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CONTRACTIONS OF A NUMERICAL SEMIGROUP

J. C. ROSALES

(communicated by R. Ger)

Abstract. Given a numerical semigroup S , a positive integer a and m ∈ S\ {0} , we introduce
the set C(S, a, m) = {x ∈ N | aw(x mod m) � x} , where {w(0), w(1), . . . ,w(m − 1)} is the
Apéry set of m in S , which is a numerical semigroup and that we call (a, m) - contraction of S .
We study the Frobenius number and the singularity degree of C(S, a, m) . We also characterize
the contractions C(S, a, m) that are symmetric and pseudo-symmetric numerical semigroups.
Finally we see that the contractions of N are solutions of modular Diophantine inequalities.

Introduction

A numerical semigroup S is a subset of N (the set of nonnegative integers) closed
under addition, 0 ∈ S and so that N \ S has finitely many elements. The elements of
H(S) = N \ S are the gaps of S and its cardinality, denoted by #H(S) , is the degree of
singularity of S , which has been widely studied in the literature (see for instance [2]).
Another important invariant of S is the largest integer not belonging to S , known as the
Frobenius number of S and denoted here by g(S) (see [2, 3, 6]). For m ∈ S \ {0} , the
Apéry set of m in S is the set Ap(S, m) = {s ∈ S | s−m �∈ S} (see [1]). It is well known
and easy to check (see for instance [9]) that Ap(S, m) = {w(0), w(1), . . . , w(m − 1)} ,
where w(i) is the least element in S congruent with i modulo m .

Let S be a numerical semigroup, m ∈ S \ {0} and a a positive integer. Write as
above Ap(S, m) = {w(0), w(1), . . . , w(m − 1)} . The (a, m) - contraction of S is the
set

C(S, a, m) = {x ∈ N | aw(x mod m) � x},
where x mod m denotes the remainder of the division of x by m . In Section 1., we
prove that C(S, a, m) is a numerical semigroup contained in S . The main result in
this section gives a formula relating the degrees of singularity of S and C(S, a, m) . In
Section 2., we present a similar result for the Frobenius number of C(S, a, m) .

A numerical semigroup is irreducible if it cannot be expressed as an intersection of
two numerical semigroups properly containing it. A numerical semigroup is irreducible
if and only it is either symmetric or pseudo-symmetric, depending on the parity of
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its Frobenius number (see [8]). These two kinds of numerical semigroups have been
widely studied in the literature due to their connections with Commutative Algebra and
Algebraic Geometry (see [2] and the references given there).

From the results obtained in the preceding sections, in Section 3. we characterize
those numerical semigroups whose contractions yield irreducible numerical semigroups.

A modular Diophantine inequality is an expression of the form ax mod b � x
where a and b are positive integers. In [10] it is shown that the set M(a, b) of integer
solutions of the above inequality is a numerical semigroup. At the beginning of Section
4. we point out that C(N, a, m) = M(a, am) . This allows us to compare the results
appearing in [10] and the ones obtained in the present paper for (a, m) - contractions of
N .

1. The degree of singularity

In this section, and unless otherwise stated, S is a numerical semigroup, m is a
nonzero element of S and a is a positive integer. Wewrite as usual Ap(S, m) = {w(0) =
0, w(1), . . . , w(m − 1)} and define the (a, m) - contraction of S as C(S, a, m) = {x ∈
N | aw(x mod m) � x} .

The next result follows from [9, Proposition 10.5]. It states the relationship between
the elements in Ap(S, m) and shows that the membership problem to S is trivial once
we know the elements of Ap(S, m) .

LEMMA 1. Let x ∈ N . Then x ∈ S if and only if w(x mod m) � x . Moreover, if
i, j ∈ {0, 1, . . . , m − 1} , then w(i) + w(j) � w((i + j) mod m) .

An integer x belongs to S if and only if w(x modm) � x , and belongs to C(S, a, m)
if and only if aw(x mod m) � x . This is why we have chosen the name contraction for
C(S, a, m) .

