v as dy = (k3)_1(—k4(b))
Proof. Using the assumption ki (r;) = kz(r1) = k3(r3) = ka(r3) = 0 in (4.2),
we have the following identity

b
/ s(x)df (x) = Wy. (4.6)

Next, we shall discuss the following four cases.

Case 1. Let —kl(a) < kg(rz) and —k3(7‘2) < k4(b) with ¢; = (kz)_l(—kl(a))
and d; = (k4)_1(—k3(7‘2)).
Using (4.3) and (4.6), we have

/a” s()df (x)| + /: s(x)df (x)| + /CerS(x)df(x)
/: s(x)df (x)| + /:l s(x)df (x)| + /:s(x)df(x)

/ "y ()df ()] + / o ()df (3)] + / o ()df (3

(Wil <

+
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r3 dy b
/ ks ()df ()] + / ke () ()] + / k() (x)

< (k@) V' (F) + (ki (@) Vi (F) + ka(r2) Vi ()

+ (ks (m)VE(F) + (=ks(r2)) Vi (F) + ka(B)V, ()
= (—ki(@)V;' (f) + ka(r) V2 (f) — [ki(a) + ka(r2)] Vi ()

+ (—ks(r))VE(F) + ka(D)VL(F) — [ka(r2) + ka(D)] V2 (F)
= (k@) () + ka(r)VE(F) + (ks (r)) Vi (F) + ka(D)VE(F ) — [Mi+M)]
< (ki @)V () + ka(r2) V2 (F) + (=ks(r2)) Vi (f) + ka(B)VE(F)

which is the inequality (4.5).

Case 2. Let 7k1(a) < kz(rz) and k4(b) < 7/(3(/‘2) with ¢; = (kz)fl(fkl(a))
and d, = (k})_l(—k4(b)).
Using (4.3) and (4.6), we have

[ s ) | [ star o] +| [ stwarco
/:2 s(x)df (x)| + /: s(x)df (x)| + /:s(x)df(x)
[ | +| [ iewarco| + | [ ar

d r b
| s +| [ o) + | [ koo

< (ki(@)V (F) + (=ki (@) Vi (F) + ka(r2) Vi ()
+ (ks (r)VE(F) + ks (O)VR () + ks (D)VL ()
= (—ki(@)Vy' (f) + ka2 (r2) Vi3 (F) = [ki (@) + ka(r2)] VI ()
+ (=k3(r))VE(f) + ka(D)VE(f) — [—ks(r2) — ka(B)] V()
= (ki @)V () + ka(r) V() + (ks (r)) Vi (F) + ka(D)VE(F) — [Mi+M)]
< (ki @)V () + ka(r2) V2 (F) + (=ks(r2)) Vi (f) + ka(B)VE(F)

which is the inequality (4.5).
Case 3. Let kz(rz) < kl(a) and 7](3(7‘2) < k4(b) with ¢; = (kl)fl(sz(rz))
and d; = (k4)_1(—k3(7‘2))
Using (4.3) and (4.6), we have
[ soar|+] [ swar o) +

/rz " swdr )| + / " @] +

+

Wyl <

+

+

+

(Wil <

/ S(x)df ()

b
n / S0 (9
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[ war o)+ | [ kW)« | [ oW
r dy b
+ /r2 ks (x)df (x) +/r3 ky(x)df (x)| + /d1 ka(x)df (x)
< (ki @)VEF) + ka(m)VEF) + ha(ra) V()
(ks (mDVEE) + (—ha(r))VE () + Ka(B)VE, (F)
= (=k(@)V2 () + ka(r)VE () = [—ki (@) — ka(r2)] VL (F)
 (—ka(m)VE) + Ka(B)VA () = [lalr2) + ks ()] VA (F)
= (ki (@)VI )+ ka(m)VE ) + (—ks(m)VE() + Ka(B)VE(F) — [My+M)
< (ki (@)VI(F) + ka(m)VE () + (—ka(m)VE () + ka(B)VE(F)

which is the inequality (4.5).

