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Abstract. Based on the generalized resolvent operator technique, sensitivity analysis results for
relaxed cocoercive quasivariational inclusions are obtained, which generalize a broad range of
sensitivity analysis results, including strongly monotone quasivariational inclusions. General-
ized resolvent operator technique is constructed on the emergence of the new notion of A -
monotonicity — a significant generalization to the notion of maximal monotonicity. The notion
of A -monotonicity is also referred to as A -maximal monotonicity in literature. Furthermore,
the relaxed cocoercivity is illustrated by some examples.

1. Introduction and Preliminaries

Resolvent operator techniques have been applied to studying nonlinear variational
inequality/inclusionproblems, including problems frommodel equilibria in economics,
optimization and control theory, operations research, transportation network modeling,
mathematical programming, and engineering sciences. Recently, Agarwal et al. [1]
applied the resolvent operator technique to studying sensitivity analysis for qusivaria-
tional inclusions involving strongly monotone mappings, without any differentiability
assumptions on solution variables with respect to perturbation parameters. The aim
of this paper is to present the sensitivity analysis for the relaxed cocoercive quasi-
variational inclusions based on an application of the generalized resolvent operator
technique. The framework of the generalized resolvent operator technique heavily re-
lies on A -monotonicity — just recently introduced by the author [9] — is more general
the existing general class of maximal monotone mappings, so it further empowers the
resolvent operator technique. Furthermore, the class of A -monotone mappings gener-
alizes recently introduced and studied notion of the H-monotone mappings by Fang and
Huang [2] as well. For more details, we recommend [1-12].

Let X denote a real Hilbert space with the norm ‖.‖ and inner product 〈 ., .〉 on
X.
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DEFINITION 1. [9] Let A : X → X be a nonlinear mapping on X and M : X → 2X

be a multivalued mapping on X. The map M is said to be A -monotone if M is
(m) -relaxed monotone and A + ρM is maximal monotone for ρ > 0.

DEFINITION 2. [2] Let H : X → X be a nonlinear mapping on X and M :
X → 2X be a multivalued mapping on X. The map M is said to be H -monotone if
(H + ρM)(X) = X for ρ > 0.

PROPOSITION 1. Let A : X → X be an (r) -strongly monotone single valued
mapping and let M : X → 2X be an A -monotone mapping. Then M is maximal
monotone.

PROPOSITION 2. Let A : X → X be an (r) -strongly monotone mapping and
let M : X → 2X be an A -monotone mapping. Then the operator (A + ρM)−1 is
single-valued.

This leads to the generalized definition of the resolvent operator:

DEFINITION 3. [9] Let A : X → X be an (r) -strongly monotone mapping and let
M : X → 2X be an A -monotone mapping. Then the generalized resolvent operator
JA
M,ρ : X → X is defined by

JA
M,ρ(u) = (A + ρM)−1(u).

Let N : X × L → X be a nonlinear mapping and M : X × L → 2X be an A -
monotone mapping with respect to first variable, where L is a nonempty open subset
of X . Then the problem of finding an element u ∈ X such that

0 ∈ N(u, λ ) + M(u, λ ), (1)

where λ ∈ L is the perturbation parameter, is called a class of generalized relaxed
cocoercive variational inclusion (abbreviated RCVI) problems.

Next, a special case of the RCVI (1) problem is: determine an element u ∈ X
such that

0 ∈ S(u, λ ) + T(u, λ ) + M(u, λ ), (2)

where N(u, v, λ ) = S(u, λ ) + T(v, λ ) for all u, v ∈ X, and S, T : X × L → H are two
nonlinear mappings. If S = 0 in (2), then (2) is equivalent to: find an element u ∈ X
such that

0 ∈ T(u, λ ) + M(u, λ ). (3)

The solvability of the RCVI problem (1) depends on the equivalence between (1) and
the problem of finding the fixed point of the associated generalized resolvent operator.

Note that if M is A -monotone, then the generalized resolvent operator JM
ρ,A in

first argument is defined by

JM(.,y)
ρ,A (u) = (A + ρM(., y))−1(u)∀u ∈ X, (4)

where ρ > 0, and A is an (r) -strongly monotone mapping.
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LEMMA 1. An element u ∈ X is a solution to (1) if and only if there is an u ∈ X
such that

u = G(u, λ ) := JM(.,λ )
ρ,A (A(u) − ρN(u, λ )), (5)

where JM(.,λ )
ρ,A = (A + ρM(., λ ))−1 and ρ > 0.