With the above lemma is now easy to prove that C(S, a, m) is a numerical semi-
group.

PROPOSITION 1. C(S, a, m) is a numerical semigroup contained in S and m ∈
C(S, a, m) . Moreover, if a � 2 , then m is the least positive integer belonging to
C(S, a, m) .

Proof. If x, y ∈ C(S, a, m) , then aw(x mod m) � x and aw(y mod m) � y . By
Lemma 1, we have that aw((x + y) mod m) � a(w(x mod m) + w(y mod m)) , and
consequently aw((x+ y) mod m) � x+ y . Hence x+ y ∈ C(S, a, m) . Besides, observe
that if x ∈ N and x � a(max{w(1), . . . , w(m − 1)}) , then x ∈ C(S, a, m) , which
implies that N \ C(S, a, m) has finitely many elements. Clearly, 0, m ∈ C(S, a, m) .
Thus C(S, a, m) is a numerical semigroup containing m . Note that since w(x modm) �
aw(x mod m) , by using Lemma 1, we deduce that C(S, a, m) ⊆ S .

Assume that a � 2 and that x ∈ {1, . . . , m − 1} . Then x = x mod m �
w(x mod m) < aw(x mod m) and thus x �∈ C(S, a, m) . �

The least positive integer belonging to a numerical semigroup M is its multiplicity
and is denoted by m(M) . In view of Proposition 1, if a � 2 , then m(C(S, a, m)) = m .
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As m ∈ C(S, a, m) , we can take into account the Apéry set of m in C(S, a, m) .
Along this section we write Ap(C(S, a, m), m) = {w(0), w(1), . . . , w(m − 1)} . The
following result can be easily proved.

LEMMA 2. If i ∈ {0, 1, . . . , m− 1} , then w(i) is the least integer congruent with
i modulo m greater than or equal to aw(i) .

With this we can explicitly describe the set Ap(C(S, a, m), m) .

PROPOSITION 2. For i ∈ {0, 1, . . . , m − 1} , w(i) = aw(i) + (1 − a)i mod m.

Proof. As 0 � (1 − a)i mod m < m , in view of Lemma 2, it suffices to show that
aw(i) + (1 − a)i mod m is congruent with i modulo m . This is easy to prove. �

The degree of singularity of a numerical semigroup can be computed from the
Apéry set of any of its nonzero elements as the next result appearing in [12] points out.

LEMMA 3. Let M be a numerical semigroup and let m ∈ M \ {0} . Then

#H(M) =
1
m

⎛
⎝ ∑

w∈Ap(M,m)

w

⎞
⎠ − m − 1

2
.

Hence in view of Proposition 2, we must be able to compute a sum of the form∑m−1
i=1 (1 − a)i mod m . This is accomplished in the next result that appears in [4] and

whose easy prove we include here.

LEMMA 4. Let α be an integer, β be a positive integer, and γ = gcd{α, β}
(where gcd stands for greatest common divisor). Then

β−1∑
i=0

αi mod β =
β(β − γ )

2
.

Proof. Observe that

β−1∑
i=0

αi mod β = γ
β−1∑
i=0

α
γ

i mod
β
γ

= γ 2

β
γ −1∑
i=0

i = γ 2
β
γ ( βγ − 1)

2
=

β(β − γ )
2

.

�
Thus, we are now able to relate the degrees of singularity of S and C(S, a, m) .

THEOREM 1. Let S be a numerical semigroup and m ∈ S \ {0} . For a positive
integer a we have

#H(C(S, a, m)) = a#H(S) +
a(m − 1) + 1 − gcd{a − 1, m}

2
.

Proof. In view of Lemma 3,

#H(C(S, a, m)) =
w(0) + w(1) + · · · + w(m − 1)

m
− m − 1

2
.
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From Proposition 2, we deduce that

#H(C(S, a, m)) = a
w(0) + w(1) + · · · + w(m − 1)

m
− a

m − 1
2

− (1 − a)
m − 1

2
+

1
m

m−1∑
i=0

(1 − a)i mod m.

