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HARDY AND RELLICH INEQUALITIES
WITH REMAINDERS

W. DESMOND EVANS AND ROGER T. LEWIS

(communicated by A. Kufner)

Abstract. In this paper our primary concern is with the establishment of weighted Hardy inequal-
ities in P (Q) and Rellich inequalities in L?(Q) depending upon the distance to the boundary
of domains Q C R" with a finite diameter D(Q). Improved constants are presented in most
cases.

1. Introduction

Recently, considerable attention has been given to extensions of the multi-dimensional
Hardy inequality of the form

2
/ |Vu(x)[*dx > ,u(Q)/ |u(x)\2 dx+?L(£2)/ lu(x)[*dx, uc Hy(Q), (1.1)
Q o 6(x) Q
where Q is an open connected subset of R” and
O (x) := dist(x,0Q).
It is known that for ;(Q) = 1 there are smooth domains for which A (Q) < 0, and for
A(Q) = 0, there are smooth domains for which u(Q) < 1 - see M. Marcus, V.J. Mizel,

and Y. Pinchover [8] and T. Matskewich and P.E. Sobolevskii [9]. In [2], H. Brezis and
M. Marcus showed that for domains of class C? inequality (1.1) holds for

uQ) = % and some A(Q) € (—o0,00)

and when Q is convex

(1.2)

in which D(Q) is the diameter of Q.

M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and A. Laptev [6] answered a
question posed by H. Brezis and M. Markus in [2] by establishing the improvement to
(1.2) that (1.1) holds for a convex domain Q, with

1 K (l’l) Sn—1 2/n
Q)=-, A(Q)>—=%, and Kn::n[ ] 1.3
HO) = 3 M@)o () = n[ ™ (13)
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in which s,_; := |[S""!| and |Q]| is the volume of Q.

For a convex domain Q and u(Q) = 1/4, a lower bound for A(Q) in (1.1) in
terms of |Q2| was also obtained by S. Filippas, V. Maz’ya, and A. Tertikas in [5] as a
special case of results on 17 Hardy inequalities. They prove that A (Q) > 3D;, ()2,
where D;,(Q) = 2sup,. 0(x), the internal diameter of Q. Since 3D (Q)72 >
2K(n)/|Q|*", their result is an improvement of (1.3) for n = 2,3, but the estimates
don’t compare for n > 3.

In this paper we show that (1.1) holds for (1.3) replaced by

3K(n)
2/Q

@ =7 ad A@)>

as well as proving weighted versions of the Hardy inequality in 7 (Q) for p > 1.
In the case p = 2, the following are special cases of our results. If Q is convex
and o € (0, 1], then

2 2°n(1 — 0)? B(n,2 — o) Sn—1 N W(x)2
/Q]Vu(x)‘ dx > D@7 /9{75()()20 +3 <n§2|> }| (x)|?dx (1.4)

for

I\J|=

) 18)

(L
\/Ez. F(TP (L.5)

B(n,p) =

~—

If o € [52,0] and Q is convex, then

/Q §(0)°|Vu(x)|dx > ”(%c’)zB(n,z—a) / 8(x)°2|u(x)Pdx

2(1 - / §(x)1fu(x)[2dx.
for Cy(n, o) givenin (3.4).
Similar results for weighted forms of the Hardy inequality in L7 (Q) are given
in section 4. Finally, we comment that our one-dimensional inequalities in §2 lead to
improved constants for the Rellich inequality obtained by G. Barbatis in [1] for n > 4.

2. One-dimensional inequalities

As is the case in [6], our proofs are based on one-dimensional Hardy-type inequal-
ities coupled with the use of the mean-distance function introduced by Davies to extend
to higher dimensions; see [4]. The basic one-dimensional inequality is as follows:

LEMMA 1. Let u € C}(0,2b), p(t) := min{t,2b — 1} andlet f € C'[0,b] be
monotonic on [0,b]. Then for p > 1

2b 2b
rolora <y [ LODEO pa 2
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Proof. Firstlet u := vy, , the restriction to (0, 5] of some v € C}(0,2b) . For
any constant ¢

- [rw-armopa- W]+ [ 10—t P o
By choosing ¢ = f (b), we have that
b b L
- / £ Olu(Pd =p / () —F )]l P2 Refu@ud (e, (2.2)
0 0

Similarly, for u = vy, , . v € C}(0,2b), we have
2% 2
-, f'2b = s)[u(s)l"ds = p A [ (20— s) = f (0)]|u(s) "> Re[u(s)ud' (5))ds.

