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HYERS-ULAM STABILITY OF THE FIRST ORDER
LINEAR DIFFERENTIAL EQUATION FOR BANACH
SPACE-VALUED HOLOMORPHIC MAPPINGS

TAKESHI MIURA, HIROKAZU OKA, SIN-EI TAKAHASI
AND NORIO NIWA

(communicated by Th. Rassias)

Abstract. Let Q be a convex open set of C, and let X be a complex Banach space. Suppose
that p: Q — C and ¢: Q — X are holomorphic. We give sufficient conditions in order that the
first order linear differential equation f/(z) + p(z)f (z) + q(z) = 0 for X -valued holomorphic
mapping f:Q — X has the Hyers-Ulam stability.

1. Introduction

It seems that the stability problem of functional equations had been first raised by
S. M. Ulam (cf. [18, Chapter VI]). “For what metric groups G is it true that an ¢-
automorphismof G is necessarily near to a strict automorphism? (An € -automorphism
of G means a transformation f of G into itself such that p(f (x - y),f (x) - f(y)) < €
forall x,y € G.)"

D. H. Hyers [6] gave an affirmative answer to the problem as follows.

THEOREM A. Suppose that E| and E, are two real Banach spaces and f: Ey — E,
is a mapping. If there exists € > 0 such that

fe+y) =f) —fOl <e

forall x,y € E|, then the limit

T() = tim L)

n—o00 omn

exists for each x € E\, and T: E| — E, is the unique additive mapping such that

If () =T <&

forall x € Ey. If, in addition, the mapping R > t +— f (tx) is continuous for each fixed
x € Ey, then T is linear.
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This result is called the Hyers-Ulam stability of the additive Cauchy equation
g(x+y) = g(x) +g(y) . Here we note that Hyers [6] calls any solution of this equation a
“linear" function or transformation. Hyers considered only bounded Cauchy difference
fx+y)—f(x)—f(y). T. Aoki [2] introduced unbounded one and generalized a result
[6, Theorem 1] of Hyers obtaining the stability of additive mapping. Th.M. Rassias
[13], who independently introduced the unbounded Cauchy difference, was the first to
prove the stability of the linear mapping between Banach spaces. The concept of the
Hyers-Ulam-Rassias stability was originated from Rassias’ paper [13] for the stability
of the linear mapping. Rassias [13] generalized Hyers’s Theorem as follows:

THEOREM B. Supposethat E| and E, are two real Banach spacesand f: E1 — E,
is a mapping. If there exist € > 0 and 0 < p < 1 such that

If e +y) —f () =f D) < e(llxll” + [[¥[1)

forall x,y € E|, then there is a unique additive mapping T:E, — E, such that

I )= 7)1 < g ol

forall x € E;. If, in addition, the mapping R > t — f (tx) is continuous for each fixed
x € E, then T is linear.

This result is, what is called, the Hyers-Ulam-Rassias stability of the additive
Cauchy equation g(x + y) = g(x) + g(y). The result of Hyers is just the case where
p = 0. So, the result of Rassias is a generalization to the case where 0 < p < 1: It
should be mentioned that it allows Cauchy difference to be unbounded. During the 27th
International Symposium on Functional Equations, Rassias raised the problem whether
a similar result holds for 1 < p. Z. Gajda [3, Theorem 2] proved that Theorem B is
valid for 1 < p; In the same paper [3, Example], he also gave an example to show that
a similar result to the above does not hold for p = 1. Later, Th.M. Rassias and P. Semrl
[14, Theorem 2| gave another counter example for p = 1. Note that if p < 0, then
lO]|P is obviously meaningless. However, if we assume that ||0]|” means oo, then the
proof given in [13] also works for x # 0. Moreover, with minor changes in the proof,
we see that the result is also valid for p < 0. Thus, the Hyers-Ulam-Rassias stability
of the additive Cauchy equation holds for all p € R\ {1}.

It seems that Alsina and Ger [1] are the first who considered the Hyers-Ulam
stability of differential equations. They remarked that the Hyers-Ulam stability of the
differential equation y’ = y holds: If € > 0 and if f is a differentiable function on
an open interval I into R with |[f'(z) — f(¢)] < € for all 7 € I, then there exists a
differentiable function g:7 — R such that g’(z) = g(¢) and |f (r) — g(r)| < 3¢ forall
t € 1. Many authors generalize the result of Alsina and Ger (cf. [5,9,10, 11,12, 15, 16]).
The first and third authors with G. Hirasawa [11] considered the first order linear
differential equation f’(z) + h(z)f (z) = O for entire functions f(z) and h(z). Then
they proved the Hyers-Ulam stability of f'(z) + h(z)f (z) = 0. Let Q be a convex
open set of C and X a complex Banach space, and let #: Q — C be a holomorphic
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function. In this paper, we prove the Hyers-Ulam stability of the X -valued differential
equation f'(z) + p(2)f (z) + ¢q(z) = 0.

