
Journal of
Mathematical

Inequalities
Volume 1, Number 3 (2007), 419–424

WRIGHT–CONVEXITY WITH RESPECT TO ARBITRARY MEANS

MICHAŁ LEWICKI

(communicated by Zs. Pales)

Abstract. Let I ⊂ R be an open interval and M, N : I2 −→ I be means on I . We give sufficient
conditions on means M and N under which every first Baire class solution f : I −→ R of the
functional inequality

f (M(x, y)) + f (N(x, y)) � f (x) + f (y), x, y ∈ I,

is convex.

1. Introduction

Let I ⊆ R be an open interval. By a mean we mean a function M : I2 −→ I such
that

min(x, y) � M(x, y) � max(x, y), x, y ∈ I.

If for all x, y ∈ I , x �= y , these inequalities are strict, we call M to be a strict
mean.

A function f : I −→ R is said to be (M, N) -Wright convex if

f (M(x, y)) + f (N(x, y)) � f (x) + f (y), x, y ∈ I, (1)

where M, N : I2 −→ I are means such that

M(x, y) + N(x, y) = x + y, x, y ∈ I. (2)

It can be easily derived from J. Matkowski, M. Wróbel [3] that every lower semi-
continuous function satisfying (1), with strict continuous means M, N : I2 −→ I
satisfying (2), is convex. In this note we show that this result remains true if f is of the
first Baire class.

Mathematics subject classification (2000): 39B62, 39B82.
Key words and phrases: Wright convexity, Jensen convexity.

c© � � , Zagreb
Paper JMI-01-35

419



420 MICHAŁ LEWICKI

2. Lower hull of (M,N)-Wright convex functions

Let I ⊆ R be an open interval. By mf : I −→ R̄ we mean a lower hull of
f : I −→ R . In this section we will show that if f is (M, N) -Wright convex then mf

is also (M, N) -Wright convex.
We will start with the lemma.

LEMMA 2.1. Let I ⊆ R be an open interval and M, N : I2 −→ I are strict
continuous means on I . Further, assume that, for every fixed u, v ∈ I , M(u, ·) and
M(·, v) are strictly increasing functions. If a function f : I −→ R is locally bounded
at a point x ∈ I and is a solution of inequality (1), then f is locally bounded.

Proof. Let us consider the set

B := {y ∈ I : f is locally bounded at a point y}.
Of course B is not empty and open.
Assume that B �= I and fix z ∈ I \ B . Without loss of generality we may assume

that
∨
ε>0

(z − ε, z) ⊆ B.

Fix u ∈ (z− ε, z) . Because M, N are strict means so M(u, z), N(u, z) ∈ (z− ε, z) .
Now, the continuity of the means gives

∨
ε>η>0

∨
L1>0

∧
ρ∈(z−η,z+η)

[|f (M(u, ρ))| � L1 ∧ |f (N(u, ρ))| � L1]. (3)

Fix a v ∈ (z − η, z + η) . Taking into account inequalities (1) and (3) we get

f (v) � f (M(u, v)) + f (N(u, v)) − f (u) � −2L1 − f (u) =: L2.

Hence f is bounded from below in the set (z − η, z + η) .
It is easy to show (by continuity of M ), that

∨
s∈(z−η,z+η)

∨
t∈(z,z+ε)

z = M(s, t).

The point s ∈ B , so there exists εs > 0 such that cl(s − εs, s + εs) ⊆ (z − η, z +
η) ∩ B . Hence, by continuity of N and compactness of cl(s − εs, s + εs) , we get

∧
ρ∈(s−εs,s+εs)

f (N(ρ, t)) � L2, (4)

and
∨

L3>0

∧
ρ∈(s−εs,s+εs)

|f (ρ)| � L3. (5)
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Notice that the set M((s − εs, s + εs), t) is an open neighbourhood of z . Now, fix
r ∈ M((s − εs, s + εs), t) . There exists w ∈ (s− εs, s + εs) such that r = M(w, t) . By
(1), (4) and (5) we get

f (r) = f (M(w, t)) � f (w) + f (t) − f (N(w, t)) � L3 + f (t) − L2.

Hence function f is bounded on the set V := (z−η, z+η)∩M((s− εs, s+ εs), t) ,
which is the open neighbourhood of z . The contradiction so obtained completes the
proof. �

For f : I −→ R we define a lower hull mf : I −→ R̄ (see [1]) by

mf (x) := lim
η→0+

ϕx(η) = sup
η>0

ϕx(η), (6)

where

ϕx(η) := inf
w∈K(x,η)

f (w), η > 0. (7)

It is easy to see that the inequality

mf (x) � f (x), x ∈ I, (8)

holds true.
Now we give a lemma

LEMMA 2.2. Let I ⊆ R be an open interval and M, N : I2 −→ I be continuous
strict means on I . If locally bounded function f : I −→ R is (M, N) -Wright convex
then the function mf is also (M, N) -Wright convex.

Proof. Fix x, y ∈ I and ε > 0 .
By definition and Lemma 2.1 mf is a real valued function.
It follows directly from (6) and (7) that there exists γ > 0 such that

(∗)
⎧⎨
⎩

mf (M(x, y)) − ε
4 � f (t), t ∈ (M(x, y) − γ , M(x, y) + γ ),

and
mf (N(x, y)) − ε

4 � f (t), t ∈ (N(x, y) − γ , N(x, y) + γ ).

By continuity of M and N there exists η > 0 such that

K(x,η) × K(y,η) ⊂ M−1(K(M(x, y), γ )) ∩ N−1(K(N(x, y), γ )).