Therefore, since f is monotonic, for any u € Cé(O7 2D)

2b 2b
/0 [ (p)llu@)Pde=p [ |f (p(t)) = f (B)lu() P> Re[u(r)ud' (1))t

0
<p [ 1o 7 op LI
()7
vl T [ [ DO
<pV ol ‘”] V Fpwp O
on applying Holder’s inequality. Inequality (2.1) now follows. O

The next lemma provides the one-dimensional result needed to improve (1.3),
which was proved in [6].

LEMMA 2. Let 0 < 1 and define u(t) := 2b — p(t). Forall u € C}(0,2b)

26 N2 2 1-07?

[ ewrioras (152) [7owo 1+ ko) (29 ] ule) P,
(2.3)

for

k(a):_{[lzf] ; 32[%’,1}.

)

Proof. On setting f (1) = t°~! in (2.1) we get

2b 2b
_ ~P 072’/‘ P < p+o—2
1 a\/ﬂ () 2Ju(t)] dr<p"/0 o0

p

! (1)|Pdr. (2.4)

S
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With u € C}(0,2b), let p = 2 and substitute v(¢) = [1 — (%)I_U]M(I) in (2.4). We
claim that this gives

[ orwnioras (ITG) [ o [1 - (%) ] " ke 23)

for any real number ¢ . The substitution gives

P (1) = —(1 = 0)b7 ! ple)/2p () + p(o)" [1 -(22) ] ()

Consequently,

b

— (1= 0" 'p'(1) [1 (’?) ][I 2y
which implies that

2 e 241 — 2 o |q p(1) 1762/ 24
[ ewevora= [ pwr 1= (52) | wopa

+ /0 2b(l = 0)’ 0?72 p(6) =% u(r) Pdr

2b 1—o
+ (1 —G)b"_l/o % |f)’(t) [1 - (%) H |u|*dt
-/ " o |1 - (@) o (2.6)
s b :

since p’(f) =1 in (0,b) and —1 in (b,2b). Therefore, (2.5) follows from (2.4).
Since 2b = u(t) + p()

¢

P (P =(1 = 0)*6** (1) ~°[u(r)* + p(7) "[1 p(t ] ' ()

[H%r

= |142'7° (%)lakg (%)]2 (2.7)

x€[0,1), o#1.

for
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For 0 < 1, ks(x) > 0 in (0,1), k5(0) = 1 and ks(x) — 00 as x — 17 . By
examining the derivative of kq(x)
(1= 0)((14+x)°7 ~2-%4)

[+ 27 — (29-F

ke (x) =
we see that

—(1-0), 0<0,
Tim K (x) = 1, G=0
For 0 < 0, ks(x) is minimized at

=1/ s -1) <L
Calculations show that
ko(xo) = [1 — 257177 =i k(o).

For 0 € [0,1), k/;(x) is never zero in (0, 1) indicating that ks(x) is minimized
at x=10 for 0 € [0,1) and x € [0, 1). The inequality (2.3) now follows. O

In order to treat the case in which p # 2, we make use of the methods of
Tidblom [11] and prove a weighted version of Theorem 1.1 in [11].

LEMMA 3. Let u € C}(0,2b), p € (1,00), and 6 < p — 1. Then
2 p—o—1 2

[ ptrorar> (=2 [ per 4 - v ato
0 P

Proof. We may assume that o # p — 1 since otherwise the conclusion is trivial.
According to (2.2) for a monotonic function f and a positive function g,

b b
| olra< [ plr@) - @)lor- ol
0 0

<p Vobg(t)u’@”df} ’ Vob (%y

Consequently,
b P
( / V’(t)lu(t)’”dt>

I Ol
/ ‘> ( /0” (W) v lu(f) |”dt>

Now, as in [11], using a corollary to Young’s inequality, namely

1
. 1
= P

1—
Ju(?) ”dt]

p—1

AP /BP~' > pA — (p — 1)B,
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p—1
with A = [ [f'(0)||u())Pdt, B = [* (%{;”W’) " u(e) Pt it follows that

L o, I (0) = f )PP )
v [ eonora> | {pv O -1) (T) (o).

