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Abstract. We consider the operator

A0f = (−1)n
1

v(t)

(
Dn
ρ
)∗ [

u2(t)Dn
ρ

(
f (t)
v(t)

)]
,

where

Dn
ρ f (t) =

dk

dtk

[
ρ(t)

dmf (t)
dtm

]
,
(
Dn
ρ
)∗

f (t) =
dm

dtm

[
ρ(t)

dkf (t)
dtk

]
, k + m = n.

Our main aim is to prove some spectral properties of a natural extension of this operator. In order
to prove this we need to prove some properties of a function space, connected to the operator
Dn
ρ , and some embedding theorems of independent interest.

1. Introduction

Let I = (0,∞) , k, m, l ∈ N , n = k + m , u(·) , v(·) , and ρ(·) be infinite
differentiable and positive weight functions on I . Moreover, ‖ · ‖p,u denotes the usual
norm of the Lebesgue space Lp,u(I) ≡ Lp,u :

‖f ‖p,u = ‖uf ‖p =

⎛⎝∫
I

|u(t)f (t)|pdt

⎞⎠
1
p

, 1 < p < ∞.

For a function f : I → R introduce the following two differential operators:

Di
ρf (t) =

{
dif (t)

dti , i = 0, . . . , m − 1,
di−m

dti−m

[
ρ(t) dmf (t)

dtm

]
, i = m, . . . , n,

and (
Di
ρ
)∗

f (t) =

{
dif (t)

dti , i = 0, . . . , k − 1,
di−k

dti−k

[
ρ(t) dkf (t)

dtk

]
, i = k, . . . , n,
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where all derivatives are understood in the generalized sense.
In L2(I) we consider the operator

A0f = (−1)n 1
v(t)

(
Dn
ρ
)∗ [

u2(t)Dn
ρ

(
f (t)
v(t)

)]
,

defined on the set C∞
0 (I) of all infinitely differentiable and finitely supported functions

on I .
The operator A0 is non–negative and symmetric in L2 . Therefore, it has the

Friedrichs self–adjoint extension in L2 (see e.g. [14]). Denote this extension by A .
The main aim of this paper is to establish necessary and sufficient conditions

for positive definiteness, discreteness of the spectrum and resolvent nuclearity of the
operator A in dependence on the behaviour of the weight functions u , v , and ρ in
neighbourhoods of the boundary points of I .

The theory of spectral analysis of differential operators, in particular, the spectral
characteristics pointed out above, is very important in mathematics, which can be seen
from a great number of works on this theme. When ρ(·) ≡ 1 the operator A has
attracted a lot of interest for various reasons and been studied in a number of works,
see e.g. [2], [3], and the references given their. A special method to study spectral
properties presented in this paper can be found, for example, in [1], [11], and [12]. In
the monographs [8], [13] a complete presentation of this method is given and applied.
The method is based on embedding theorems of some function spaces. The results
concerning properties of these function spaces have independent interest and, in turn,
are based on Hardy type inequalities (see [7]). In particular, in [1] the spectral properties
of the operator A with ρ(·) ≡ 1 were obtained due to the well–known Muchenhoupt’s
result on the Hardy inequality with weights [9]. When the conditions on the weight u is
that there are traces in one of the endpoints of the interval (0,∞) , the spectral properties
of A with ρ(·) ≡ 1 were studied in [15], and these results were obtained due to a Hardy
type inequality for the Riemann–Liouville integral operator [16]. Moreover, the results
from [16] gave a new impulse to study Hardy type inequalities for different kinds of
integral operators because of the usefulness of such estimates in spectral theory. The
scheme of connection between estimates for integral operators and spectral properties
of differential operators such as A is given in [10].

The paper is organized as follows: In Section 2 the new results concerning a special
function space, connected to the operator Dn

ρ , are described and discussed. In order not
to disturb our presentation all proofs of the results in Section 2 are collected in Section
3. Finally, our main results concerning the spectral properties of the operator A can be
found in Section 4.

2. Properties of function spaces connected to the operator Dn
ρ

Let wn
p(u, ρ; I) ≡ wn

p be a set of functions f : I → R , for which Dn
ρf has sense

and the following seminorm is finite:

‖f ‖wn
p
≡ ‖uDn

ρf ‖p, 1 < p < ∞.
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Now the first aim is to define the behaviour of f ∈ wn
p at the endpoints of I in

dependence on the behaviour of u and ρ at the endpoints of I , and obtain for f ∈ wn
p

an integral representation provided the following conditions

lim
t→0+

Di
ρf (t) ≡ Di

ρf (0) = 0, i = 0, . . . , l − 1,

lim
t→∞ Dj

ρf (t) ≡ Dj
ρf (∞) = 0, j = l, . . . , n − 1,

hold, where 1 � l � n − 1 .
In order to be able to reach this aim we weaken the conditions on the weight

functions u and ρ , namely, we suppose that ρ ∈ Lloc
1 , ρ−1 ≡ 1

ρ ∈ Lloc
1 , and u ∈ Lloc

p ,

u−1 ≡ 1
u ∈ Lloc

p′ , where 1
p + 1

p′ = 1 .

REMARK 1. The notation A � B means A � cB , where the constant c > 0 may
depend on unessential parameters. We write A ≈ B instead of A � B � A .

The studying of this problem divides into three cases depending on the relation
between m and l : (1) m < l , (2) m > l , and (3) m = l .

THEOREM 1. (1) Let 1 � m < l � n − 1 , n � 3 .
Suppose that ∀t > 0 and ∀z > 0 the following conditions hold:

u−1(s)sn−l−1

s∫
0

ρ−1(x)xl−mdx ∈ Lp′(0, t), (1)

u−1(s)sn−l

z∫
s

ρ−1(x)xl−m−1dx ∈ Lp′(0, t), (2)

u−1(s)sn−l−1 ∈ Lp′(t,∞). (3)

Then ∀f ∈ wn
p there exist traces Di

ρf (0) , i = m, . . . , l − 1 , and numbers ci ,
i = l, . . . , n − 1 , and ai , i = 0, ..., m − 1 , which are uniquely defined from the
relations:

lim
t→∞

(
Dl
ρf (t) −

n−1∑
i=l

ci
ti−l

(i − l)!

)(j)

= 0, j = 0, . . . , n − l − 1, (4)

lim
t→0

⎛⎝f (t) −
l−1∑
i=m

Di
ρf (0)

t∫
1

(t − s)m−1

(m − 1)!
ρ−1(s)

si−m

(i − m)!
ds

⎞⎠(j)

= aj, j = 0, . . . , m − 1.