Condition (7) implies

(∗∗)

⎧⎪⎨
⎪⎩

∨
u∈K(x,η)

f (u) − ε
4 � ϕx(η),

∨
v∈K(y,η)

f (v) − ε
4 � ϕy(η).
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We have M(u, v) ∈ K(M(x, y), γ ) and N(u, v) ∈ K(N(x, y), γ ) . Finally, from
(∗) , (∗∗) and inequality (1) we get

mf (x) + mf (y) � ϕx(η) + ϕy(η) � f (u) − ε

4
+ f (v) − ε

4

� f (M(u, v)) + f (N(u, v)) − ε

2
� mf (M(u, v)) + mf (N(u, v)) − ε.

Then Letting ε −→ 0+ we obtain our assertation. �
Let us recall the main result of J. Matkowski and M. Wróbel [3].

THEOREM 2.1. Let M, N : I × I −→ I be continuous functions satisfying

x, y ∈ I, x �= y ⇒ M(x, y), N(x, y) ∈ (min(x, y), max(x, y)),

and suppose that ϕ : I −→ R is a non-constant and continuous solution of equation

ϕ(M(x, y)) + ϕ(N(x, y)) = ϕ(x) + ϕ(y), x, y ∈ I.

Then ϕ is one-to-one, and for every lower semicontinuous function f : I −→ R

satisfying (1), the function f ◦ ϕ−1 is convex on ϕ(I) .

As an immediate consequence we get,

COROLLARY 2.1. Let I ⊆ R be an open interval and M, N : I2 −→ I be strict
continuous means on I . If a locally bounded function f : I −→ R is (M, N) -Wright
convex then mf is a convex function.

Proof. According to Lemma 2.2 function mf is (M, N) -Wright convex. It is
well known (see [1]) that a lower hull of arbitrary function f : I −→ R is lower
semicontinuous. Putting ϕ := idI in Theorem 2.1 we get the thesis. �

3. Main result

LEMMA 3.1. Let I ⊆ R be an open interval. Assume that M : I2 −→ I is a
strict continuous means on I , such that, for every fixed u, v ∈ I , functions M(u, ·) and
M(·, v) are strictly increasing. Let a set B ⊆ I be such that the set B \ I is of the
first category. Then, for all ε > 0 and z ∈ I there exist x, y ∈ K(z, ε) ∩ B such that
z = M(x, y) .

Proof. Fix z ∈ I and ε > 0 .
By continuity of M there exist i, m ∈ K(z, ε) such that z = M(i, m) . We show

now that for every w ∈ (i, m) there exists exactly one w′ ∈ (i, m) such that

z = M(w, w′), (9)

holds.
We may assume that w < z . Function M(·, m) is strictly increasing so M(i, m) <

M(w, m) . As the function M(w, ·) is continuous and strictly increasing mean, there
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exists exactly one w′ < m such that z = M(w, w′) . Due to (9) we may define a
function ϕ : (i, m) −→ ϕ((i, m)) such that

z = M(u,ϕ(u)), u ∈ (i, m). (10)

It is obvious that the function ϕ is continuous and strictly decreasing. Hence ϕ
is a homeomorphism.

Define a set V := (i, m)∩ϕ((i, m)) . Observe that V is an open interval, such that
z ∈ V . As ϕ(B ∩ (i, m)) is a second category set in V , we get ϕ(B ∩ (i, m)) ∩ B �= ∅ .
Fix y ∈ ϕ(B ∩ (i, m)) ∩ B . There exists x ∈ B ∩ (i, m) such that y = ϕ(x) . Now, by
(10) we have

z = M(x,ϕ(x)) = M(x, y)

That ends the proof. �
The main result of this paper is contained in the following theorem:

THEOREM 3.1. Let I ⊆ R be an open interval. Assume that M, N : I2 −→ I are
strict continuous means on I . Further, assume that for every fixed u, v ∈ I , functions
M(u, ·) and M(·, v) are strictly increasing. If a function f : I −→ R is of the first
Baire class and (M, N) -Wright convex then f is convex.

Proof. Fix z ∈ I . By Corollary 2.1 and (8) it is enough to show that the inequality

f (z) � mf (z), z ∈ I, (11)

holds.
Fix η > 0 . By the definition of mf there exist δ > 0 such that

∧
u,v∈K(z,δ)

mf (z) − η
3

� f (N(u, v)). (12)

As f is of the first Baire class, it has a continuity point. Thus, by Lemma 2.1 f is
locally bounded. Hence mf is real valued function and, by Corollary 2.1, it is a convex
function. This implies that mf is continuous. Hence, there exists γ > 0 such that

∧
s∈K(z,γ )

mf (s) � mf (z) +
η
3
. (13)

Put ε := min{δ, γ } .
Function f is of the first Baire class, so the set

B := {u ∈ I : f is continuous at a point u} ∩ K(z, ε),

is such that K(z, ε) \ B is of the first category.
By Lemma 3.1, there exist x, y ∈ K(z, ε)∩ B such that M(x, y) = z . Because x, y

are continuity points of function f we get

f (z) + f (N(x, y)) � f (x) + f (y) = mf (x) + mf (y). (14)
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Taking into account (12) we get

f (z) + mf (z) − η
3

� f (z) + f (N(x, y)).

Now, by (14)

f (z) + mf (z) − η
3

� mf (x) + mf (y).

Therefore, by (13) we have

f (z) + mf (z) − η
3

� mf (z) +
η
3

+ mf (z) +
η
3

,

that is,

f (z) � mf (z) + η,

for any η > 0 . Last statement is equivalent to the inequality (11). This completes the
proof. �
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