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HYERS–ULAM STABILITY OF THE FIRST ORDER

LINEAR DIFFERENTIAL EQUATION FOR BANACH

SPACE–VALUED HOLOMORPHIC MAPPINGS

TAKESHI MIURA, HIROKAZU OKA, SIN-EI TAKAHASI

AND NORIO NIWA

(communicated by Th. Rassias)

Abstract. Let Ω be a convex open set of C , and let X be a complex Banach space. Suppose
that p:Ω → C and q:Ω → X are holomorphic. We give sufficient conditions in order that the
first order linear differential equation f ′(z) + p(z)f (z) + q(z) = 0 for X -valued holomorphic
mapping f :Ω → X has the Hyers-Ulam stability.

1. Introduction

It seems that the stability problem of functional equations had been first raised by
S. M. Ulam (cf. [18, Chapter VI]). “For what metric groups G is it true that an ε -
automorphismof G is necessarily near to a strict automorphism? (An ε -automorphism
of G means a transformation f of G into itself such that ρ(f (x · y), f (x) · f (y)) < ε
for all x, y ∈ G .)"

D. H. Hyers [6] gave an affirmative answer to the problem as follows.

THEOREM A. Suppose that E1 and E2 are two real Banach spaces and f : E1 → E2

is a mapping. If there exists ε � 0 such that

‖f (x + y) − f (x) − f (y)‖ � ε

for all x, y ∈ E1 , then the limit

T(x) = lim
n→∞

f (2nx)
2n

exists for each x ∈ E1 , and T: E1 → E2 is the unique additive mapping such that

‖f (x) − T(x)‖ � ε

for all x ∈ E1 . If, in addition, the mapping R � t �→ f (tx) is continuous for each fixed
x ∈ E1 , then T is linear.
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This result is called the Hyers-Ulam stability of the additive Cauchy equation
g(x+ y) = g(x)+g(y) . Here we note that Hyers [6] calls any solution of this equation a
“linear" function or transformation. Hyers considered only bounded Cauchy difference
f (x + y)− f (x)− f (y) . T. Aoki [2] introduced unbounded one and generalized a result
[6, Theorem 1] of Hyers obtaining the stability of additive mapping. Th.M. Rassias
[13], who independently introduced the unbounded Cauchy difference, was the first to
prove the stability of the linear mapping between Banach spaces. The concept of the
Hyers-Ulam-Rassias stability was originated from Rassias’ paper [13] for the stability
of the linear mapping. Rassias [13] generalized Hyers’s Theorem as follows:

THEOREM B. Suppose that E1 and E2 are two real Banach spaces and f : E1 → E2

is a mapping. If there exist ε � 0 and 0 � p < 1 such that

‖f (x + y) − f (x) − f (y)‖ � ε(‖x‖p + ‖y‖p)

for all x, y ∈ E1 , then there is a unique additive mapping T: E1 → E2 such that

‖f (x) − T(x)‖ � 2ε
|2 − 2p| ‖x‖

p

for all x ∈ E1 . If, in addition, the mapping R � t �→ f (tx) is continuous for each fixed
x ∈ E1 , then T is linear.

This result is, what is called, the Hyers-Ulam-Rassias stability of the additive
Cauchy equation g(x + y) = g(x) + g(y) . The result of Hyers is just the case where
p = 0 . So, the result of Rassias is a generalization to the case where 0 � p < 1 : It
should be mentioned that it allows Cauchy difference to be unbounded. During the 27th
International Symposium on Functional Equations, Rassias raised the problem whether
a similar result holds for 1 � p . Z. Gajda [3, Theorem 2] proved that Theorem B is
valid for 1 < p ; In the same paper [3, Example], he also gave an example to show that
a similar result to the above does not hold for p = 1 . Later, Th.M. Rassias and P. Šemrl
[14, Theorem 2] gave another counter example for p = 1 . Note that if p < 0 , then
‖0‖p is obviously meaningless. However, if we assume that ‖0‖p means ∞ , then the
proof given in [13] also works for x �= 0 . Moreover, with minor changes in the proof,
we see that the result is also valid for p < 0 . Thus, the Hyers-Ulam-Rassias stability
of the additive Cauchy equation holds for all p ∈ R \ {1} .

It seems that Alsina and Ger [1] are the first who considered the Hyers-Ulam
stability of differential equations. They remarked that the Hyers-Ulam stability of the
differential equation y′ = y holds: If ε � 0 and if f is a differentiable function on
an open interval I into R with |f ′(t) − f (t)| � ε for all t ∈ I , then there exists a
differentiable function g: I → R such that g′(t) = g(t) and |f (t) − g(t)| � 3ε for all
t ∈ I . Many authors generalize the result ofAlsina andGer (cf. [5, 9, 10, 11, 12, 15, 16]).
The first and third authors with G. Hirasawa [11] considered the first order linear
differential equation f ′(z) + h(z)f (z) = 0 for entire functions f (z) and h(z) . Then
they proved the Hyers-Ulam stability of f ′(z) + h(z)f (z) = 0 . Let Ω be a convex
open set of C and X a complex Banach space, and let h:Ω → C be a holomorphic
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function. In this paper, we prove the Hyers-Ulam stability of the X -valued differential
equation f ′(z) + p(z)f (z) + q(z) = 0 .