Proof. The proof follows from the definition of the generalized resolvent operator.
If u ∈ X such that

u = JM(.,λ )
ρ,A (A(u) − ρN(u, λ )),

then we have
(A(u) − ρN(u, λ )) ∈ (A + ρM(., λ ))(u),

so,
0 ∈ N(u, λ ) + M(u, λ ),

that is, u is a solution to (1). �

DEFINITION 4. A mapping T : X × L → X is said to be (m) -relaxed monotone in
the first argument if there exists a positive constant m such that

〈T(x, λ ) − T(y, λ ), x − y〉 � (−m)‖x − y‖2 ∀(x, y, λ ) ∈ X × L.

DEFINITION 5. A mapping T : X × L → X is said to be (s) − cocoercive in the
first argument if there exists a positive constant s such that

〈T(x, λ ) − T(y, λ ), x − y〉 � (s)‖T(x) − T(y)‖2 ∀(x, y, λ ) ∈ H × L.

DEFINITION 6. A mapping T : X × L → X is said to be (m) -relaxed cocoercive
in the first argument if there exists a positive constant m such that

〈T(x, λ ) − T(y, λ ), x − y〉 � (−m)‖T(x) − T(y)‖2 ∀(x, λ ) ∈ X × L.

DEFINITION 7. A mapping T : X×L → X is said to be (γ , m)−relaxed cocoercive
in the first argument if there exist positive constants γ and m such that

〈T(x, λ ) − T(y, λ ), x − y〉 � (−m)‖T(x) − T(y)‖2 + γ ‖x − y‖2 ∀(x, y, u, λ ) ∈ H × L.

EXAMPLE 1. Consider a nonexpansive mapping T : X → X on X. If we set
A = I − T, then A is ( 1

2 ) -cocoercive, where I is the identity.

EXAMPLE 2. Consider a projection P : X → C, where C is a nonempty closed
convex subset of X. Then P is (1)-cocoercive since P is nonexpansive.

EXAMPLE 3. Consider an (r) -strongly monotone (and hence (r) -expanding))
mapping T : X → X on X. Then T is (1, r + r2) -relaxed cocoercive. For all u, v ∈ X,
we have

〈T(x) − T(y), x − y〉 � (−1)‖T(x) − T(y)‖2 + (r + r2)‖x − y‖2.
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Clearly, every (m) -cocoercive mapping is (m) -relaxed cocoercive, while each (r) -
strongly monotone mapping is (1, r + r2) -relaxed cocoercive.

DEFINITION 8. A mapping T : X ×L → X is said to be (μ) -Lipschitz continuous
in the first argument if there exists a positive constant μ such that

‖T(x, λ ) − T(y, λ )‖ � μ‖x − y‖ ∀(x, y, λ ) ∈ X × X × L.

2. Quasivariational Inclusions

This section deals with the main results on the sensitivity analysis and its special-
izations in literature.

LEMMA 2. [9] Let A : X → X be (r) -strongly monotone and M : X × L → 2X

be A -monotone. Then the generalized resolvent operator JM(.,λ )
ρ : X × L → X is

( 1
r−ρm ) -Lipschitz continuous for 0 < ρ < r

m .

THEOREM 1. Let X be a real Hilbert space, and let N : X × X × L → X
be (γ ,α) − relaxed cocoercive and (β) -Lipschitz continuous in the first variable.
Let A : X → X be (r) -strongly monotone and (s) -Lipschitz continuous, and let
M : X × L → 2X be A -monotone. Then

‖G(u, λ )− G(v, λ )‖ � θ‖u − v‖ ∀(u, v, λ ) ∈ X × X × L, (6)

where

θ =
1

r − ρm

√
s2 − 2ρα + ρ2β2 + 2ργ β2 < 1,

∣
∣
∣∣ρ − r(1 − m) − γ β2

β2 − m2

∣
∣
∣∣ <

√
[r(1 − m) − γ β2]2 − (s2 − r2)(β2 − m2)

β2 − m2
,

r >
1

(1 − m)
[γ β2) +

√
(s2 − r2)(β2 − m2)], β > m,

m < 1, | r |< s.
Consequently, for each λ ∈ L, the mapping G(u, λ ) in light of (6) has a unique

fixed point z(λ ) , and hence, z(λ ) is a unique solution to (1). Thus, we have

G(z(λ ), λ ) = z(λ ).

Proof. For any element (u, λ ) ∈ X × L, we have

G(u, λ ) = JM(.,λ )
ρ,A (A(u) − ρN(u, λ )),

G(v, λ ) = JM(.,λ )
ρ,A (A(v) − ρN(v, λ )).
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It follows from Lemma 2 that

‖G(u, λ )− G(v, λ )‖ = ‖JM(.,λ )
ρ,A (A(u) − ρN(u, λ )) − JM(.,λ )

ρ,A (A(v) − ρN(v, λ ))‖
� 1

r − ρm
‖A(u) − A(v) − ρ(N(u, λ )) − N(v, λ ))‖.