By Lemma 3 (now for S ) and Lemma 4, we obtain

#H(C(S, a, m)) = a#H(S)− (1 − a)
m − 1

2
+

1
m

m(m − gcd{a − 1, m})
2

.

By simplifying, we get the desired formula. �
We illustrate the results appearing in this section with an example. If n1, . . . , np ∈

N , we denote by 〈 n1, . . . , np〉 the numerical semigroup generated by {n1, . . . , np} ,
that is, the set {λ1n1 + · · · + λpnp | λ1, . . . , λp ∈ N} . From Lemma 1, one easily
deduces that S = 〈Ap(S, m) ∪ {m}〉 .

EXAMPLE 1. Let S = 〈 4, 5〉 . Then Ap(S, 4) = {w(0) = 0, w(1) = 5, w(2) =
10, w(3) = 15} . By applying Proposition 2, we obtain that Ap(C(S, 2, 4), 4) =
{0, 13, 22, 31} . Hence C(S, 2, 4) = 〈 4, 13, 22, 31〉 . By using Lemma 3, we have that
#H(S) = 6 and #H(C(S, 2, 4)) = 15 , which coincides with the result obtained from
Theorem 1.

2. The Frobenius number

As in the preceding section, S is a numerical semigroup, m is a nonzero element
of S and a is a positive integer. We also assume that

Ap(S, m) = {w(0), w(1), . . . , w(m − 1)}
and

Ap(C(S, a, m), m) = {w(0), w(1), . . . , w(m − 1)}.
For i ∈ {0, . . . , m − 1} there exists ki, ki ∈ N such that w(i) = kim + i and w(i) =
kim + i .

Observe that both S and C(S, a, m) are determined by the ki ’s and the ki ’s,
respectively. Thus it is interesting to describe the relationship between them, as we did
for w(i) and w(i) .

Let q be a rational number. Denote by �q	 (respectively 
q� ) the greatest integer
less than (respectively smallest integer greater than) or equal to q .

LEMMA 5. For i ∈ {0, 1, . . . , m − 1} , ki = aki +
⌈

(a−1)i
m

⌉
.

Proof. Let k ∈ N . As km + i � a(kim + i) if and only if k � aki +
(a−1)i

m , the
result follows from Lemma 2. �

As occurred with the degree of singularity, the Frobenius number of a numerical
semigroup is also easily determined once we know the Apéry set of any of its nonzero
elements. This is a well known result (and easy to prove) that can be found for instance
in [9].
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LEMMA 6. Let M be a numerical semigroup and let m be a nonzero element of
M . Then

g(M) = maxAp(M, m) − m.

Since we already know the relationship between w(i) and w(i) , as well as the one
existing between ki and ki , we can try to see how g(S) and g(C(S, a, m)) are related.

THEOREM 2. Let S be a numerical semigroup and m ∈ S \ {0} . For a positive
integer a we have

g(C(S, a, m)) =
{

ag(S) + (a − 1)m if (a − 1)g(S) mod m = 0,
ag(S) + am − ((a − 1)g(S) mod m) otherwise.

Proof. Let g = g(S) and r = g mod m . We see that krm + r =
maxAp(C(S, a, m), m) . Thus, we must show that for i ∈ {0, 1, . . . , m − 1} , the
inequality kim + i � krm + r holds. In view of Lemma 5, we must prove that

(aki +
⌈

(a−1)i
m

⌉
)m + i � (akr +

⌈
(a−1)r

m

⌉
)m + r . From Lemma 6, we know that

g + m = krm + r and that kim + i � krm + r . Hence ki � kr . We distinguish two
cases.

• If ki < kr , then (aki +
⌈

(a−1)i
m

⌉
)m + i = akim +

⌈
(a−1)i

m

⌉
m + i � akim +

(a − 1)m + i , since
⌈

(a−1)i
m

⌉
�

⌈
(a−1)(m−1)

m

⌉
=

⌈
a − 1 − a−1

m

⌉
� a − 1 . As

akim + (a − 1)m + i � a(ki + 1)m , we deduce that (aki +
⌈

(a−1)i
m

⌉
)m + i �

a(ki + 1)m � akrm � (akr +
⌈

(a−1)r
m

⌉
)m + r .

