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WRIGHT-CONVEXITY WITH RESPECT TO ARBITRARY MEANS
MICHAE. LEWICKI

(communicated by Zs. Pales)

Abstract. Let I C R beanopen interval and M, N : > — I be means on I . We give sufficient
conditions on means M and N under which every first Baire class solution f : I — R of the
functional inequality

S (M(x,y)) +f (N(x,y)) f@)+f), xyel

is convex.

1. Introduction

Let I C R be an open interval. By a mean we mean a function M : I> — I such
that

min(x,y) < M(x,y) < max(x,y), x,y€l.

If for all x,y € I, x # y, these inequalities are strict, we call M to be a strict
mean.

A function f : I — R is said to be (M, N)-Wright convex if

F(M(x,y) +f(N(x,y) <f(x)+f(), xyel, (1)

where M, N : I? — [ are means such that
M(x,y) + N(x,y) =x+y, x,y€l (2)

It can be easily derived from J. Matkowski, M. Wrébel [3] that every lower semi-
continuous function satisfying (1), with strict continuous means M, N : I> — |
satisfying (2), is convex. In this note we show that this result remains true if f is of the
first Baire class.
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2. Lower hull of (M,N)-Wright convex functions

Let I/ C R be an open interval. By my : [ — R we mean a lower hull of
f I — R. In this section we will show that if f is (M, N)-Wright convex then my
is also (M, N)-Wright convex.

We will start with the lemma.

LEMMA 2.1. Let I C R be an open interval and M, N : I* — I are strict
continuous means on I. Further, assume that, for every fixed u,v € I, M(u,-) and
M(-,v) are strictly increasing functions. If a function f : I — R is locally bounded
at a point x € I and is a solution of inequality (1), then f is locally bounded.

Proof. Let us consider the set
B := {y € I: fislocally bounded at a point y}.

Of course B is not empty and open.
Assume that B # I and fix z € I\ B. Without loss of generality we may assume
that

\/(z— €,2) CB.

e>0

Fix u € (z—¢€,z). Because M, N are strict means so M(u,z),N(u,z) € (z—¢€,2).
Now, the continuity of the means gives

V V. A Ir®Mue)l LAl (N, p))] < Li]. 3)
e>n>0L>0 pe(z—n,z+1)

Fixa v € (z — n,z+ n). Taking into account inequalities (1) and (3) we get
F0) = F (M) + £ (V@) —f () > ~2Ls — f () = L.

Hence f is bounded from below in the set (z — 1,z + 7).
It is easy to show (by continuity of M ), that

\/ \/ 7= M(s,1).
s€(z—n,z+n) t€(z,24€)

The point s € B, so there exists ¢; > 0 such that cl(s — e;,s +¢) C (z—1n,z+
1) N B. Hence, by continuity of N and compactness of cl(s — €, s + €;) , we get

A SN0 > Lo, @)
PE(s—es,s+tes)

and

VoA rel<is (5)

L3>0 pe(s—es,s+€5)
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Notice that the set M((s — €5, 5 + €;),¢) is an open neighbourhood of z. Now, fix
r€ M((s — e, 5+¢),1). There exists w € (s — €;, 5+ ¢€,) such that r = M(w,1). By
(1), (4) and (5) we get

f(r) =fMw, 1)) <f(w) +£(0) =f (N(w, 1)) < Ls +£(1) = La.

Hence function f is boundedontheset V := (z—n,z+ 1) NM((s — €5, 5+ ¢€), 1),
which is the open neighbourhood of z. The contradiction so obtained completes the
proof. [

For f : I — R we define a lower hull m; : I — R (see [1]) by

my(x) := lim @.(n) = sup @x(n), (6)
n—0+ n>0
where
¢o:(n):= inf f(w), n>0. (7)
weK (x,m)

It is easy to see that the inequality
mp(x) <f(x), xel, (8)

holds true.
Now we give a lemma

LEMMA 2.2. Let I C R be an open interval and M, N 12 — [ be continuous
strict means on 1. If locally bounded function f : I — R is (M,N)-Wright convex
then the function my is also (M, N)-Wright convex.

Proof. Fix x,y €I and € > 0.

By definition and Lemma 2.1 m; is a real valued function.

It follows directly from (6) and (7) that there exists y > 0 such that
my (M(x,y)) = 5 <f (1), 1€ Mlx,y) =v,M(xy) +7),

(x) ¢ and

my (N(x,y)) = 3 <f (1),

By continuity of M and N there exists n > 0 such that

te (N()C,y) - }/,N(x,y) +Y)

K(x,n) x K(y,n) € M~ (K(M(x,y),7)) NN~ (K(N(x,y),7)).