(5)
In addition, ∀f ∈ wn

p the following representation holds:

f (t) =
m−1∑
ν=0

aν
tν

ν!
+

l−1∑
ν=m

Dν
ρf (0)

t∫
1

(t − s)m−1

(m − 1)!
ρ−1(s)

sν−m

(ν − m)!
ds
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+
n−1∑
ν=l

cν

t∫
0

(t − s)m−1

(m − 1)!
ρ−1(s)

sν−m

(ν − m)!
ds + (−1)n−l

×
∞∫
0

⎛⎜⎝ min{t,s}∫
0

(s − z)n−l−1

(n − l − 1)!

t∫
z

(t − x)m−1

(m − 1)!
ρ−1(x)

(x − z)l−m−1

(l − m − 1)!
dxdz

⎞⎟⎠Dn
ρf (s)ds. (6)

(2) Let 1 � l < m � n − 1 , n � 3 .
Suppose that ∀t > 0 the following conditions hold:

u−1(s)

s∫
0

ρ−1(x)xm−l(s − x)k−1dx ∈ Lp′(0, t), (7)

u−1(s)

s∫
t

ρ−1(x)xm−l−1(s − x)k−1dx ∈ Lp′(t,∞). (8)

Then ∀f ∈ wn
p there exist numbers ci , i = m, . . . , n−1 , and ai , i = 0, ..., m−1 ,

which are uniquely defined from the relations:

lim
t→∞

(
Dm
ρ f (t) −

n−1∑
i=m

ci
ti−m

(i − m)!

)(j)

= 0, j = 0, . . . , n − m − 1, (9)

lim
t→∞

⎛⎝f (t) −
n−1∑
i=m

ci

t∫
1

(t − s)m−1

(m − 1)!
ρ−1(s)

si−m

(i − m)!
ds −

m−1∑
i=l

ai
ti

i!

⎞⎠(j)

= 0, (10)

j = l, . . . , m − 1,

lim
t→0

⎛⎝f (t) −
n−1∑
i=m

ci

t∫
1

(t − s)m−1

(m − 1)!
ρ−1(s)

si−m

(i − m)!
ds

⎞⎠(j)

= aj, j = 0, . . . , l − 1. (11)

In addition, ∀f ∈ wn
p the following representation holds:

f (t) =
m−1∑
ν=0

aν
tν

ν!
+

n−1∑
ν=m

cν

t∫
1

(t − s)m−1

(m − 1)!
ρ−1(s)

si−m

(i − m)!
ds + (−1)n−l

×
∞∫
0

⎛⎜⎝ min{t,s}∫
0

(t − z)l−1

(l − 1)!

s∫
z

(s − x)k−1

(k − 1)!
ρ−1(x)

(x − z)m−l−1

(m − l − 1)!
dxdz

⎞⎟⎠Dn
ρf (s)ds. (12)
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(3) Let 1 � m = l � n − 1 , n � 2 .
Suppose that ∀t > 0 the following conditions hold:

u−1(s)

s∫
0

ρ−1(x)(s − x)k−1dx ∈ Lp′(0, t), (13)

u−1(s)sk−1 ∈ Lp′(t,∞). (14)

Then ∀f ∈ wn
p there exist traces Di

ρf (0) , i = 0, . . . , m − 1 , and numbers ci ,
i = m, . . . , n − 1 , which are uniquely defined from the relation (9).

In addition, ∀f ∈ wn
p the following representation holds:

f (t) =
m−1∑
ν=0

Dν
ρf (0)

tν

ν!
+

n−1∑
ν=m

cν

t∫
0

(t − s)m−1

(m − 1)!
ρ−1(s)

si−m

(i − m)!
ds

+ (−1)n−l

∞∫
0

⎛⎜⎝ min{t,s}∫
0

(t − x)m−1

(m − 1)!
ρ−1(x)

(s − x)k−1

(k − 1)!
dx

⎞⎟⎠Dn
ρf (s)ds. (15)

From (6), (12), and (15) it easily follows

COROLLARY 1. Let f ∈ wn
p . Suppose that the conditions of Theorem 1 for

the case (1) m < l hold. Then Dj
ρf (∞) = 0 , j = l, . . . , n − 1 , if and only if

cj = 0 , j = l, . . . , n − 1 ; and if Di
ρf (0) = 0 , i = m, . . . , l − 1 , then Dj

ρf (0) = 0 ,
j = 0, . . . , m − 1 , if and only if aj = 0 , j = 0, . . . , m − 1 .

Suppose that the conditions of Theorem 1 for the case (2) m > l hold. Then
Dj
ρf (∞) = 0 , j = l, . . . , n − 1 , and Dj

ρf (0) = 0 , j = 0, . . . , l − 1 , if and only if
ai = 0 , i = 0, . . . , m − 1 , and ci = 0 , i = m, . . . , n − 1 .

Suppose that the conditions of Theorem 1 for the case (3) m = l hold. Then
Dj
ρf (∞) = 0 , j = m, . . . , n − 1 , if and only if cj = 0 , j = m, . . . , n − 1 .

In each of the representations (6), (12), and (15) there are n constants: in the
case (1) m < l they are aj , j = 0, . . . , m − 1 , Dj

ρf (0) , j = m, . . . , l − 1 , and cj ,
j = l, . . . , n − 1 ; in the case (2) m > l they are aj , j = 0, . . . , m − 1 , and cj ,
j = m, . . . , n − 1 ; in the case (3) m = l they are Dj

ρf (0) , j = 0, . . . , m − 1 , and cj ,
j = m, . . . , n − 1 . Denote them by αi = αi(f ) , i = 0, . . . , n − 1 . Then on wn

p the
following functional can be defined:

‖f ‖Wn
p

= ‖uDn
ρf ‖p +

n−1∑
ν=0

|αν(f )|, (16)

which turns wn
p into a normalized space Wn

p (u, ρ; I) ≡ Wn
p . By standard methods we

can prove that Wn
p is a Banach space.

Let
.
Wn

p = {f : f ∈ Wn
p ,αν(f ) = 0, ν = 0, . . . , n − 1} . Notice that αν(f ) = 0 ,

ν = 0, . . . , n−1 , is equivalent to that Di
ρf (0) = 0 , i = 0, . . . , l−1 , and Di

ρf (∞) = 0 ,
i = l, . . . , n − 1 .
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From the definition of αν(f ) it follows that αν(f ) = 0 , ν = 0, 1, . . . , n − 1 , for
f ∈ C∞

0 (I) .

Denote by
◦
Wn

2(u, ρ, I) ≡ ◦
Wn

2 the closure of the set C∞
0 (I) with respect to the

norm (16).

THEOREM 2. Suppose that (1), (2), and (3) hold in the case (1) m < l , (7) and (8)
hold in the case (2) m > l , and (13) and (14) hold in the case (3) m = l . Moreover,
assume that for t > 0 the following conditions hold:

for the case (1) m < l :

ρ−1(s) /∈ L1(t,∞), (17)

u−1(s)sn−l−1 /∈ Lp′(0, t), (18)

u−1(s)sn−l /∈ Lp′(t,∞), (19)

for the case (2) m > l :

ρ−1(s)sm−l−1 /∈ L1(0, t), (20)

u−1(s)sk−1 /∈ Lp′(0, t), (21)

u−1(s)

s∫
0

ρ−1(x)xm−l(s − x)k−1dx /∈ Lp′(t,∞), (22)

for the case (3) m = l : (17), (21), and

u−1(s)sk−1

s∫
0

ρ−1(x)dx /∈ Lp′(t,∞). (23)

Then
◦
Wn

2 =
.
Wn

p .