The (γ ,α) -relaxed cocoercivity and (β) -Lipschitz continuity of N in the first argument
imply that

‖A(u) − A(v)−ρ(N(u, λ )) − N(v, λ ))‖2

= ‖A(u) − A(v)‖2 − 2ρ〈N(u, λ )− N(v, λ ), A(u) − A(v)〉
+ ρ2‖N(u, λ ) − N(v, λ )‖2

� (s2 − 2ρα + ρ2β2 + 2ργ β2)‖u − v‖2.

In light of above arguments, we infer that

‖G(u, λ ) − G(v, λ )‖ � θ‖u − v‖, (7)

where

θ =
1

r − ρm

√
s2 − 2ρr + ρ2β2 + 2ργ β2.

Since θ < 1, it concludes the proof. �

COROLLARY 1. Let X be a real Hilbert space, and let N : X × L → X be
(γ ,α) − relaxed cocoercive and (β) -Lipschitz continuous in the first variable. Let
H : X → X be (r) -strongly monotone and (s) -Lipschitz continuous, and let M :
X × L → 2X be A -monotone. Then

‖G(u, λ ) − G(v, λ )‖ � θ‖u − v‖ ∀(u, v, λ ) ∈ X × X × L, (8)

where

θ =
1
r

√
s2 − 2ρα + ρ2β2 + 2ργ β2 < 1,

∣
∣
∣
∣ρ − r − γ β2

β2

∣
∣
∣
∣ <

√
[r − γ β2]2 − (s2 − r2)(β2)

β2
,

r > [γ β2) +
√

(s2 − r2)β2], s > r.

Consequently, for each λ ∈ L, the mapping G(u, λ ) in light of (8) has a unique
fixed point z(λ ) , and hence, z(λ ) is a unique solution to (1). Thus, we have

G(z(λ ), λ ) = z(λ ).

If the mappings λ → N(u, v, λ ) and λ → JM(.,λ )
ρ (w) both are continuous (or

Lipschitz continuous) from L to X, then the solution z(λ ) of (1) is continuous (or
Lipschitz continuous) from L to X.
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THEOREM 2. Let X be a real Hilbert space, and let N : X × L → X be (γ ,α) −
relaxed cocoercive and (β) -Lipschitz continuous in the first variable. Let A : X → X
be (r) -strongly monotone and (s) -Lipschitz continuous, and let M : X × L → 2X be

A -monotone. Let the mappings λ → N(u, λ ) and λ → JM(.,λ )
ρ (v) are continuous (or

Lipschitz continuous) from L to X for all u, v ∈ X. Then the solution z(λ ) of (1) is
continuous (or Lipschitz continuous) from L → X.

Proof. From the hypotheses of the theorem, for any λ , λ∗ ∈ L, we have

‖z(λ ) − z(λ ∗)‖ = ‖G(z(λ ), λ ) − G(z(λ ∗), λ ∗)‖
� ‖G(z(λ ), λ ) − G(z(λ ∗), λ )‖ + ‖G(z(λ ∗), λ ) − G(z(λ ∗), λ ∗)‖
� θ‖z(λ ) − z(λ ∗)‖ + ‖G(z(λ ∗), λ ) − G(z(λ ∗), λ ∗)‖.

It follows that

‖G(z(λ ∗), λ ) − G(z(λ ∗), λ ∗)‖ = ‖JM(.,λ )
ρ,A (A(z(λ ∗)) − ρN(z(λ ∗), λ ))

−JM(.,λ∗)
ρ,A (A(z(λ ∗)) − ρN(z(λ ∗), λ ∗))‖

� ‖JM(.,λ )
ρ,A (A(z(λ ∗)) − ρN(z(λ ∗), λ ))

−JM(.,λ )
ρ,A (A(z(λ ∗)) − ρN(z(λ ∗), λ ∗))‖

+‖JM(.,λ )
ρ,A (A(z(λ ∗)) − ρN(z(λ ∗), λ ∗))

−JM(.,λ∗)
ρ,A (A(z(λ ∗)) − ρN(z(λ ∗), λ ∗))‖

� ρ
(r − ρm)

‖N(z(λ ∗), λ ) − N(z(λ ∗), λ ∗)‖

+‖JM(.,λ )
ρ,A (A(z(λ ∗)) − ρN(z(λ ∗), λ ∗))

−JM(.,λ∗)
ρ,A (Az(λ ∗) − ρN(z(λ ∗), λ ∗))‖.

Hence, we have

‖z(λ ) − z(λ ∗)‖ � ρ
(1 − θ)(r − ρm)

‖N(z(λ ∗), λ ) − N(z(λ ∗), λ ∗)‖

+
1

1 − θ
‖JM(.λ )

ρ,A (A(z(λ ∗)) − ρN(z(λ ∗), λ ∗))

−JM(.,λ∗)
ρ,A (A(z(λ ∗)) − ρN(z(λ ∗), λ ∗))‖.

This completes the proof. �
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