2. Main results

Let Q be an open set of C, and let X be a complex Banach space. A mapping
f:Q — X is said to be holomorphic if and only if

i L0 —f (@)
w—z w—2z

exists in the norm-topology of X for each z € Q. It is well-known that f: Q — X
is holomorphic if and only if ¢ o f:Q — C is holomorphic (as a complex-valued
function) for each ¢ € X*, the dual space of X. It follows that complex analysis is
valid for X -valued holomorphic mappings. We will denote by H(Q, X) the set of all

holomorphic mappings f:Q — X. In short, H(Q) o H(Q,C). Let f € H(Q,X).
Just for the sake of simplicity, we will consider the case where 0 € Q. For z € Q, we
will write [;f()d¢ for fol 7f (zt) dt , the integral of f over the path y defined by

y(t) =zt (Vr € [0,1]).

We associate to each p € H(Q) a function p defined by

Z
@ =ex0 [ p(Oal (zeQ).
If Q is convex, then we see that p € H(Q) with

P2 =p@pl) (Vz€Q).

LEMMA 2.1. Let Q be a convex open set of C with 0 € Q. Let X be a complex
Banach space and p € H(Q). For f,q,u € H(Q,X), each of the following conditions
are equivalent.

(i) f'(2) +p)f(2) +4q(z) = u(z) forall z € Q.
(i) f(z) = == 1f(0) +/O (&) () Q(C))dC} forall z € Q.

{p(2)f (2)} =P'(2)f (2) + p(2)f ' (z) = p(2) {p(2)f (2) +f'(2)}
= p(2)(u(z) — q(2))

for each z € Q. It follows that

p(2)f (z) = p(0)f (0) = /Ozﬁ(C)(u(C) —4q(£))dg (Ve Q).
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Since p(0) = 1, we have

1
p(2)

(ii) = (i) By a simple calculation, we have

£ = {f<o> - AW q({))dc} (v: € Q).

foreach z € Q,andso f'(z) + p(2)f (2) + q(z) = u(z) (Vze Q). O

THEOREM 2.2. Let Q be a convex open set of C with 0 € Q. Let X be a complex
Banach space and q € H(Q,X). Suppose that p € H(Q) satisfies that

def
= Sup - 7—~

Z€Q |I7

dC’<oo

Foreach € > 0 and f € H(Q,X) satisfying

IF'@) +pEf @) +a@) <& (VzeQ), (1)

there exists g € H(Q,X) such that

g2 +p()g(x) +q(z) =0  (VzeQ)

and that
If (z) — g < Coe  (VzEQ).

Proof. Let € > 0 and f € H(Q,X) satisfy (1). Set, for each z € Q, u(z) =
@) +p@)f(2) +q( ). We see from Lemma 2.1 that

F@) =~ ){ 0+ [ Zﬁ(C)(u(C)—q(C))dC} (e, @

Set, foreach z € Q,

) = s {ro - [acaac.

Then g € H(Q,X) satisfying

g2 +peg(x) +q(z) =0  (Vz€Q)
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by Lemma 2.1. Moreover, since ||u(z)|| < € for all z € Q, it follows from (2) that

1 Z
1@ - 8@l = | [ 5(0)
52 1l.Jo
for each z € Q. We thus conclude that

I (2) — &2l < esup =~

ZEQ |I7

i <

/|p d§] Cpe

THEOREM 2.3. Let Q be a convex open set of C with 0 € Q. Let X be a complex
Banach space, q € H(Q,X) and p € H(Q). Suppose that there exists A € 0Q, the

boundary of Q, such that
o | [ onad < .

¥4 1
[ @14z = tim [+ o= Al = )
Foreach € >0 and f € H(Q, X) satisfying (1) there exists g € H(Q, X) such that
g2 +p)egx) +4q(z) =0  (VzeQ)

|d¢\

for each z € Q, and the proof is complete. [

D, sup ——
p() ZEQ‘[)

where

and that
If (2) @I < Dp(A)e  (VzeQ).