Case 4. Let kz(rg) < —kl(a) and k4(b) < —k3(7‘2) with ¢; = (kl)_l(—kg(rz))
and d, = (k})il(—]q(b)).
Using (4.3) and (4.6), we have

[ swar)| | [ star ] +| [ stwarco
n / * sar 0] + /:S(X)df(X) + /:s(ﬂdf(x)
/C ky (x)df (x)| + / i ka(x)df (x)

d r b
n / ks ()df ()] + / ks ()df (x)] + / ke () (x)

< (ki(@)V2(f) + ka(r2)Ver (f ) + ka(r2) Vi (f )

+ (ks (r))VE(F) + ka D)V (F) + ka (D) VL (F)
= (k@) Vo' (f) + k() V() — [—hi(a) — ka(r2)] Vey (f)

+ (—k3(n))VE(F) + ka(D)VE(f) = [—ks(r2) — ka(B)] VR (F)
= (ki @)V () + ka(r)VE(F) + (ks (r))VE () + ka(D)VE(F) — [Mi+M,)]
< (ki @)V () + ka(r2) V2 (F) + (=ks(r2)) Vi (f) + ka(B)VE(F)

Wyl <

+

[ wware

r ot

which is the inequality (4.5).
This completes the proof. [

Under the conditions of Theorem 2, we have the following corollaries and remarks.

COROLLARY 2. In Theorem 2, let tj, r;, ki, g (j=1,2,3;i=1,---,4) be
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defined as in Remark 2, then we have the inequality

/ F@)dx — (1 — a)f (@) + (b~ ) (B) + (1 — 1) (1)

<G- V- [M+M] <GV, (4.7)

where

o { (a=2t1 + )V (f), as 1 < “;” andcy =2t —a
b 2ty —a—n)VL(f), as ”;'2 <thandc, =2t — b

Mo — (t272t3+b)Vgl(f), as t3<%al’ldd1—2t37t2
Tl @a-n-b)VEF), as 2L <tyanddy =26 — b

and G, V are defined as in Theorem C.

REMARK 3. In Corollary 2, the inequality (4.7) refines the inequality (3.4).

COROLLARY 3. Suppose g : R — R is positive and continuous and h : R — R

is differentiable with I (x) = g(x) on R. In Theorem 2, let ry = h~'(21Lth®) h< ),
— 1 h(@)+h(b — 1 h(a)+5h 5h(a)+h(

ro = BT (HEFE), s = b (), () = ko) = hx) — P <xeR>,

ks (x) = ka(x) = h(x) — M) (v € R) and gi(x) = g(x) (x€R, i=1,---,4).
Then we have ¢y = h~" (2O - gy — p= 1 (MAE2O)) g the inequality
X)dx — Jy 8§x)dx [f (a) ;f () , 2f(r2)} ‘
MOy ) MO R gy BV M g
h(b) . h(a) Ve () [h(b) . M) ye oy 4 1O) gh( )Vél(f)

L =L PO RRATS)

Ly LB ey )

< Ly (48)

which is the weighted Simpson type inequality for functions of bounded variation.
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REMARK 4. In Corollary 3, let g(x) = 1 and h(x) = x (x € R). Then we have
the inequality

b b—a [f(a)+f(b) a+b
[ o= 252 LA o >H

<§w@%v>gb@®f#v>uigvﬂ
< 30— aVi() (49)

which refines the inequality (3.1).

THEOREM 3. Soppose i, v; = 1 (i = 1,---,4) with 4 + 3 =1 (v =
coif i =1). Let a<rp <rp<r3 <b andlet thefunctlons s, ki, g (i=
1,---,4) be defined as in Theorem 1. If f : [a,b] — R is defferentiable with f' €

)

Ly, [a,r] N Ly, [r1,r2] N Ly, [r2, 3] N Ly, [r3,b], then we have the inequality
W< 1ty g 1 T+ TRl I
sl 1 [l 1 (4.10)
where Wy is defined as in Theorem 1.