2. Main results

Let Ω be an open set of C , and let X be a complex Banach space. A mapping
f :Ω → X is said to be holomorphic if and only if

lim
w→z

f (w) − f (z)
w − z

exists in the norm-topology of X for each z ∈ Ω . It is well-known that f :Ω → X
is holomorphic if and only if φ ◦ f :Ω → C is holomorphic (as a complex-valued
function) for each φ ∈ X∗ , the dual space of X . It follows that complex analysis is
valid for X -valued holomorphic mappings. We will denote by H(Ω, X) the set of all

holomorphic mappings f :Ω → X . In short, H(Ω) def= H(Ω, C) . Let f ∈ H(Ω, X) .
Just for the sake of simplicity, we will consider the case where 0 ∈ Ω . For z ∈ Ω , we
will write

∫ z
0 f (ζ)dζ for

∫ 1
0 zf (zt) dt , the integral of f over the path γ defined by

γ (t) = zt (∀t ∈ [0, 1]).

We associate to each p ∈ H(Ω) a function p̃ defined by

p̃(z) = exp
∫ z

0
p(ζ) dζ (∀z ∈ Ω).

If Ω is convex, then we see that p̃ ∈ H(Ω) with

p̃′(z) = p(z)p̃(z) (∀z ∈ Ω).

LEMMA 2.1. Let Ω be a convex open set of C with 0 ∈ Ω . Let X be a complex
Banach space and p ∈ H(Ω) . For f , q, u ∈ H(Ω, X) , each of the following conditions
are equivalent.

(i) f ′(z) + p(z)f (z) + q(z) = u(z) for all z ∈ Ω .

(ii) f (z) =
1

p̃(z)

{
f (0) +

∫ z

0
p̃(ζ)(u(ζ) − q(ζ)) dζ

}
for all z ∈ Ω .

Proof. (i) ⇒ (ii) Since p̃f ∈ H(Ω, X) , we have

{p̃(z)f (z)}′ = p̃′(z)f (z) + p̃(z)f ′(z) = p̃(z) {p(z)f (z) + f ′(z)}
= p̃(z)(u(z) − q(z))

for each z ∈ Ω . It follows that

p̃(z)f (z) − p̃(0)f (0) =
∫ z

0
p̃(ζ)(u(ζ) − q(ζ)) dζ (∀z ∈ Ω).
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Since p̃(0) = 1 , we have

f (z) =
1

p̃(z)

{
f (0) +

∫ z

0
p̃(ζ)(u(ζ) − q(ζ)) dζ

}
(∀z ∈ Ω).

(ii) ⇒ (i) By a simple calculation, we have

f ′(z) =
1

p̃2(z)
{
p̃2(z)(u(z) − q(z)) − p̃(z)f (z)p̃′(z)

}
= u(z) − q(z) − p(z)f (z)

for each z ∈ Ω , and so f ′(z) + p(z)f (z) + q(z) = u(z) (∀z ∈ Ω) . �

THEOREM 2.2. Let Ω be a convex open set of C with 0 ∈ Ω . Let X be a complex
Banach space and q ∈ H(Ω, X) . Suppose that p ∈ H(Ω) satisfies that

Cp
def= sup

z∈Ω

1
|p̃(z)|

∣∣∣∣
∫ z

0
|p̃(ζ)| dζ

∣∣∣∣ < ∞.

For each ε � 0 and f ∈ H(Ω, X) satisfying

‖f ′(z) + p(z)f (z) + q(z)‖ � ε (∀z ∈ Ω), (1)

there exists g ∈ H(Ω, X) such that

g′(z) + p(z)g(z) + q(z) = 0 (∀z ∈ Ω)

and that

‖f (z) − g(z)‖ � Cpε (∀z ∈ Ω).

Proof. Let ε � 0 and f ∈ H(Ω, X) satisfy (1). Set, for each z ∈ Ω , u(z) =
f ′(z) + p(z)f (z) + q(z) . We see from Lemma 2.1 that

f (z) =
1

p̃(z)

{
f (0) +

∫ z

0
p̃(ζ)(u(ζ) − q(ζ)) dζ

}
(∀z ∈ Ω). (2)

Set, for each z ∈ Ω ,

g(z) =
1

p̃(z)

{
f (0) −

∫ z

0
p̃(ζ)q(ζ) dζ

}
.