Thus, if the conditions of Theorem 2 hold, then we have

◦
Wn

2 = {f : f ∈ Wn
p , D

i
ρf (0) = 0, i = 0, . . . , l − 1, Di

ρf (∞) = 0, i = l, . . . , n − 1}.

Now we shall consider the problem of continuousness and compactness of the
embedding

◦
Wn

2 ↪→ Lq,v , when 1 < p � q < ∞ .

Let ϕ1(s, x) =
{

xl−msn−l−1, x � s,
xl−m−1sn−l, x > s,

and ϕ2(s, x) =
{

xm−lsl−1, x � s,
xm−l−1sl, x > s.
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We define T1
p,q(t) and T2

p,q(t) by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎝∞∫
t

vq(y)

(
t∫

0
u−p′(s)

( y∫
0
ρ−1(x)(y − x)m−1ϕ1(s, x)dx

)p′

ds

) q
p′

dy

⎞⎟⎠
1
q

, m < l,

⎛⎜⎝∞∫
t

u−p′(y)
(

t∫
0

vq(s)
( y∫

0
ρ−1(x)(y − x)k−1ϕ2(s, x)dx

)q

ds

) p′
q

dy

⎞⎟⎠
1
p′

, m > l,

⎛⎝∞∫
t

vq(y)

(
t∫

0
u−p′(s)

(
s∫

0
ρ−1(τ)(y − τ)m−1(s − τ)k−1dτ

)p′

ds

) q
p′

dy

⎞⎠
1
q

, m = l,

and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
t∫

0
vq(s)

(
s∫

0
ρ−1(x)xl−m(s − x)m−1dx

)q

ds

) 1
q
(∞∫

t
u−p′(y)yp′(n−l−1)dy

) 1
p′

, m < l,

(∞∫
t

vq(y)yq(l−1)dy

) 1
q
(

t∫
0

u−p′(s)
(

s∫
0
ρ−1(x)xm−l(s − x)k−1dx

)p′

ds

) 1
p′

, m > l,⎛⎝∞∫
t

u−p′(y)
(

t∫
0

vq(s)
(

s∫
0
ρ−1(τ)(y − τ)k−1(s − τ)m−1dτ

)q

ds

) p′
q

dy

⎞⎠
1
p′

, m = l,

respectively. Moreover, let

Ti
p,q = sup

t>0
Ti

p,q(t), i = 1, 2; Tp,q = max{T1
p,q, T

2
p,q}.

THEOREM 3. Let 1 < p � q < ∞ , n � 3 for m �= l and n � 2 for m = l .
Suppose that u and ρ satisfy the conditions of Theorem 2 concerning the relations
between l and m . Then the embedding

◦
Wn

p ↪→ Lq,v

(a) is continuous if and only if Tp,q < ∞ , and, in addition, ‖E‖ ≈ Tp,q , where ‖E‖ is

a norm of the embedding operator E :
◦
Wn

2 → Lq,v ;
(b) is compact if and only if Tp,q < ∞ and

lim
t→0

Ti
p,q(t) = lim

t→∞ Ti
p,q(t) = 0, i = 1, 2.

Since Di
ρf (0) = 0 , i = 0, . . . , l − 1 , and Di

ρf (∞) = 0 , i = l, . . . , n − 1 , for

f ∈ ◦
Wn

2 , in the integral representations of f ∈ Wn
p (see Theorem 1) it follows that

f ∈ ◦
Wn

2 can be expressed by

f (t) = (−1)n−l

∞∫
0

K(t, s)Dn
ρf (s)ds, ∀f ∈ ◦

Wn
2, (24)



362 A. A. KALYBAY, R. OINAROV AND L.-E. PERSSON

where

K(t, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

min{t,s}∫
0

(s−z)n−l−1

(n−l−1)!

t∫
z

(t−x)m−1

(m−1)! ρ
−1(x) (x−z)l−m−1

(l−m−1)! dxdz, m < l,

min{t,s}∫
0

(t−z)l−1

(l−1)!

s∫
z

(s−x)k−1

(k−1)! ρ−1(x) (x−z)m−l−1

(m−l−1)! dxdz, m > l,

min{t,s}∫
0

(t−x)m−1

(m−1)! ρ
−1(x) (s−x)k−1

(k−1)! dx, m = l.

(25)

Further we need the following Lemma:

LEMMA 1. Let 1 < p < ∞ . Suppose that u and ρ satisfy the conditions of
Theorem 1 concerning the relations between l and m . Then ∀t ∈ I the relation

J(t) = sup
f ∈ ◦

Wn
2

|f (t)|
‖uDn

ρf ‖p
=

⎛⎝ ∞∫
0

Kp′(t, s)u−p′ (s)ds

⎞⎠
1
p′

(26)

holds, where K(t, s) is defined by (25).

3. Proofs

Proof of Theorem 1. Let us begin with the case (1) m < l .
Put

Dl
ρf (t) := ϕ(t).

Then Dn
ρf (t) = ϕ(n−l)(t) and ϕ ∈ Ln−l

p,u , where Ln−l
p,u is Kudryavcev’s class [6]

with the following seminorm:

‖ϕ‖
Ln−l
p,u

=
∥∥∥uϕ(n−l)

∥∥∥
p
.

From the condition (3) and Kudryavcev’s theorem [6] there exist numbers ci ,
i = l, . . . , n − 1 , which are defined by ϕ from the relation:

lim
t→∞

(
ϕ(t) −

n−1∑
i=l

ci
ti−l

(i − l)!

)(j)

= 0, j = 0, . . . , n − l − 1,

which is equivalent to (4), and the following representation holds:

ϕ(t) =
n−1∑
i=l

ci
ti−l

(i − l)!
+ (−1)n−l

∞∫
t

(s − t)n−l−1

(n − l − 1)!
ϕ(n−l)(s)ds,

i.e.,

Dl
ρf (t) =

n−1∑
i=l

ci
ti−l

(i − l)!
+ (−1)n−l

∞∫
t

(s − t)n−l−1

(n − l − 1)!
Dn
ρf (s)ds. (27)
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Let us show that from (1) and (2) we get the finiteness of the expression:

ψi(t) =

t∫
0

(t − x)i

∞∫
x

(s − x)n−l−1|Dn
ρf (s)|dsdx

for 0 � i � l − m − 1 and ∀t > 0 .
Indeed,

ψi(t) =

t∫
0

(t − x)i

t∫
x

(s − x)n−l−1|Dn
ρf (s)|dsdx

+

t∫
0

(t − x)i

∞∫
t

(s − x)n−l−1|Dn
ρf (s)|dsdx

=

t∫
0

|Dn
ρf (s)|

s∫
0

(t − x)i(s − x)n−l−1dxds +

∞∫
t

|Dn
ρf (s)|

t∫
0

(t − x)i(s − x)n−l−1dxds

≈ ti
t∫

0

sn−l|Dn
ρf (s)|ds + ti+1

∞∫
t

sn−l−1|Dn
ρf (s)|ds. (28)

For t � 1 , in view of (28), (2), and (3) we have

ψi(t) � ti‖uDn
ρf ‖p

⎛⎜⎝
⎛⎝ t∫

0

|u−1(s)sn−l|p′ds

⎞⎠
1
p′

+t

⎛⎝ ∞∫
t

|u−1(s)sn−l−1|p′ds

⎞⎠
1
p′
⎞⎟⎠ < ∞.