Proof. Using the integration by parts formula, we have the following identity

/abs( ' (X)dx = ki (x)f (x /f x)g1(x)dt + ko (x) /f x)82(x)dx

/f )3 (¥)dx + a (x) /f Vgalx

= —ki(a)f (a) + (kl( 1) = ka(r1))f (r1) + (ka(r2) k%(rz))f( )
T (Ks(rs) — ke(m))f (rs) + a( /f g1 (W

+ k3 (x)f (x

—f?m&ww—/Vm&ww—/fm&ww=m. (@11)

Using the Holder’s inequality and (4.11), we have
rl L)
[ e +| [ty s

1

[Wr| <

b
+ / ka (o) (x)dx

3

/ hy (x)f ' (x)dx| +

rn

< Ry g W Mg 82l gy g 1 W g
+ ||k3||V3 [r2,r3] Hf ||;43 [r2,r3] + Hk4HV4 [r3,b] Hf H 3,0

which is the inequality (4.10).
This completes the proof. [

Under the conditions of Theorem 3, we have the following corollaries and remarks.
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COROLLARY 4. In Theorem 3, let Uy = Up, Vi = Vo, M3 = W4, V3 = Vg,
ki(x) = ka(x) (x € R) and k3(x) = ka(x) (x € R). Futher, let f' € Ly, [a,r] N
Ly, [r2,b]. Using the Holder’s inequality

2 1 i
Zaz Bz \ Z(X,)M (Zﬁl)v]
and (4.10), we have the inequality

‘Wf‘ < Hkluvl,[a,rl] Hf/Hyl,[a,rl] + ||k1HV1,[r1,r2] Hf/”ﬂll,[rl,"z]
+ ||k3||v3,[rz~,r3] Hf/”m.,[rzh] + Hk3HV3~,[V3~,b] Hf/HHz:[V,%b]

1

< Rl g+ (el )] %
1
« [(Ilf’llm,[a,n])“‘ o (U ] ™

1

o [ )™ + sy )] ™

XL N + UF |
= Wl g W g + 13l 1 g (4.12)
where Wy is defined as in Corollary 1.

REMARK 5. In Corollary 4, let u; = p1, vi = q1, Uz = p2, V3 = ¢, and let
4, rj, ki, & (j=1,2,3;i=1,---,4) be defined as in Remark 1. Then we have the
inequality

b
/ f)dx — [t —a)f (@) + (b — 6)f (b) + (15 — 11)f ()]

g Q(aa r, ql) Hf/le,[a,rl] + Q(r17 I, 1, ql) Hleph[rhtz]
+ Q(t2> r3, 13, CIZ) Hf’Hl’z,[l‘zJ’S] + Q(r3> b7 13, q2) “lePz,[rs,b]
< O(a, 12,11, 1) f Ml ) + Q2 b, 13,02) N, 10 (4.13)

which refines the inequality (3.5).

REMARK 6. InTheorem3,let #;, r;, ki, & (j=1,2,3;i=1,---,4) bedefined
as in Remark 2, then the inequality (4.10) reduces to the inequality (3.6).

THEOREM 4. Letrj, s, ki, g (j=1,2,3;i=1,---,4) bedefined as in Theorem
Iandlet f : [a,b] — R be defferentiable with f' € Ly [a,r ]| N Ly [r1,r2] MLy [r2, 131N
Ly [r3,b]. Further, let gi(x) > 0 (x € Rji = 1,---,4) and ki(r) = ka(r1) =
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k3(r3) = ka(r3) = 0. Then we have the inequality

|Wf| < (—ki(a)) ] + ka(r2) “f/”l,[rl,rz]
+ (ks () Wy gy g + kaB) 11y iy — (M3 + M)
< (—ki(a)) 1+ k2 (r2) 111y
+ (ks (r2)) I N1 gy + R B) WMy » (4.14)

where Wf is defined as in Theorem 2,

@)+ k(] I g+ s LGS0 )
T ) - g s RS SR

and
la(r2) + KO I a5 ) S e
My = ka(b) < k3(r2)and

[—k3(r2) — ka(D)] Hf/Hl,[dz,m] y as dr = (k3 ; (—ka(b))