Choose f (1) = t°P*! and g(t) = (p — 6 — 1)~ P~ Then

(V(t) f(b)”>l/<”_”

1
(o—p+l _ po—p+l ’P] p—1

:(p—G—l) [’ o

=p-o—-1)"7"|(1- (t)p_a_l i
= 3 _
Consequently, for € (0, b)

_ o\ /(p—1)
ol - v (HOLOL)

“o-omnfor v (-G )]
e[ G7))

ety

>(p—0-1) {t"‘p+(p— 1) (bplf’)}'

and the inequality follows. In the inequality above we have used the fact that

ORISR OA

The proof is completed by following the last part of the proof of Lemma 1. O

For a certain range of values takenby o, 0 € [—cg, 1) with ¢s > 0, the inequality
in L?(Q) given by Lemma 2 gives a better bound than Lemma 3 with p = 2. In fact
for o < 1

o2 2p<r>)“’r_ ez 2HE) | 2Ky

L+ ko) (W p(Ou(n)=c " p(t)ou()>-2°

with
22—Gk(0.) 22—20‘k(0_)2
p(Ou®)'= * p(t)ou(r)?-2°
> { 27b7 oclo.).
~ L2 0+ b%(0)p(n)"] k(0)b72, & <0. (2.8)
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Since k(o) decreasesto 0 as |o| — oo and k(—3) ~ 0.22, then the left-hand side of
(2.8) is greater than »b°~2 for o € [-3,1).

3. A Hardy inequality in L>(Q)

We need the following notation (c.f.[6]). For each x € Q and v € "7,
Ty(X) :=min{s > 0: x+sv & Q};

Dy(x) := Ty(x) + Ty (X);
pv(x) ;= min{7,(x), T_y(x)};
(%) = max{(x), 7_(x)} = Dy(x) — py(x);
D(Q) := sup  Dy(x);
xeQ, vesr—!

Qui={yeQ:x+1ly—x) €Q, vVr€[0,1]}.
Note that D(Q) is the diameter of Q and Qy is the part of Q which can be “seen”
from the point x € Q. The volume of Qy is denoted by |Qy].
Let do(v) denote the normalized measure on S"~! (so that 1 = [, do(v))
and define

p(x;s) == /SVH pv(x)*do(v). (3.1)

Hence p~'/?(x; —2) = p(x) the “mean-distance” function introduced by Davies in [4].
For

pHLY (2
B(n,p) := /S’H |cos(e, v)[Pdw(v) = 11(/7_;. ll(gz)), ec R, (3.2)
it is known that . B(2 )
C) 1 n,p
p(x;—p): /s— pv(x)pdw(v) > S (3.3)

for convex domains Q — see Exercise 5.7 in [4], [3], and [11]. Note that B(n,2) =
This fact can be applied to most of the results below when € is convex.
For a Hardy inequality in L?(Q) with weights we will need to define

Cu(n, o) == n(s";1 ) e k(0)[2°! + 2211k (o)](1 — o) (3.4)
for o € [2;", | and n > 2 where as given in Lemma 2
ko) ::{ : _2;, L oce<[0(,)’1].
Note that Cy(n,0) = 3K(n) for K(n) defined in (1.3).
THEOREM 1. If % 0 < 0, then for any u € C}(Q)
/QS(X)G‘VM(X)‘ZCZX > n(%a)z /Qp(x; o — 2)|u(x)|dx

5(x)!°

+CH(I’Z, O')/QW ( )|2dX (35)

‘X‘"
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If0< o<1, then

2—0

/|vu ) dx > 2 ”(1()6) /Q{p(x o— 2)+3( |Qx> ' }|u(x)2dx. (3.6)

If Q is convex, then for any u € C}(Q)

/Q §(0)°|Vu(x)|dx > ”(%c’)zB(n,z—a) / 8(x)°2|u(x)Pdx

2(1 ~ /6 Yol u(x)|dx.

when o € [352,0] and

n(l — o0)? Sp_ K
/Q\Vu(x)\zdx> %L{B(rzﬂ—c)&x)“2+3(n91|)

when o € (0,1].

(e}

} |u(x)*dx.

Proof. Let Oyu, v € S*~! | denote the derivative of u in the direction of v, i.e.,
Oyu = v+ (Vu). It follows from Lemma 2 that for ¢ € (—o0, 1]

[ el > (IT") [ o <1 + k(o) ﬁ’jfﬂ”) ju(x)dx.