For 0 � t < 1 , according to (28), (2), and (3) we have

ψi(t) � ti
t∫

0

sn−l|Dn
ρf (s)|ds + ti

1∫
t

sn−l|Dn
ρf (s)|ds + ti+1

∞∫
1

sn−l−1|Dn
ρf (s)|ds

� ti‖uDn
ρf ‖p

⎛⎜⎝
⎛⎝ 1∫

0

|u−1(s)sn−l|p′ds

⎞⎠
1
p′

+ t

⎛⎝ ∞∫
1

|u−1(s)sn−l−1|p′ds

⎞⎠
1
p′
⎞⎟⎠ < ∞.

Therefore, the equality (27) can be integrated l − m times on (0, t) :

Dm
ρ f (t) =

n−1∑
i=l

ci
ti−m

(i − m)!
+

l−1∑
i=m

Di
ρf (0)

ti−m

(i − m)!
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+(−1)n−l

t∫
0

(t − x)l−m−1

(l − m − 1)!

∞∫
x

(s − x)n−l−1

(n − l − 1)!
Dn
ρf (s)dsdx.

Let us rewrite the obtained equality in the form:

dm

dtm

⎛⎝f (t) −
l−1∑
i=m

Di
ρf (0)

t∫
1

(t − s)m−1

(m − 1)!
ρ−1(s)

si−m

(i − m)!
ds

⎞⎠

= ρ−1(t)
n−1∑
i=l

ci
ti−m

(i − m)!

+ (−1)n−lρ−1(t)

t∫
0

(t − x)l−m−1

(l − m − 1)!

∞∫
x

(s − x)n−l−1

(n − l − 1)!
Dn
ρf (s)dsdx. (29)

Now we shall prove that the right–hand side of the last equality can be integrated
m times on (0, t) . From (1) ∀t > 0 it follows that ρ−1(s)sl−mdx ∈ L1(0, t) . This
yields that the first summand of the right–hand side of (29) can be integrated m times.
To show that the second summand can be integrated m times we need to prove that
∀t > 0 :

I(t) =

t∫
0

(t − x)m−1ρ−1(x)ψl−m−1(x)dx < ∞. (30)

From (28) we get

I(t) ≈
t∫

0

(t − x)m−1ρ−1(x)xl−m−1

x∫
0

sn−l|Dn
ρf (s)|dsdx

+

t∫
0

(t − x)m−1ρ−1(x)xl−m

∞∫
x

sn−l−1|Dn
ρf (s)|dsdx

� tm−1

⎛⎝ t∫
0

|Dn
ρf (s)|sn−l

t∫
s

ρ−1(x)xl−m−1dxds

+

t∫
0

|Dn
ρf (s)|sn−l−1

s∫
0

ρ−1(x)xl−mdxds

+

∞∫
t

|Dn
ρf (s)|sn−l−1

t∫
0

ρ−1(x)xl−mdxds

⎞⎠
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� tm−1‖uDn
ρf ‖p

⎛⎜⎝
⎛⎝ t∫

0

|u−1(s)sn−l

t∫
s

ρ−1(x)xl−m−1dx|p′ds

⎞⎠
1
p′

+

+

⎛⎝ t∫
0

|u−1(s)sn−l−1

s∫
0

ρ−1(x)xl−mdx|p′ds

⎞⎠
1
p′

.

+

t∫
0

ρ−1(x)xl−mdx

⎛⎝ ∞∫
t

|u−1(s)sn−l−1|p′ds

⎞⎠
1
p′
⎞⎟⎠ .

Now, by using (1), (2), and (3) we obtain that (30) holds. Hence, we can integrate
(29) m times on (0, t) :

f (t) =
m−1∑
ν=0

aν
tν

ν!
+

l−1∑
ν=m

Dν
ρf (0)

t∫
1

(t − s)m−1

(m − 1)!
ρ−1(s)

sν−m

(ν − m)!
ds

+
n−1∑
ν=l

cν

t∫
0

(s − t)m−1

(m − 1)!
ρ−1(s)

sν−m

(ν − m)!
ds

+ (−1)n−l

t∫
0

ρ−1(τ)
(t − τ)m−1

(m − 1)!

τ∫
0

(τ − x)l−m−1

(l − m − 1)!

∞∫
x

(s − x)n−l−1

(n − l − 1)!
Dn
ρf (s)dsdxdτ,

(31)
where ai , i = 0, . . . , m − 1 , are from (5).

By changing the order of integration in the last summand of (31), we get (6).
Let us turn to the case (2) m > l . As in the first case supposing that Dm

ρ f (t) = ϕ(t)
we have ϕ ∈ Lk

p,u . From the condition (8) ∀t > 0 we get u−1(s)sk−1 ∈ Lp′(t,∞) and,
hence, by Kudryavcev’s theorem [6] there exist numbers ci , i = 0, . . . , k − 1 , which
are defined by ϕ from the relation (9), and the following relation holds:

Dm
ρ f (t) =

n−1∑
i=m

ci
ti−m

(i − m)!
+ (−1)k

∞∫
t

(s − t)k−1

(k − 1)!
Dn
ρf (s)ds,

or

f (m)(t) =
n−1∑
i=m

ciρ−1(t)
ti−m

(i − m)!
+ (−1)kρ−1(t)

∞∫
t

(s − t)k−1

(k − 1)!
Dn
ρf (s)ds. (32)

The last equality can be rewritten in the form:⎛⎝f (t) −
n−1∑
i=m

ci

t∫
1

(t − s)m−1

(m − 1)!
ρ−1(s)

si−m

(i − m)!
ds

⎞⎠(m)
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= (−1)kρ−1(t)

∞∫
t

(s − t)k−1

(k − 1)!
Dn
ρf (s)ds.

In the same way as in the first case it is easy to show that from (8) it follows that the
right–hand side of the last equality can be integrated m − l times on (t,∞) .

Put

ψ(t) = f (t) −
n−1∑
i=m

ci

t∫
1

(t − s)m−1

(m − 1)!
ρ−1(s)

si−m

(i − m)!
ds.