Then g ∈ H(Ω, X) satisfying

g′(z) + p(z)g(z) + q(z) = 0 (∀z ∈ Ω)
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by Lemma 2.1. Moreover, since ‖u(z)‖ � ε for all z ∈ Ω , it follows from (2) that

‖f (z) − g(z)‖ =
1

|p̃(z)|
∥∥∥∥
∫ z

0
p̃(ζ)u(ζ) dζ

∥∥∥∥ � ε
|p̃(z)|

∣∣∣∣
∫ z

0
|p̃(ζ)| dζ

∣∣∣∣
for each z ∈ Ω . We thus conclude that

‖f (z) − g(z)‖ � ε sup
z∈Ω

1
|p̃(z)|

∣∣∣∣
∫ z

0
|p̃(ζ)| dζ

∣∣∣∣ = Cpε

for each z ∈ Ω , and the proof is complete. �

THEOREM 2.3. Let Ω be a convex open set of C with 0 ∈ Ω . Let X be a complex
Banach space, q ∈ H(Ω, X) and p ∈ H(Ω) . Suppose that there exists λ ∈ ∂Ω , the
boundary of Ω , such that

Dp(λ ) def= sup
z∈Ω

1
|p̃(z)|

∣∣∣∣
∫ z

λ
|p̃(ζ)| dζ

∣∣∣∣ < ∞,

where ∫ z

λ
|p̃(ζ)| dζ = lim

a↘0

∫ 1

a
|p̃(λ + t(z − λ ))|(z − λ ) dt.

For each ε � 0 and f ∈ H(Ω, X) satisfying (1) there exists g ∈ H(Ω, X) such that

g′(z) + p(z)g(z) + q(z) = 0 (∀z ∈ Ω)

and that
‖f (z) − g(z)‖ � Dp(λ )ε (∀z ∈ Ω).

Proof. Suppose that there exists λ ∈ ∂Ω such that

Dp(λ ) = sup
z∈Ω

1
|p̃(z)|

∣∣∣∣
∫ z

λ
|p̃(ζ)| dζ

∣∣∣∣ < ∞.

Let ε � 0 and f ∈ H(Ω, X) satisfy (1). Set, for each z ∈ Ω , v(z) = f ′(z)+p(z)f (z)+
q(z) . Then ‖v(z)‖ � ε for all z ∈ Ω . By Lemma 2.1, we have

f (z) =
1

p̃(z)

{
f (0) +

∫ z

0
p̃(ζ)(v(ζ) − q(ζ)) dζ

}
(3)

for all z ∈ Ω . Since Ω is convex, so is Ω̄ , the closure of Ω . We have λ + t(z−λ ) ∈ Ω
for each z ∈ Ω and 0 < t � 1 . Note, by the hypothesis, that the integral of |p̃| over
the path [λ , z] exists for each z ∈ Ω . Since p̃v ∈ H(Ω, X) , it follows from the Cauchy
theorem that ∫ z

0
p̃(ζ)v(ζ) dζ =

∫ λ

0
p̃(ζ)v(ζ) dζ +

∫ z

λ
p̃(ζ)v(ζ) dζ (4)

for all z ∈ Ω . Set, for each z ∈ Ω ,

g(z) =
1

p̃(z)

{
f (0) +

∫ λ

0
p̃(ζ)v(ζ) dζ −

∫ z

0
p̃(ζ)q(ζ) dζ

}
. (5)
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It follows from Lemma 2.1 that

g′(z) + p(z)g(z) + q(z) = 0 (∀z ∈ Ω).

By (3), (4) and (5), we have

‖f (z) − g(z)‖ =
1

|p̃(z)|
∥∥∥∥
∫ z

λ
p̃(ζ)v(ζ) dζ

∥∥∥∥
� ε sup

z∈Ω

1
|p̃(z)|

∣∣∣∣
∫ z

λ
|p̃(ζ)| dζ

∣∣∣∣ = Dp(λ )ε (∀z ∈ Ω)

since ‖v(z)‖ � ε for all z ∈ Ω . This completes the proof. �

EXAMPLE 2.1. Let Ω be a bounded convex open set of C , say |z| � M for all
z ∈ Ω . If 0 ∈ Ω and p ∈ H(Ω) is bounded, then we see that

Cp = sup
z∈Ω

1
|p̃(z)|

∣∣∣∣
∫ z

0
|p̃(ζ)| dζ

∣∣∣∣ < ∞.