(3.7)
Expanding the integrand in (3.7), we have
(1-0)\ ?
2
pulx) (1 +io) | 2228 )
Hv (3.8)

-0
= pv(X)G_2 422 + 22(1_0>k(0‘)2 pV(X)

(Tv(x)T-v(x))1C y(x)20-0)"
Ifo<0
2py(x) (-]
0 1 k) (307
k(o)8(x)l! S(x)lel
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since py(x)~° > §(x)!°l in this case. As in [6], we note that since

/S’H(T\,(X)L\,( Y =%w(v / 20=9dw(v)

2(1—0)

AL w "

For the third term in inequality (3.9)

/ (TV(X)2(1_0> + T_V(x)z(l_")) do(v) :2/ 7,(x)21 =V dw(v)
Sﬂ*l

sn—1

n

implying that for o > 2;

[ (5 e o) 25 [ il

n—1
Consequently, 2;" < 0 < 0 we have that
(1-0)]?
_ 2pv(X)>
x)° 2 |1+ k(o ( do(v
[ o0 (@) (2 v)

>p(x;0'*2)+CH(n’O-)5(X)|G‘/[ ‘Qx‘ﬂ G)} (3.10)

Upon combining this fact with (3.7) we have
_o\2 n o]
(75°) fifetse -2 Sl f e
< [ [ o) do(vyax (3.11)
:/5(x)°/ | cos(v, Vu(x)) Pdar(v) [Vu(x)[* dx
Q s

for 0 < 0. Since

/ | cos(v, ) Fde(v) = - (3.12)
§n—1 n
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for any fixed oo € S"~! (see Tidblom [11], p.2270), inequality (3.5) follows.

For 0 < o < 1, we consider first the third term on the right-hand side of (3.8).
We have

| oo
<[ 2w ) () + ) do()
Sﬂ*l
=2 ) + T
<27 [ lls-ogert) + [Ty @) li-o |

= 21-0) / 7,(x)*> " %do(v)
§n—1

2—o

2—0
n

<209 [ (@) do)

2—0
|szx]

for n > 2 by the Minkowski and Holder inequalities. Therefore, the term

_ Y210 {L

Sp—
Y o
/ pyv(x) " %dw(v) > p2o—1) (Sl "
BTN TN
Similarly, in the second term of (3.8)

/ pux)in(x) o (v) < 3 / (2(x) + T (X)) (5u(x) + 70 (%)) ~dar(v)
S}l*l S}l*l

2—0

_ n "
<2-e L » |QX|}

as before implying that

L o= > Gian)

For 0 < 0 < 1 we now have that

/ Oy (X)cr—2
§n—1

since k(o) = 1 in this case. Consequently,

/Q/S’H Pu(x)°| cos(v, Vu(x))[Pdo (v)|Vu(x)| dx

> (ch’)z/Q lp(x;0'2)+3 (’591')_] lu(x)|dx.

2—0

1 + k(o) <2H"VV((X")))“GTM( V) > p(x; o — Z)H(nmi) '
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According to (3.12) it follows that
D(Q)?

200

/ pv(x)%| cos(v, Vu(x))|Pdw(v) <
sn—1

Therefore, (3.6) holds.
The inequalities in the statement of the theorem for the case of a convex domain
Q follow from (3.3) and the fact that |Q| = |Q| forall x € Q. O

4. An [7(Q) inequality

With the guidance of Tidblom’s analysis for the Hardy inequality in [11], L”
versions of the weighted Hardy theorem in the last section can be proved by similar
techniques. When o = 0, the next theorem reduces to Theorem 2.1 of [11].

THEOREM 2. Let u € C5(Q) and p € (1,00). If 0 < 0, then for B(n,p) defined
in(3.2)

/ O(x)°|Vu(x)[Pdx >
Q

[lp—o—1]/p]

B(n,p) /Q p(x;oc—p)+(p—1) {:”—g_zﬂ ! () |Pdx 1)

andif o € [0,p — 1], then

/ |Vu(x)|Pdx >
Q

2U[|p—6—1|/p]l’ e . Sn—1 = u(x)[?
B(n,p) D(Q)° /Q pio—p)+(p—1) {g] u(x)lPdx.  (4.2)

If Q is convex, p(x,0 — p) can be replaced in (4.1) and (4.2) by the term B(n,p —
0)/0(x)P~° (inview of (3.3)) and |Q,| by |Q|.