After integration of the both sides of the last equality on (t,∞) we can conclude that
there exists ψ (m−1)(∞) ≡ lim

t→∞ψ (m−1)(t) = am−1 , and the following equality is true:

ψ (m−1)(t) − am−1 = (−1)k+1

∞∫
t

ρ−1(x)

∞∫
x

(s − x)k−1

(k − 1)!
Dn
ρf (s)ds dx

or(
ψ(t) − am−1

tm−1

(m − 1)!

)(m−1)

= (−1)k+1

∞∫
t

ρ−1(x)

∞∫
x

(s − x)k−1

(k − 1)!
Dn
ρf (s)ds dx,

where

lim
t→∞

(
ψ(t) − am−1

tm−1

(m − 1)!

)(m−1)

= 0.

If we continue to integrate till m − l times we find numbers ai , i = l, . . . , m − 1 ,
which are defined from the relations:

lim
t→∞

(
ψ(t) −

m−1∑
i=l

ai
ti

i!

)(j)

= 0, j = l, . . . , m − 1,

i.e., from (10). Moreover, the following equality is true:

ψ (l)(t) =
m−1∑
i=l

ai
ti−l

(i − l)!
+ (−1)n−l

∞∫
t

(x − t)m−l−1

(m − l − 1)!
ρ−1(x)

∞∫
x

(s − x)k−1

(k − 1)!
Dn
ρf (s)ds dx.

Again from (7) and (8) it follows that the right–hand side of the last equality can be
integrated l times on (0, t) . Hence, l times integration of the both sides of the last
equality yields:

ψ(t) =
m−1∑
i=0

ai
ti

i!
+ (−1)n−l

×
t∫

0

(t − z)l−1

(l − 1)!

∞∫
z

(x − z)m−l−1

(m − l − 1)!
ρ−1(x)

∞∫
x

(s − x)k−1

(k − 1)!
Dn
ρf (s)ds dx dz,
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or (12) after changing of the order of integration in the last summand, where

ai = lim
t→0

ψ (i)(t), 0 = 1, . . . , l − 1,

which is the same as (11).
The correctness of the case (3) m = l is obvious from (32) because, due to (13)

and (14), we can integrate the right–hand side of (32) on (0, t) and get (15) and (9).
�

Proof of Theorem 2. Since C∞
0 (I) ⊂ .

Wn
p , it yields that

◦
Wn

2 ⊂ .
Wn

p .

Let us prove the reversed inclusion
◦
Wn

2 ⊃
.
Wn

p .
Due to (16) the space Wn

p is isomorphic to the space Lp,u × Rn . Hence, for 1 <
p < ∞ we have that the space Wn

p is reflexive and (Lp,u×Rn)∗ = Lp′,u−1 ×Rn = (Wn
p )∗

up to isometry. Therefore, ∀F ∈ (Wn
p )∗ there exist a unique function g ∈ Lp′,u−1 and

a set β = (β0, β1, . . . , βn−1) ∈ Rn , such that ∀f ∈ Wn
p :

F(f ) =

∞∫
0

g(s)Dn
ρf (s)ds +

n−1∑
i=0

αiβi, αi = αi(f ), βi = βi(g). (33)

Let B = {F : F ∈ (Wn
p )∗, F(f ) = 0, f ∈ C∞

0 (I)} . From the reflexivity of Wn
p

and the denseness of C∞
0 (I) in

◦
Wn

2 we get
◦
Wn

2 = {f : f ∈ Wn
p , F(f ) = 0, ∀F ∈ B} .

Hence, it is obvious that
◦
Wn

2 ⊃ .
Wn

p is equivalent to the condition: F(f ) = 0 ,

∀f ∈ .
Wn

p , holds ∀F ∈ B .
From (33) ∀ϕ ∈ C∞

0 (I) and ∀F ∈ B we have

F(ϕ) =

∞∫
0

g(t)Dn
ρϕ(t)dt = 0.

Therefore, g is a solution of the equation

(Dn
ρ)

∗g(t) = 0,

i.e.,
dm

dtm
ρ(t)

dk

dtk
g(t) = 0. (34)

Hence, there exist constants γi = γi(g) , i = 0, . . . , n − 1 , such that

g(t) =
n−1∑
i=0

γiωi(t), (35)

where ωi(·) , i = 0, . . . , n − 1 , is a fundamental system of solutions of (34).
Now the aim is to prove that g(·) ≡ 0 . We now point out a scheme for the proof

of this crucial fact. Firstly, we prove that (35) can be divided into two groups of sums.
The first group consists of functions ωi(·) such that u−1(·)ωi(·) belong to Lp′(0, t) ,
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t > 0 , but do not belong to Lp′(t,∞) , t > 0 , and the second one consists of functions
ωi(·) such that u−1(·)ωi(·) belong to Lp′(t,∞) , t > 0 , but do not belong to Lp′(0, t) ,
t > 0 . Secondly, we prove that the functions ωi(·) inside of each of the groups do not
have a same order in neighbourhoods of the appropriate endpoints. This yields that we
can present g(·) in the following form:

g = ϕ + ψ ,

where ∀t > 0 :
u−1ϕ ∈ Lp′(0, t), u−1ϕ /∈ Lp′(t,∞),

u−1ψ ∈ Lp′(t,∞), u−1ψ /∈ Lp′(0, t).

But by the assumption it yields that u−1g ∈ Lp′(0,∞) . Hence, since u−1ϕ ∈ Lp′(0, t)
we should have u−1ψ ∈ Lp′(0, t) , but we have u−1ψ /∈ Lp′(0, t) . This contradiction
gives that ψ(t) = 0 , ∀t > 0 . The same arguments for the interval (t,∞) imples that
ϕ(t) = 0 , ∀t > 0 . Therefore, g(t) ≡ 0 , ∀t ∈ I .

To use this scheme we need to construct different fundamental systems of solutions
of (34) suitable for each of the cases (1) m < l , (2) m > l , and (3) m = l .

Let us begin from the case (1) m < l . The following functions

ωi(t) = ti, i = 0, . . . , k − 1, (36)

ωi(t) =

t∫
0

(t − x)(m−l)+i−1

x∫
1

ρ−1(s)(x − s)(k+l−m)−i−1si−kdsdx,

i = k, . . . , k + l − m − 1,

ωi(t) =

t∫
0

ρ−1(s)(t − s)k−1si−kds, i = k + l − m, . . . , n − 1,

form a fundamental system of solutions of (34).
Estimate ωi , i = k, . . . , n − 1 , from above in a right neighbourhood of zero. For

i = k, . . . , k + l − m − 1 , we have

|ωi(t)| =

t∫
0

ρ−1(s)si−k

s∫
0

(t − x)(m−l)+i−1(s − x)(k+l−m)−i−1dxds

+

1∫
t

ρ−1(s)si−k

t∫
0

(t − x)(m−l)+i−1(s − x)(k+l−m)−i−1dxds

≈ t(m−l)+i−1

t∫
0

ρ−1(s)sl−mds + t(m−l)+i

1∫
t

ρ−1(s)sl−m−1ds, (37)
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and for i = k + l − m, . . . , n − 1 we have