• If ki = kr , then as kim + i � krm + r , we have that i � r .. Hence (aki +⌈
(a−1)i

m

⌉
)m + i � (akr +

⌈
(a−1)r

m

⌉
)m + r .

The rest of the proof follows from Lemma 6, by taking into account that if (a −
1)r mod m �= 0 , then

⌈
(a−1)r

m

⌉
=

⌊
(a−1)r

m

⌋
+ 1 and that (a − 1)r = � (a−1)r

m 	m + (a −
1)r mod m . �

We illustrate these result with several examples.

EXAMPLE 2. Let S = 〈 4, 5〉 be as in Example 1. Then g(S) = 11 . By taking
a = 2 and m = 4 , we obtain that (a − 1)11 mod m = 3 . Theorem 2 is telling us that
g(C(S, 2, 4)) = 27 .

EXAMPLE 3. For S = N , #H(S) = 0 and g(S) = −1 . Hence for m and a
positive integers, we obtain in view of Theorems 1 and 2 that

#H(C(N, a, m)) =
a(m − 1) + 1 − gcd{a − 1, m}

2
,

and

g(C(N, a, m)) =
{

(a − 1)m − a if (1 − a) mod m = 0,
am− a − (1 − a) mod m otherwise.



496 J. C. ROSALES

EXAMPLE 4. Let b ∈ N \ {0, 1} . If S = {0, b,→} (the symbol → means that
all the integers greater than b are also in the set), and a, m are positive integers such
that m � b , then #H(S) = g(S) = b − 1 . By Theorems 1 and 2, we have that

#H(C({0, b,→}, a, m)) = a(b − 1) +
a(m − 1) + 1 − gcd{a − 1, m}

2

and

g(C({0, b,→}, a, m)) =
{

a(b − 1) + (a − 1)m, if (a − 1)(b − 1) mod m = 0,
a(b − 1) + am − (a − 1)(b − 1) mod m, otherwise.

EXAMPLE 5. Let s and t be two coprime integers greater than or equal to two.

Then #H(〈 s, t〉 ) =
(s − 1)(t − 1)

2
and g(〈 s, t〉 ) = (s − 1)(t − 1) − 1 (see [14, 13]).

Hence, by Theorems 1 and 2, we get

#H(C(〈 s, t〉 , a, m)) = a
(s − 1)(t − 1)

2
+

a(m − 1) + 1 − gcd{a − 1, m}
2

and

g(C(〈 s, t〉 , a, m)) =

⎧⎪⎪⎨
⎪⎪⎩

a((s − 1)(t − 1) − 1) + (a − 1)m,
if (a − 1)((s − 1)(t − 1) − 1) mod m = 0,

a((s−1)(t−1)−1)+am−(a−1)((s−1)(t−1)−1) mod m,
otherwise.

These examples can be used to construct numerical semigroups with given mul-
tiplicity, Frobenius number and degree of singularity, and thus coordinate rings of
curves with these properties (see [2] for the correspondence between these concepts in
numerical semigroups and in one-dimensional unramified local domains).

3. Irreducible contractions

It is well known (see for instance [2, 5]) that if S is a numerical semigroup, then
2#H(S) � g(S) + 1 . We say that a numerical semigroup is symmetric (respectively
pseudo-symmetric) if 2#H(S) = g(S) + 1 (respectively 2#H(S) = g(S) + 2 ). Hence,
symmetric (respectively pseudo-symmetric)numerical semigroups are those irreducible
numerical semigroups with odd (respectively even) Frobenius number.

As in the preceding sections, assume that S is a numerical semigroup, m ∈ S\{0}
and that a is a positive integer.

3.1. Symmetric contractions

PROPOSITION 3. C(S, a, m) is symmetric if and only if S is symmetric and
gcd{a − 1, m} ∈ {m, (a − 1)g(S) mod m} .