Proof. Suppose that there exists A € 9Q such that

D) =sup / Iﬁ(C)IdC‘<OO-

Let € > 0 and f € H(Q,X) satisfy (1). Set, foreach z € Q, v(z) = f'(2) +p(2)f (2)+
q(z). Then ||v(z)|| < € forall z € Q. By Lemma 2.1, we have

1 °
O =5 {f<o> + [ romo —q(@))dc} )

forall z € Q. Since Q is convex,sois Q, the closure of Q. We have A +#(z—1) € Q
foreach z € Q and 0 < r < 1. Note, by the hypothesis, that the integral of |p| over
the path [A, z] exists for each z € Q. Since pv € H(Q, X), it follows from the Cauchy

theorem that
/ ¢)dg = / gyde + A Ot )

forall z € Q. Set, foreach z € Q,

1 A ~ z ~
€)= = {f(O) 4 / AW dE — / AO)a(0) dc} | (5)
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It follows from Lemma 2.1 that

g(2) +p2)elx) +q(z) =0  (VzeQ).
By (3), (4) and (5), we have

IF @) - ¢l = |]

WQ) d@H

< Esup ——
Z€Q |p

/ (¢ IdC‘ (Vz € Q)

since ||v(z)|| < € forall z € Q. This completes the proof. [

EXAMPLE 2.1. Let Q be a bounded convex open set of C, say |z| < M for all
z€ Q. If 0 € Q and p € H(Q) is bounded, then we see that
C,,:supN— C)dC‘<oo.
7€Q |p Z

In fact, if p € H(Q) is bounded, say |p(z )\ < K forall z € Q, then we have

‘/ dC’ < /0 |p(zt)] |z| dt < KM (Vz € Q),

@l = e (Re [p(0)aL) = (e )
On the other hand, since |p(z)| < XM (Vz € Q), we have
‘/ ﬁ(z)dé” < MefM (Vz € Q). (7)
0

It follows from (6) and (7) that

and so

Cp = sup —— 9] dC‘ Me* M <

ZEQ ‘[)

EXAMPLE 2.2. Let Q = {z eC: \z| < 1}. We consider p € H(Q) defined by
p(z) =1/(z+1) (Vz€ Q). Then log(z+ 1) (z € Q) is well-defined so that

p(z) = exp /Zp(é’) d¢ = doeletl) — 7 4 (Vz € Q). (8)
0
We thus obtain
z 1
[ la] = g [ Dl D ©)

= lim
a\,0

/1 1z + D|(z + 1) dt

1 2

1

= \z+1\2/ rar = 1
0 2
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for each z € Q. It follows from (8) and (9) that

1
D,(—1) =sup ——— ’/ |d§‘ sup —— |Z+ | =1
e |P(2)] Z€Q
Here, we notice that
D) = sup | [ €)1 ag] = (10)
7€Q |p
foreach A € 9Q\ {—1}, and that
Gy =sup | [0 az) = o (1)
7€Q |I7

First, we prove that (10) holds. To do this, take A € 0Q\ {—1} arbitrarily. For each
n € N there exists z, € Q such that

1
A+ 1| >|A —zy and \zn+1\<;. (12)

We have, for each n € N, that

[ @ag] = i

= lim
a\,0

/1 P(A + t(za — A)|(zn — A) dt

1
/ At 14 t(zn — A)|(en — A) dt

1
> 2 —M/ 1A + 1] = 1]z, — Al dr.
0

By (12), we have

1 1
/ \|/1+1\—z\z,,—/u|dt:/ (2 + 1] =tz — Al dt
0 0

|Zn_k|
=A+1-———
h 1 - A

[ wona > - al (13- 2R, (13)

Another application of (12) to (13) yields
Zn . Zn — A Zn — A 2
[ pag] 3 -2 Bt - 22D

and so

2

It follows that

! / |dg| > L — 00 as n— 00
P(zn)] )2 2lzn + 1
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since z, — —1 as n — oo. This proves (10) foreach A € 9Q\ {—1}.

that

Finally, we prove that (11) holds. In fact, since |z| < 1, we have, foreach z € Q,

‘/OZ ﬁ(g)dC’ = [ /01 |p(tz)| dt = |z /01 |tz + 1] dt (14)
Iz/lltZI—ldt:zl/ol(l—zmdt
~ (-4,

It follows from (8) and (14) that

1]

(10]
(11]
(12]
(13]
(14]
(15]

(16]

C, =sup ——
! Z€Q |p

|2[(2 —|z) _
)| d su =
/ |I7 ‘ C‘ zeg 2| + 1|
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