Proof. From Lemma 3 we have thatfor 6 < p—1,any v € "', and u € C}(Q)

/va(X)G\avu(x)\”dx
g {pr#r /g {pv(x)ap + %} |u(x)[Pdx. (4.3)

If 0 <0 webound p,(x)° forany v € S"~! by §(x)° in the first integral above. If
o > 0, we bound it by D(Q)°/2°. As in [11] we may use the fact that

[ patpaoty) = o) Vutor. (4.4)
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After bounding p,(x)° as described above, integrate in (4.3) over S"~! with respect
to do(v). In order to evaluate the integral of (2/D,(x))?~°, we proceed as in [11].
Since 0 < p — 1, then f(¢) = °? is convex for # > 0 and we have that

by Jensen’s inequality and Lemma 2.1 of [11]. The conclusion follows. |

5. Rellich’s inequality

The methods described above with Proposition 1 below can be used to prove
a weighted Rellich inequality which, for n > 4 and without weights, improves the
constant given in a Rellich inequality proved recently by Barbatis ([1], Theorem 1.2).
A comparison is made below. The methods used by Barbatis depends upon the identity
(5.2) first proved by M.P. Owen ([10], see the proof of Theorem 2.3). In order to
incorporate weights, our proof requires the point-wise identity (5.1) which does not
follow from the proof of Owen.

PROPOSITION 1. Let Q be a domain in R". Then, for all u € C*(R")

2

; (5.1)

2 2 1 )2
/S,H [Gw] de(v) = ey [ 1Au) +2Z‘ax,ax,

l,]*

and for all u € C3(Q
dqu(x)|"d Au(x)|*d 5.2
//S,“r O dos= o5y [ waoorex - 52)
Proof.

For v = (vi,...,V,) we have

n
2 2
Ogu=(v- V) u="Y" Viviton
£m=1

—E Viug + 2 E Ve Vinlhim

1<b<m<n

in which up,(x) := ai éx Consequently,

2
/ | 8\2/ u | d(D Z UggUmm / Vm ( V)
§n—1 n—1

{m=1

+4Z Z Re ( u,,,,,,u,,q/S (Vi) 2V, vydor (V)

m=1 1<p<q<n

+4 Z Z Re (upqgttie /H VpVVivid (V).

1<<ksn 1<p<g<n (53)
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Let 6, € [0,7] for j=1,...,n—2, and 6,_; € [0,27]. Using the convention that
I, =1 for p < g and 6, = 0, we have

vj:H’,;llsianCOSGj, j=1,...,n,
—-2)!!
do(v) = %n’g_f(sin 6,)" 7% d6de, 1, (5.4)

forn!l:=n-(n—2)-(n—4)---1 and
_ [ 22m)"=Y/2 for n odd,
= (2m)"/? for n even.

Calculations show that
/ (Va)?Vpvdo(v) =0, m=1,....n, 1<p<q<n
Snfl

implying that the second term on the right-hand side of (5.3) vanishes.
A similar consideration for the third term on the right-hand side of (5.3) shows
that

v,V Vivido(v) # 0, I<p<g<n, 1<j<k<n,
sn—1

only if j = p and k = g. Therefore, (5.3) reduces to

/ . |83M(X)|2d(1) Z u//umm/ Vm (V)
s

£m=1
+4 Z ‘”pq| / Vp (Vg) do(v).
1<p<q<n (55)

However, further calculations show that

implying that

[ 1o dot =2 Z\mmv s 3 [l 2eluy )

1<p<gsn

(5.7)

1 2
“ara) [[Ae)l +2Z‘8x,8xj

which is (5.1). Equality (5 .2) now follows since

/Q |Au(x)|dx.

8x, 8xJ
ij=1



486 W. DESMOND EVANS AND ROGER T. LEWIS

Define
d(x:0) : o(x)°, 0<0
’ (@) , 0€][0,1]
Bln o) = (1-0)*3 160')2 (n +2)’
and )
Cr(n, 0) = 2*~%k(c — 2) [S"n‘l} 3 (1422 %k(c — 2)) (5.8)

for 0 < 1 and k(o) defined in Lemma 2.

THEOREM 3. For 0 < 1 and u € C}(Q),

| n aZu(X)
/Q d(x; 0) [Au(ﬂz”i; Ox;i0x;

2
] dx
> B(n, 0) {/Qp(x;o 4)|u(x)[*dx

+270k(o - 2) [ B LX);’CZX} (5.9)

n

holds when n > 4 — o and

/d(x;O' |Au(x) |2+2Z
Q

ij=1

> B o) { / p(x; 0 — &) u(x)dx

Sn— 1} = |”(X)‘2
n 2|Q

#2 o - p 2] |(Q)t||“big ‘)’de} (5.10)

holdswhen n>4+t—candt>2— 0O.