ωi(t) � tk−1

t∫
0

ρ−1(s)si−kds. (38)

Estimate ωi , i = k, . . . , n − 1 , from below in a neighbourhood of infinity. For
i = k, . . . , k + l − m − 1 , and for some t > 1 , changing order of integration and
integrating by parts, we have

ωi(t) = (−1)k+l−m−i

1∫
0

ρ−1(s)si−k

s∫
0

(t − x)(m−l)+i−1(s − x)(k+l−m)−i−1dxds

+ c(m, l, k, i)

t∫
1

ρ−1(s)si−k(t − s)k−1ds. (39)

If k + l − m − i is an even number, then from (39) for some t > 2 we get

ωi(t) � c(m, l, k, i)

2∫
1

ρ−1(s)si−k(t − s)k−1ds � (t − 2)k−1

2∫
1

ρ−1(s)si−kds. (40)

If k + l − m − i is an odd number, then from (39) for some t > 2 we obtain

ωi(t) � c(m, l, k, i)

2∫
1

ρ−1(s)si−k(t − s)k−1ds − t(m−l)+i−1

1∫
0

ρ−1(s)sl−mds

= tk−1(1 + ¯̄o(1)), t → ∞. (41)

For i = k + l − m, . . . , n − 1 , and for some t > 1 , we have:

ωi(t) �
1∫

0

ρ−1(s)(t − s)k−1si−kds � (t − 1)k−1

1∫
0

ρ−1(s)si−kds. (42)

When i = n − l, . . . , n − 1 , from (37), (38), (1), and (2) for t > 0 we have
u−1ωi ∈ Lp′(0, t) , but from (40), (41), (42), and (19) we have u−1ωi /∈ Lp′(t,∞) .
Using the L’Hospital rule and taking (17) into account it is easy to see that for i =
n − l + 1, . . . , n − 1 :

lim
t→∞

ωi−1(t)
ωi(t)

= 0,

i.e., ωi−1(t) = ¯̄o(ωi(t)) , i = n − l + 1, . . . , n − 1 , when t → ∞ .
When i = 0, . . . , n− l− 1 , from (3) it obviously follows that u−1ωi ∈ Lp′(t,∞) ,

and from (18) it follows that u−1ωi /∈ Lp′(0, t) . Moreover, ωi(t) = ¯̄o(ωi−1(t)) ,
i = 1, . . . , n − l − 1 , when t → 0 . Therefore, g(t) = 0 , ∀t ∈ I .
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Let us turn to the case (2) m > l . This case we divide into two cases: m−l > k−1
and m − l � k − 1 .

In its turn, the case m − l > k − 1 we divide into two cases: k = 1 and k > 1 .
Suppose k = 1 . Then the system (36),

ωi(t) =

t∫
1

ρ−1(s)(t − s)k−1si−kds, i = k, . . . , m − l, (43)

and

ωi(t) =

t∫
0

ρ−1(s)(t − s)k−1si−kds, i = n − l, . . . , n − 1, (44)

is a fundamental system of solutions of (34). Notice that the system consists of n
functions because here m − l + 1 = n − l .

When i = n− l, . . . , n−1 , according to (7) for t > 0 we have u−1ωi ∈ Lp′(0, t) ,
but in view of (22) we have u−1ωi /∈ Lp′(t,∞) . Moreover, ωi−1(t) = ¯̄o(ωi(t)) ,
j = n − l + 1, . . . , n − 1 , when t → ∞ .

When i = 0, . . . , m− l = n− l−1 , by (8) for t > 0 we have u−1ωi ∈ Lp′(t,∞) ,
but by (21) we have u−1ωi /∈ Lp′(0, t) . Using the L’Hospital rule and taking (20) into
account, we get lim

t→0
|ωi(t)| = ∞ , i = 1, . . . , m−l = n−l−1 , and ωi(t) = ¯̄o(ωi−1(t)) ,

i = 2, . . . , m − l = n − l − 1 , when t → 0 . Therefore, g(t) = 0 , ∀t ∈ I .
Suppose k > 1 . Then to get a fundamental system of solutions of (34) we add to

(36), (43), and (44) the following functions:

ωi(t) =

t∫
0

(t − x)i−(m−l)−1

x∫
1

ρ−1(s)(x − s)(n−l)−i−1si−kdsdx, (45)

i = m − l + 1, . . . , n − l − 1.

Let us notice that for i = n − l, . . . , n − 1 , we have the same situation as in the
case k = 1 . Hence we need to consider the case when i = 0, . . . , n − l − 1 .

Estimate (45) from above for t � 1 :

|ωi(t)| �
1∫

0

(t − x)i−(m−l)−1

1∫
x

ρ−1(s)(s − x)(n−l)−i−1si−kdsdx

+

t∫
1

(t − x)i−(m−l)−1

x∫
1

ρ−1(s)(x − s)(n−l)−i−1si−kdsdx

� ti−(m−l)−1

1∫
0

ρ−1(s)sm−lds +

t∫
1

ρ−1(s)(x − s)k−1si−kds. (46)
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In the same way as in the case (1) m < l we estimate (45) for 0 � t < 1 :

|ωi(t)| ≈ ti−(m−l)−1

t∫
0

ρ−1(s)sm−lds + ti−(m−l)

1∫
t

ρ−1(s)sm−l−1ds. (47)

When i = m − l + 1, . . . , n − l − 1 , from (46) and (8) for t > 0 it follows that
u−1ωi ∈ Lp′(t,∞) , but from (47) and (21) it follows that u−1ωi /∈ Lp′(0, t) . Thus,
when i = 0, . . . , n − l − 1 , we have u−1ωi ∈ Lp′(t,∞) and u−1ωi /∈ Lp′(0, t) .

Arguing as in the case k = 1 , we have lim
t→0

|ωi(t)| = ∞ , i = k, . . . , m − l ,

and ωi(t) = ¯̄o(ωi−1(t)) , i = k + 1, . . . , m − l , when t → 0 . At the same time
lim
t→0

|ωi(t)| = 0 for i = 1, . . . , k − 1 , and i = m − l + 1, . . . , n − l − 1 , and it is

obvious that ωi(t) = ¯̄o(ωi−1(t)) , i = 1, . . . , k − 1 , when t → 0 , and due to (20)
ωi(t) = ¯̄o(ωi−1(t)) , i = m− l + 2, . . . , n− l− 1 , when t → 0 . However, again due to
(20) for t → 0 there are no functions ωi , when i = 0, . . . , k − 1 , which have a same
order as the functions ωi , when i = m − l + 1, . . . , n − l − 1 . Therefore, g(t) = 0 ,
∀t ∈ I .