Proof. Let d = gcd{a − 1, m} , g = g(S) and h = #H(S) . We know that
C(S, a, m) is symmetric if and only if 2#H(C(S, a, m)) = g(C(S, a, m)) + 1 . We
distinguish two possibilities, depending on the cases we apply from Theorems 1 and 2.
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• Assume that (a − 1)g mod m = 0 . Then by Theorems 1 and 2, we deduce that
C(S, a, m) is symmetric if and only if 2ah+a(m−1)−d+1 = ag+(a−1)m+1 ,
or equivalently, a(2h − g) = a + d − m . As 2h − g � 1 and a + d − m � a ,
this equality holds if and only if 2h − g = 1 and d − m = 0 . Thus, C(S, a, m)
is symmetric if and only d = m and S is symmetric.

• Assume now that (a − 1)g mod m �= 0 . Then again by Theorems 1 and 2, we
deduce that C(S, a, m) is symmetric if and only if 2ah + a(m − 1) − d + 1 =
ag + am − ((a − 1)g mod m) + 1 . This is equivalent to a(2h − g) = a + d −
((a − 1)g mod m) . Since d � a − 1 and (a − 1)g mod m � 0 , we have that
a+d−((a−1)g modm) � 2a−1 . Hence a(2h−g) = a+d−((a−1)g modm)
if and only if 2h − g = 1 and d − ((a − 1)g mod m) = 0 . Thus, C(S, a, m) is
symmetric if and only d = (a − 1)g mod m and S is symmetric.

The proof now follows easily. �
By using this last proposition, from a given symmetric numerical semigroup, we

can construct families with infinitely many elements of contractions of S that are again
symmetric. The following two corollaries materialize two of these families.

COROLLARY 1. If S is a symmetric numerical semigroup and m ∈ S \ {0} , then
for every nonnegative integer k , the semigroup C(S, km + 1, m) is also symmetric.
Moreover, g(C(S, km + 1, m)) = (km + 1)g(S) + km2 .

COROLLARY 2. Let S be a symmetric numerical semigroup with Frobenius
number g . Let m and d be positive integers such that dm ∈ S and gcd{g, m} = 1 .
Let a be a positive integer such that ag modm = 1 . Then C(S, ad+1, md) is symmetric
and g(C(S, ad + 1, md)) = (ad + 1)(g + md) − d .

Proof. Observe that gcd{g, m} = 1 . Then the existence of a is guaranteed and
gcd{a, m} = 1 . The result now follows from Proposition 3, by taking into account that
gcd{ad, md} = d and that adg mod md = d(ag mod m) = d . The computation of
g(C(S, ad + 1, md)) is done by using Theorem 2. �

3.2. Pseudo-symmetric contractions

Weproceed analogously for the pseudo-symmetric case, though the results obtained
are not as the reader would probably expect.

PROPOSITION 4. C(S, a, m) is pseudo-symmetric if and only if S is symmetric,
gcd{a − 1, m} = 1 and (a − 1)g(S) mod m = 2 .

Proof. Let d = gcd{a − 1, m} , g = g(S) and h = #H(S) . We know that
C(S, a, m) is pseudo-symmetric if and only if 2#H(C(S, a, m)) = g(C(S, a, m)) + 2 .
As above, we distinguish two possibilities, depending on the cases we apply from
Theorems 1 and 2.

• We see that if (a − 1)g mod m = 0 , then C(S, a, m) is not pseudo-symmetric.
Assume to the contrary that C(S, a, m) is pseudo-symmetric. Then in view of
Theorems 1 and 2, we have that 2ah + a(m− 1)− d + 1 = ag + (a − 1)m + 2 .
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Hence a(2h − g) = a + d − m + 1 . As a + d − m + 1 � 2a − 1 , we have that
2h − g = 1 and d − m + 1 = 0 . Hence m = d + 1 and since d | m , we have
that d = 1 . This implies that m = 2 and that a − 1 is odd, because d = 1 .
Observe also that as 2 = m ∈ S , then g must be odd. Then (a−1)g mod 2 �= 0 ,
contradicting the hypothesis.