+ 2% (0 —2) [

Proof. For o < 1, it follows that

2% , 2% o1 1-072 ,
| ewrwrars [ ooy [“(M) ]u”w d
> (I‘T") [ oo woba
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by (2.4). Therefore, for 0 < 1 and u € C3(0,2b),
2 ,
| ptwewop a
0

. ((1—61‘(3—a>)2/0”p<,)6_4

by (2.3).
From (5.11) we have for u € C3(Q)

/p\,(x)" |02u(x)|” dx
Q

> (W)z/gpv(x)“—“{wk(a—z) (ipvv(g)f_g}zu(x)ﬁdx

(5.12)
for o0 < 1. Asin (3.8) we write
3-0) 2
o {ron ()
(5.13)

Since py(x)uy(x) = 7, (x)7_y(x), in the second term on the right-hand side of (5.13)
we may write

pylx) 1 o
W& e )
Thus
/ I(vix)do( ):/ TV(X)673(X)’L’7V(X)71dw(V)
gt (%) 3Ty (x)
+ 7_,(x)° (%) 1, (x) " do(v)
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and

—1
{/ Tv(x)"“dco(v)} g/ 7,(x) " dw(v)
Ty(X) 2T y(x) Ty (%) 27— y(X)
(4—o)/n
<{ [ Ao
S§n—1
n (4—o)/n
= ( Qx)
Sn—1

for n > 4 — 0. Therefore for the second term on the right-hand side of (5.13), for
o<1 and n>4 - o, it follows that

V! X Sn—1 4776 u(x 2
/Q/L%H %IM(X)% > (T) /Q IQEILdX' (5.14)

For any t € (—00,00), we may write the third term in (5.13) as

o+2
2 ) ) (BT () ()R = py (1)1 (V).

v (x)26
Ift>2—-o0
/ J(vix)do(v) 2/ Tv(x)*““’*’dw(v)Jr/ 7_y(x) " dw(v).
st Tv(x) 27—y (x) Tv(X) STy (X)
As before

—1
{/ TV(X)4+thCO(V)} g/ 7, (x)* "M dw(v)
Ty(X) 2T y(x) Tv(X) 27— y(X)
(4—0+1)/n
<{ [ mmaom]
Snfl

< n > (4—o+1)/n
= X‘
Sn—1

if n >4 — o+ 1t. Associated with the third term on the right-hand side of (5.13), we
have for 0 < 1, t>2—0'>0,andn>4—0'+t

R do(v) S [ S ()
//S i 26— G)" u(x)Pdx > (T) /dex. (5.15)

From (5. 12) - (5 15) we obtain

// pe(x)° |02u(x) [ doo(v)
§n—1

% {/Qp(x O—4)[u(x) Pdxt2*"k(0—2) [%%} 7

Ju(x)|*
o |Qx|4;c

44+t—0 t 2
o ap ] 7 [ Sl
Q
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provided o< 1,t>2—-0c,andn>4+4+t—0

Note, that we may simply choose zero as a lower bound for the third term on the
right-hand side of (5.13) and conclude that

/ / pu(x)7102u(x) Pder(v)dx >

(1-0)*@3-oy /Q p(x; 0—4) u(x)Pdx+2*k(0—-2) [ 2] " /Q LT i

16 n

foro<landn>4-o.
Now, it follows from Proposition 1 that

o |92 2 1 X; u(x)?
/Q/S’Hpv(x) |Osu(x)| dw(v)dxgn(n+2)/gd( o) ||Au(x)|

Thus, (5.9) and (5.10) are proved. O

It follows from Theorem 1.2 of Barbatis [1] that for a convex bounded domain
and all u € C°(Q)

u(x)|? Sn 4/n
/Q|Au(x)|2dx>%/98((§))L dx + ié (n+2) { |Ql} /\u )[2dx.  (5.16)

As in Theorem 2, for a convex domain @ C R", we may replace p(x,0 —4) in
Theorem 3 by B(n,4 — 6)/8(x)*~? and |Q,| by |Q| to conclude from (5.9) that for
n=4

u(x)|? Sn 4/n
/Q|Au(x)| dx % SEX;L dx + can(n +2) { Qﬂ /|u WPax  (5.17)

for all u € C{°(Q) in which ¢4 = 3k(—2) ~ 1.25. Therefore (5.17) improves the
bound given by (5.16) forall n > 4.

8 8xJ
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