In fact, if p ∈ H(Ω) is bounded, say |p(z)| � K for all z ∈ Ω , then we have∣∣∣∣
∫ z

0
p(ζ) dζ

∣∣∣∣ �
∫ 1

0
|p(zt)| |z| dt � KM (∀z ∈ Ω),

and so

|p̃(z)| = exp

(
Re

∫ z

0
p(ζ) dζ

)
� e−KM (∀z ∈ Ω). (6)

On the other hand, since |p̃(z)| � eKM (∀z ∈ Ω) , we have∣∣∣∣
∫ z

0
|p̃(z)| dζ

∣∣∣∣ � MeKM (∀z ∈ Ω). (7)

It follows from (6) and (7) that

Cp = sup
z∈Ω

1
|p̃(z)|

∣∣∣∣
∫ z

0
|p̃(ζ)| dζ

∣∣∣∣ � Me2KM < ∞.

EXAMPLE 2.2. Let Ω = {z ∈ C : |z| < 1} . We consider p ∈ H(Ω) defined by
p(z) = 1/(z + 1) (∀z ∈ Ω) . Then log(z + 1) (z ∈ Ω) is well-defined so that

p̃(z) = exp
∫ z

0
p(ζ) dζ = elog(z+1) = z + 1 (∀z ∈ Ω). (8)

We thus obtain∣∣∣∣
∫ z

−1
|p̃(ζ)| dζ

∣∣∣∣ = lim
a↘0

∣∣∣∣∣
∫ 1

a
|p̃(−1 + t(z + 1))|(z + 1) dt

∣∣∣∣∣ (9)

= lim
a↘0

∣∣∣∣∣
∫ 1

a
|t(z + 1)|(z + 1) dt

∣∣∣∣∣
= |z + 1|2

∫ 1

0
t dt =

|z + 1|2
2
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for each z ∈ Ω . It follows from (8) and (9) that

Dp(−1) = sup
z∈Ω

1
|p̃(z)|

∣∣∣∣
∫ z

−1
|p̃(ζ)| dζ

∣∣∣∣ = sup
z∈Ω

|z + 1|
2

= 1.

Here, we notice that

Dp(λ ) = sup
z∈Ω

1
|p̃(z)|

∣∣∣∣
∫ z

λ
|p̃(ζ)| dζ

∣∣∣∣ = ∞ (10)

for each λ ∈ ∂Ω \ {−1} , and that

Cp = sup
z∈Ω

1
|p̃(z)|

∣∣∣∣
∫ z

0
|p̃(ζ)| dζ

∣∣∣∣ = ∞. (11)

First, we prove that (10) holds. To do this, take λ ∈ ∂Ω \ {−1} arbitrarily. For each
n ∈ N there exists zn ∈ Ω such that

|λ + 1| � |λ − zn| and |zn + 1| <
1
n
. (12)

We have, for each n ∈ N , that∣∣∣∣
∫ zn

λ
|p̃(ζ)| dζ

∣∣∣∣ = lim
a↘0

∣∣∣∣∣
∫ 1

a
|p̃(λ + t(zn − λ ))|(zn − λ ) dt

∣∣∣∣∣
= lim

a↘0

∣∣∣∣∣
∫ 1

a
|λ + 1 + t(zn − λ )|(zn − λ ) dt

∣∣∣∣∣
� |zn − λ |

∫ 1

0
||λ + 1| − t|zn − λ || dt.

By (12), we have∫ 1

0
||λ + 1| − t|zn − λ || dt =

∫ 1

0
(|λ + 1| − t|zn − λ |) dt

= |λ + 1| − |zn − λ |
2

,

and so ∣∣∣∣
∫ zn

λ
|p̃(ζ)| dζ

∣∣∣∣ � |zn − λ |
(
|λ + 1| − |zn − λ |

2

)
. (13)

Another application of (12) to (13) yields∣∣∣∣
∫ zn

λ
|p̃(ζ)| dζ

∣∣∣∣ � |zn − λ | |zn − λ |
2

=
|zn − λ |2

2
.

It follows that

1
|p̃(zn)|

∣∣∣∣
∫ zn

λ
|p̃(ζ)| dζ

∣∣∣∣ � |zn − λ |2
2|zn + 1| → ∞ as n → ∞
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since zn → −1 as n → ∞ . This proves (10) for each λ ∈ ∂Ω \ {−1} .
Finally, we prove that (11) holds. In fact, since |z| < 1 , we have, for each z ∈ Ω ,

that ∣∣∣∣
∫ z

0
|p̃(ζ)| dζ

∣∣∣∣ = |z|
∫ 1

0
|p̃(tz)| dt = |z|

∫ 1

0
|tz + 1| dt (14)

� |z|
∫ 1

0
||tz| − 1| dt = |z|

∫ 1

0
(1 − |z|t) dt

= |z|
(

1 − |z|
2

)
.

It follows from (8) and (14) that

Cp = sup
z∈Ω

1
|p̃(z)|

∣∣∣∣
∫ z

0
|p̃(ζ)| dζ

∣∣∣∣ = sup
z∈Ω

|z|(2 − |z|)
2|z + 1| = ∞.
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