Proof. The proof is similar to that of Theorem 2.
Under the conditions of Theorem 4, we have the following corollaries and re-
mark. [

COROLLARY 5. Let tj, rj, ki, g (j = 1,2,3,i=1,---,4) be defined as in
Corollary 2. In Theorem 4, . we have the inequality

/f@ﬂmwm—@ﬂw+w—Mﬂw+m—nvmn

<G- /—[M3+M4]<E- ’ (415)

where

“”2 andcy =2t —a

IS

s h <

S ”JE'Z <tandcy =2t — 1t

IS

M3: (a72t1+12)Hf ||1t1c‘1 ’
(2t1 —a—1n)|f’ ||1,[cz,t1] )

M — (2 =26+ D) Il .0 »
* (2l3 — 1) — b) |lf/||17[d27t3] , as bto <tzandd, =2t3 — b ’

2
= (" Wiy > W Mgy > W W g U1 ) @ G is defined as in Theorem

Q

s 13 < #andd1:2t3—t2
+b

C.

REMARK 7. In Corollary 5, the inequality (4.15) refines the inequality (3.6) in
thecase p;=1and g =00 (i=1,---,4).
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COROLLARY 6. Let g, h, rj, ki, & (j=1,2,3,i=1,---,4) be defined as in
Corollary 3. In Theorem 4, we have the inequality

b b X)ax a
Léﬂmwwﬂﬁ”iy”gﬂm+%mﬂ

< ML oy TR o RO
+ M W g [h(b) = e} M Hf/||l’["”3]]
- w Wl e — h(b) p— [ ) F HfI”l’[dz’bJ
b b
fa ggx IIf’ ||1 [a,6] f ( ) {Hf Hl ae) I’ Hl o }
b
< L8y 10

which is the weighted Simpson type inequality in Ly norm.

REMARK 8. In Corollary 6, let g(x) =1 (x € R) and h(x) = x (x € R). Then
we have the inequality

b —a[fl(a a
Pl - P8 LT o “’)H
< 30— I Ny — 50— ) [y g + 17l
< 3= 1 s (417)

which refines the inequality (3.2).

THEOREM 5. Let Wy, s, ri, ki, g (i =1,---,4) be defined as in Theorem 1
and let f be Ly -Lipschitzian on |a,ry], L,-Lipschitzian on [r1,r2], Ls-Lipschitzian
on [ra,r3] and Ly -Lipschitzian on [t3,D]. Then we have the inequality

[Wr| < Ly ||k 1Lkl g, Lkl + La llKally g - (418)

Hl [a,r1]

Proof. Using (4.2), we have
b r rn
[ sware)| <| [ eware| +| [ kewar )

r3 b
/kmwvw+/mw#@

r3
Ll ||k1||1 la,r1] +L2 ||k2||1 [ri,r2] +L3 Hk3||1 [r2,r3] +L4 Hk4H1,[r3,b]

|Wr| =

+
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which is the inequality (4.18). This completes the proof. [J

REMARK 9. InTheorem?2,let 7;, r;, ki, g (j=1,2,3;i=1,---,4) be defined
as in Remark 2, then the inequality (4.18) reduces to the inequality (3.8).

5. Applications for Euler’s Beta function

Consider the Euler’s Beta function for real numbers

1
B(p,q) ::/ xp_l(l—x)q_ldx, p,qg>0
0

and the function
epgx) =1 -x)" xe0,1].