Let us turn to the case m − l � k − 1 . Since still (2) m > l , then k > 1 . In
this case the functions from (36), (45) with i = k, . . . , n − l − 1 , and (44) form a
fundamental system of solutions of (34). By arguing in the same way as above we find
that g(t) = 0 , ∀t ∈ I .

Now we shall turn to the case (3) m = l . The system of functions (36) and

ωi(t) =

t∫
0

(t − x)k−1ρ−1(x)xi−kdx, i = k, . . . , n − 1,

is a fundamental system of solution of (34).
When i = 0, . . . , k−1 , from (14) for t > 0 it follows that u−1ωi ∈ Lp′(t,∞) , and

from (21) it follows that u−1ωi /∈ Lp′(0, t) . But ωi(t) = ¯̄o(ωi−1(t)) , i = 1, . . . , k−1 ,
when t → 0 .

When i = k, . . . , n − 1 , from (13) for t > 0 it follows that u−1ωi ∈ Lp′(0, t) ,
and from (23) it follows that u−1ωi /∈ Lp′(t,∞) . But due to (17) we have ωi−1(t) =
¯̄o(ωi(t)) , i = k + 1, . . . , n − 1 , when t → ∞ . Thus, again g(t) = 0 , ∀t ∈ I .

For all three cases (1) m < l , (2) m > l and (3) m = l we obtain g(t) = 0 and

F(f ) =
n−1∑
i=0

αi(f )βi, ∀F ∈ B.

By the definition αi(f ) = 0 , i = 0, 1, . . . , n−1 , for any f ∈ .
Wn

p . Hence ∀F ∈ B

and ∀f ∈ .
Wn

p we get F(f ) = 0 , i.e.,
◦

Wn
2 ⊃ .

Wn
p . This gives

◦
Wn

2 =
.
Wn

p , and the proof
is complete. �

Proof of Theorem 3. From (24) and (25) the problems of continuousness and com-
pactness of the embedding

◦
Wn

2 ↪→ Lq,v are equivalent to the problems of continuousness
and compactness of the operator K from Lp,u to Lq,v , respectively.
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A criterion for the boundedness of the operator K from Lp,u to Lq,v in the case
1 < p � q < ∞ was established in [4] and in the case 1 < q < p < ∞ in [5].

The validity of (a) follows directly from the results of [4].
From the proofs of the results in [4] we can conclude that ‖K‖ ≈ Tp,q , since K

can be presented in the form

K ≈ K1 + K2 + K3 + K4,

where Ki are integral operators with non–negative kernels. This implies that ‖K‖ ≈
max{‖Ki‖, i = 1, 2, 3, 4} . Therefore, it is obvious that the operator K is compact from
Lp,u to Lq,v if and only if all Ki , i = 1, 2, 3, 4 , are compact from Lp,u to Lq,v . Thus,
the validity of (b) again follows from the results of [4]. �

Proof of Lemma 1. Using Hölder’s inequality in the right–hand side of (24), we
get

|f (t)| �

⎛⎝ ∞∫
0

Kp′(t, s)u−p′ (s)ds

⎞⎠
1
p′

‖uDn
ρf ‖p.

Hence,

J(t) �

⎛⎝ ∞∫
0

Kp′(t, s)u−p′(s)ds

⎞⎠
1
p′

. (48)

Let 0 < ε < t < N < ∞ and f t be the solution of the problem⎧⎨⎩
Dn
ρf (s) = Ft(s),

Di
ρf (0) = 0, i = 0, . . . , l − 1,

Di
ρf (∞) = 0, i = l, . . . , n − 1,

where Ft has the form:

Ft(s) = χ(ε,N)(s)u−p′(s)Kp′−1(t, s).

Then

f t(x) = (−1)n−l

N∫
ε

K(x, s)Kp′−1(t, s)u−p′ (s)ds, ∀x ∈ I,

and

‖uDn
ρf t‖p =

⎛⎝ N∫
ε

Kp′(t, s)u−p′ (s)ds

⎞⎠
1
p

.

Therefore,

J(t) � |f t(t)|
‖uDn

ρf t‖p
=

⎛⎝ N∫
ε

Kp′(t, s)u−p′ (s)ds

⎞⎠
1
p′

.
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By letting ε → 0 and N → ∞ , we obtain the inequality

J(t) �

⎛⎝ ∞∫
0

Kp′(t, s)u−p′(s)ds

⎞⎠
1
p′

,

which together with (48) yields (26). �

4. Some spectral characteristics of the operator A

THEOREM 4. Suppose that u and ρ satisfy the conditions of Theorem 2 with
respect to relations between l and m for p = 2 . Then:
(a) the operator A is positive defined if and only if T2,2 < ∞ , and, in addition, if m(A)
is the greatest lower bound of A , then m(A) ≈ (T2,2)−2 ;
(b) For the case T2,2 < ∞ the spectrum of A is discrete if and only if lim

t→0
Ti

2,2(t) =

lim
t→∞Ti

2,2(t) = 0 .

Proof. The Friedrichs extension saves the greatest lower bound of A0 . Then A is
positive defined if and only if A0 is positive defined and m(A) = m(A0) .

By definition
(A0f , f ) � m(A0)‖f ‖2

2, ∀f ∈ D(A0).

Since
(A0f , f ) = ‖uDn

ρf /v‖2
2, ∀f ∈ D(A0),

then the positive definedness of A0 is equivalent to the condition

‖uDn
ρf ‖2

2 � m(A0)‖vf ‖2
2, ∀f ∈ C∞

0 (I).

Due to the denseness of C∞
0 (I) in

◦
Wn

2 the last inequality is equivalent to the

embedding
◦
Wn

2 ↪→ L2,v , and, in addition, m(A0) = ‖E‖−2 , where E is the embedding

operator
◦
Wn

2 ↪→ L2,v .
Therefore, the validity of (a) of Theorem 4 follows from the validity of (a) of

Theorem 3.
By the condition of (b) we have T2,2 < ∞ . Then, according to (a), A is positive

defined. Hence, by Rellih’s lemma [8] the spectrum of A is discrete if and only if the
set {f ∈ C∞

0 , (A0f , f ) � 1} is compact in L2 , which is equivalent to the compactness

of the embedding
◦

Wn
2 ↪→ L2,v . Therefore, the validity of (b) of Theorem 4 follows

from the validity of (b) of Theorem 3. �

THEOREM 5. Suppose that u and ρ satisfy the conditions of Theorem 2 with
respect to the relations between l and m for p = 2 . Let A be positive defined and
assume that the spectrum be discrete. Then the following assertions hold:
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(a) If {λm} is a system of eigenvalues of A , enumerated in non–decreasing order
with multiplicity, and {ϕm} is a complete orthonormal system of the corresponding
eigenfunctions in L2(I) , then the equality

∞∑
m=1

λ−1
m |ϕm(t)|2 = v2(t)

∞∫
0

K2(t, s)u−2(s)ds, ∀t ∈ I, (49)

holds, where K(t, s) is defined by (25).
(b) The operator A−1 is nuclear if and only if

M =

∞∫
0

∞∫
0

K2(t, s)v2(t)u−2(s)dsdt < ∞,

and, in addition,

M = ‖A−1‖σ1 ≡
∞∑

m=1

λ−1
m .