Condition (7) implies
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We have M(u,v) € K(M(x,y),y) and N(u,v) € K(N(x,y),y). Finally, from
(*), (**) and inequality (1) we get

my (x) +myp(y) = @(n) + @y(n) > f (u) —

ZfM(u,v)) +f(N(u,v))

€ €
AR
€
2

Then Letting ¢ — 04 we obtain our assertation. []

> my (M(u,v)) + my (N(u,v)) — €.

Let us recall the main result of J. Matkowski and M. Wrdbel [3].

THEOREM 2.1. Let M,N : I x I — I be continuous functions satisfying
x,y €l,x#y= M(x,y),N(x,y) € (min(x,y), max(x,y)),
and suppose that @ : [ — R is a non-constant and continuous solution of equation

PM(x,y)) + o(N(x,y)) = ¢(x) + 0(y), x,y€l.

Then ¢ is one-to-one, and for every lower semicontinuous function f : I — R
satisfying (1), the function f o ¢~ is convex on ¢(I).
As an immediate consequence we get,

COROLLARY 2.1. Let I C R be an open interval and M, N I? — I be strict
continuous means on 1. If a locally bounded function f : 1 — R is (M,N)-Wright
convex then my is a convex function.

Proof. According to Lemma 2.2 function m, is (M,N)-Wright convex. It is
well known (see [1]) that a lower hull of arbitrary function f : I — R is lower
semicontinuous. Putting ¢ := id; in Theorem 2.1 we get the thesis. [

3. Main result

LEMMA 3.1. Let I C R be an open interval. Assume that M : I> — I is a
strict continuous means on 1, such that, for every fixed u,v € I, functions M(u,-) and
M(-,v) are strictly increasing. Let a set B C I be such that the set B\ I is of the
first category. Then, for all € > 0 and z € I there exist x,y € K(z,€) N B such that
z=M(x,y).

Proof. Fix z€1 and € > 0.
By continuity of M there exist i,m € K(z,¢) such that z = M(i,m). We show
now that for every w € (i, m) there exists exactly one w’ € (i,m) such that

7= M(w,w), )

holds.
We may assume that w < z. Function M(-,m) is strictly increasing so M (i, m) <
M(w,m). As the function M(w,-) is continuous and strictly increasing mean, there
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exists exactly one w' < m such that z = M(w,w’). Due to (9) we may define a
function ¢ : (i,m) — @((i,m)) such that

z2=M(u,p(u)), uc(i,m). (10)

It is obvious that the function ¢ is continuous and strictly decreasing. Hence ¢
is a homeomorphism.

Define aset V := (i,m) N @((i,m)). Observe that V is an open interval, such that
z€ V. As (BN (i,m)) is a second category setin V, we get @(BN (i,m))NB # .
Fix y € ¢(BN (i,m)) N B. There exists x € BN (i,m) such that y = ¢(x). Now, by
(10) we have

z=M(x,0(x)) = M(x,y)
That ends the proof. [J
The main result of this paper is contained in the following theorem:

THEOREM 3.1. Let I C R be an open interval. Assume that M,N : I> — I are
strict continuous means on 1. Further, assume that for every fixed u,v € I, functions
M(u,-) and M(-,v) are strictly increasing. If a function f : I — R is of the first
Baire class and (M, N) -Wright convex then f is convex.

Proof. Fix z € I. By Corollary 2.1 and (8) it is enough to show that the inequality

f@<m), zel (11)
holds.
Fix 1 > 0. By the definition of m; there exist 4 > 0 such that
n
N @) = 3 <T@ ). (12)
u,v€K(z,8)

As f is of the first Baire class, it has a continuity point. Thus, by Lemma 2.1 f is
locally bounded. Hence miy is real valued function and, by Corollary 2.1, it is a convex
function. This implies that my is continuous. Hence, there exists ¥ > 0 such that

n
N m(s) <mp(2) + 3 (13)
sEK(z)y)

Put € := min{J,y}.
Function f is of the first Baire class, so the set

B:={u€l:f is continuous at a pointu} N K(z, €),

is such that K(z,€) \ B is of the first category.
By Lemma 3.1, there exist x,y € K(z, €) N B such that M(x,y) = z. Because x,y
are continuity points of function f we get

@) +f(NCy)) <P @)+ 0) = my () +my (3)- (14)
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Taking into account (12) we get

f@) +mp(z) = 3 <) +F(N(x,y)).

n
3
Now, by (14)

[(@) +my(2) =

Therefore, by (13) we have

3 <y (3) +my ().

=

(@) +me(z) — 3 <my(2) + 5 +my(2) +

that is,

f(z) <my(z) +m,

for any 1 > 0. Last statement is equivalent to the inequality (11). This completes the
proof. [
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