In [8], Dragomir gets the following results:
We have for p,q > 1 that

’

ep,q(x) = ep—1,4-1(x) p—1—(p+q—2) (5.1)

and as
lp—1-(p+q—2)x[ <max{p—1,4q—1} (5.2)
forall x € [0,1], then

’
), gy <MD= 1a = Y llep-2g-2ll

=max{p—1,g—1}Blp—1,9—1). (5.3)

Using Remark 8 and (5.1) — (5.3), we have the following corollary:

COROLLARY 7. Let p,q > 1. Then we have the inequality

23-r—q

1
’B(p7q)_ 3 g—max{p—l,q—l}B(p—l,q—l)

3
: oo
- = e
6 Pl [z.1)

1
< gmax{pf lL,g—1}B(p—1,q—1).

’

Jr
e”””l,[o,%]

6. Applications for the Special Means

Let us recall the following means of the two nonnegative number a and b:

1. The arithematic mean

a+b
2 b

A=A(a,b) = a,b>0;
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2. The geometric mean

G =G(a,b) :=Vab, a,b>0;

3. The harmonic mean

H(a,b) :=

, a,b>0;

Q=

+7
4. The logarithmic mean

b—a :
— — Inb—Ina ifa # b .
L= L(a,b) { p fa—b , a,b>0;
5. The identric mean

WAy =
I=1(a,b) =14 (@) faFb 4y
a ifa=»>b
6.The p -logarithmic mean

pri_gptt P
L, =Ly(a,b) := [—(,,H><,,,a>] ifa#b  peR\{~1,0}, a,b>0.
a ifa=">b

Itis well known that L, is monotonically increasing in p € R with L_; := L and
Ly :=I. In particular, we have the following inequality

H<G<L<LI<A.

In what follows, by the use of Remark 8, we point out some inequalities for the
above means.

Case I. Let f :[a,b] = R (0<a<b), f(x) =+ (peR\{-1,0,1}). Then

L _ fla)+£(b)
E/af(x)dx—Lp(a,b),

b —
f(a;r ) =A(a,b), Hf/Hl,[a,b] = |I"L§,i(a,b)(b —a)

3 = A(d”,bP),
1 2a+b\b—a
"Ny o 2007 = IPI L ( )

1\

3 37
, _ p—1(a+2b b—a
My asge ) = \P|Lp_1<—3 ,b) 3
Using the inequality (4.17), we get

1 2
Lf)(a,b) — §A(a”,b”) — gAp(a,b)’

_1b—a _ 2a+ b a+2b b—a
1 1 1
e e R e e
b—a
—1
S‘p|L271 3

335
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Case 2. Let f : [a,b] = R (0 <a<b), f(x) =1 Then

1 _ fla)+f(b _
[ W= e, OO ),
a+b . , b—a
f( 2 ) =A (Cl,b), Hf ||1,[a,b] = Gz(a,b)
b—a b—a
/ _ / —
Vo) = 5 zmy W) = 5z 3y
Using the inequality (4.17), we get
b—a b—a b—a
3AH — AL —-2HL| < — — AHL
‘ | G2 6G2((1, 2a+b) 6G2(a+2b,b)
3 3
b—
< GZaAHL. (6.2)

Case 3. Let f : [a,b]) = R (0 <a <b), f(x) =Inx. Then

I b
/ Fdy =tni(a,b), TDE O G,
b—a ), 2
a+b , b—a
f(=5=) =InA(a,b), |f ||1,[a,b]:m
b—a b—a
/ _ / —
Vi lhfost) = 3pca gy Wl fes) = 370 5y
Using the inequality (4.17), we get
ln{ I }<b—a_ b—a  b-a
GSAT]| ~ 3L 18L(a,2%4t)  18L(%E2,b)
b—a
< . 6.3
3L (6.3)

REMARK 10. The inequalities (6.1)—(6.3) are improvements of the inequalities
(3.2)—(3.4) in [6].
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