Proof. From the conditions on u and ρ of Theorem 1 it easily follows that
∞∫
0

K2(t, s)u−2(s)ds < ∞, ∀t ∈ I,

and, according to (24) f ∈ ◦
Wn

2 is continuous on I .
Moreover, due to Lemma 1, we have

J(t) = sup
◦
Wn

2

|f (t)|
‖uDn

ρf ‖2
=

⎛⎝ ∞∫
0

K2(t, s)u−2(s)ds

⎞⎠
1
2

. (50)

Denote by
◦
W̃n

2 the Hilbert space, which is obtained as the completion of C∞
0 (I)

with respect to the norm (Af , f )
1
2 = ‖uDn

ρf /v‖2 . In this space {λ− 1
2

m ϕm}∞m=1 is a
complete orthonormal system.

Let f ∈
◦

W̃n
2 . Then f (t) =

∞∑
m=1

cmλ
− 1

2
m ϕm(t) in the sense of

◦
W̃n

2 . Moreover, by

the Parseval equality we get

‖f ‖2
◦
W̃n

2

=
∞∑

m=1

|cm|2. (51)

Since ϕm
v and f

v belong to
◦
Wn

2 , we conclude that ϕm(t) and f (t) are continuous

on I . Hence, f (t) = lim
k→∞

k∑
m=1

cmλ
− 1

2
m ϕm(t) . Therefore, by also using the Cauchy –

Bunyakovskii inequality and (51), we obtain

|f (t)| � ‖f ‖ ◦
W̃n

2

( ∞∑
m=1

λ−1
m |ϕm(t)|2

) 1
2

, t ∈ I. (52)
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Now, take any arbitrary integer N > 0 and t ∈ I and consider the function

f N,t(x) =
N∑

m=1
λ−1

m ϕm(x)ϕm(t) . For this function we have

‖f N,t‖2
◦
W̃n

2

= (AfN,t, f N,t) =
N∑

m=1

λ−1
m |ϕm(t)|2,

f N,t(t) =
N∑

m=1

λ−1
m |ϕm(t)|2.

Hence,

sup

f ∈
◦
W̃n

2

|f (t)|
‖f ‖ ◦

W̃n
2

� sup
N>0

|f N,t(t)|
‖f N,t‖ ◦

W̃n
2

= lim
N→∞

(
N∑

m=1

λ−1
m |ϕm(t)|2

) 1
2

=

( ∞∑
m=1

λ−1
m |ϕm(t)|2

) 1
2

,

which together with (52) yields

sup

f ∈
◦
W̃n

2

|f (t)|
‖f ‖ ◦

W̃n
2

=

( ∞∑
m=1

λ−1
m |ϕm(t)|2

) 1
2

. (53)

But, on the other hand

sup

f ∈
◦
W̃n

2

|f (t)|
‖f ‖ ◦

W̃n
2

= sup

f ∈
◦
W̃n

2

|f (t)|
‖uDn

ρf /v‖2
= v(t) sup

f ∈ ◦
Wn

2

|f (t)|
‖uDn

ρf ‖2
.

Therefore, by combining (50) and (53) we have (49).
Further the integration of (49) on I and the fact that {ϕm} is orthonormal in L2(I)

give
∞∑

m=1

λ−1
m =

∞∫
0

∞∫
0

K2(t, s)v2(t)u−2(s)dsdt = M.

The validity of (b) follows and the proof is complete. �

RE F ER EN C ES

[1] APYSHEV, O.,D., AND OTELBAYEV, M., On spectrum of one class of differential operators and some
embedding theorems, Izv. Acad. Sci. SSSR, Ser. Mat., 43 (1979), 739–764.

[2] Birman, M. S., On spectrum of singular boundary problems, Matem. Sbornik, 55 (97) : 2 (1961),
125–173.



376 A. A. KALYBAY, R. OINAROV AND L.-E. PERSSON

[3] Glazman, I. M., Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators,
Moscow, Physmatgiz, 1963.

[4] Kalybay, A. A., A Generalization of the weighted Hardy inequality for one class of integral operators,
Siberian Math. J. 45 (2004), iss. 1, 100–112.

[5] Kalybay, A. A., and Persson, L.-E., Three weights higher order Hardy inequalities, Function Spaces and
Applications, vol. 4, 2 (2006), 163–191.

[6] Kudryavcev, L. D., On equivalent norms in weighted spaces, Trudy Mat. Inst. Steklov, 170 (1984),
161–190.

[7] Kufner, A. and Persson, L.–E., Weighted Inequalities of Hardy Type. World Scientific, New Jer-
sey/London/Singapore/Hong Kong, 2003, 357 pages.

[8] Mynbayev, K., and Otelbayev, M., Weighted functional spaces and differential operator spectrum,
Moscow, Nauka, 1988, 288 pp.

[9] Muckenhoupt, B., Hardy’s inequality with weights, Stud. Math., vol. XLIV, 1 (1972), 31–38.
[10] Oinarov, R., Boundedness and compactness of superposition of fractional integration operators and their

applications, Proc. Function Spaces, Differential Operators and Nonlinear Analysis (FSDONA 2004),
Math. Institute, Acad. Sci., Czech Republic, (2004), 213–235.

[11] Otelbayev, M., Criteria of spectrum discreteness of one singular operator and some embedding theorems,
Differential Equations, 13 (1977), N 1, 111–120.

[12] Otelbayev, M., Criteria of resolvent kernelness of Sturm – Liouville operator, Mat. Zametki, 25 (1979),
N 4, 569–572.

[13] Otelbayev, M., Estimates of specrum of Sturm – Liouville operator, Almaty, Gylym, 1990, 192 pp.
[14] Riss, F., and Sekefal’vi–Nad’, B., Lectures on Functional Analysis, Moscow, Mir, 1979, 589 pp.
[15] Stepanov, V. D., Weighted inequalities of Hardy type for higher–order derivatives and their applications,

Dokl. Akad. Nauk SSSR, 302 (1988), N1, 1059–1062; transl. in Soviet Math. Dokl. 38 (1989), N2,
389–393.

[16] Stepanov, V. D., Two–weighted estimates of Riemann–Liouville integrals, Izv. Akad. Nauk SSSR, Ser.
Mat., 54 (1990), N3, 645–654; transl. in Math. USSR-Izv., 36 (1991), 669–681.

(Received April 4, 2007) A. A. Kalybay
Kazakhstan Institute of Management

Economics and Strategic Research
Abai st., 4

050010 Almaty
Kazakhstan

e-mail: kalybay@kimep.kz

R. Oinarov
Eurasian National University

Munaytpasov st., 5
010008 Astana

Kazakhstan
e-mail: o ryskul@mail.ru

L.-E. Persson
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