• Assume now that (a − 1)g mod m �= 0 . Then once more by Theorems 1
and 2, we deduce that C(S, a, m) is pseudo-symmetric if and only if 2ah +
a(m − 1) − d + 1 = ag + am − ((a − 1)g mod m) + 2 . This is equivalent to
a(2h−g) = a+d−((a−1)g modm)+1 . Since a+d−((a−1)g modm)+1 �
a + a − 1 − 1 + 1 = 2a − 1 , C(S, a, m) is pseudo-symmetric if and only
2h− g = 1 and d − ((a− 1)g mod m) + 1 = 0 , or equivalently, S is symmetric
and (a− 1)g mod m = d + 1 . Note that since d = gcd{a− 1, m} , we have that
d | (a − 1)g mod m , whence d|d + 1 . This forces d to be 1.

�
With this proposition we can construct families of pseudo-symmetric numerical

semigroups from a single symmetric numerical semigroup. One of these families is
presented in the next corollary.

COROLLARY 3. Let S be a symmetric numerical semigroup with Frobenius
number g . Let m ∈ S \ {0} be an odd integer such that m � 3 and gcd{g, m} = 1 .
Let a be a positive integer such that ag mod m = 2 . Then C(S, a + 1, m) is a
pseudo-symmetric numerical semigroup with Frobenius number (a + 1)(g + m) − 2 .

Proof. The existence of a follows from the conditions gcd{g, m} = 1 and m � 3 .
As ag mod m = 2 , gcd{a, m}|2 . Since m is odd, this implies that gcd{a, m} = 1 .
The proof now follows from Proposition 4 and Theorem 2. �

4. Contractions of N and modular numerical semigroups

Let a and b be positive integers. Denote by M(a, b) the set {x ∈ N | axmod b �
x} . As we pointed out in the Introduction, M(a, b) is a numerical semigroup. A
numerical semigroup is modular if it is of this form. There is a relationship between
modular semigroups and contractions of N as the next result shows.

PROPOSITION 5. Let a and m be positive integers. Then C(N, a, m) = M(a, am) .

Proof. Clearly, Ap(N, m) = {0, 1, . . . , m−1} . Hence x ∈ C(N, a, m) if and only
if a(xmod m) � x , or equivalently, axmod am � x . �

In Section 5 of [10] we studied numerical semigroups of the form M(a, ma) . Thus
some of the results appearing there can also be achieved from the tools introduced in this
paper. Of course, some of the results presented in [10] can be used to obtain information
for (a, m) - contractions of N . The rest of this section is devoted to this exchange of
information.
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Given a and m positive integers, from [10, Theorem 44] one has the following
description of the Apéry set of m in M(a, am)

Ap(M(a, am), m) =
{⌈

(a − 1)i
m

⌉
m + i | i ∈ {0, . . . , m − 1}

}
.

But this description is also an immediate consequence of Proposition 5 and Lemma 5.
By using Lemma 6 (as done in [10, Corollary 45]) one obtains a formula for the

Frobenius number of M(a, am) :

g(M(a, am)) =
⌈

(a − 1)(m − 1)
m

⌉
m − 1.

For a and b positive integers, [10, Theorem 12] states that

#H(M(a, b)) =
b + 1 − gcd{a, b} − gcd{a − 1, b}

2
.

Thus particularizing for b = am , we get that

#H(a, am) =
am + 1 − a − gcd{a − 1, m}

2

as presented in Example 3.
Propositions 4 and 5 allow us to assert that there are numerical semigroups of the

form M(a, ab) that are pseudo-symmetric. Thus, [10, Corollary 60] is false, as stated in
[11]. Corollary 60 in [10] was deduced from the second part of [10, Proposition 58], and
there is a mistake in that statement. The correct statement should be that “M(a, ab) is
pseudo-symmetric if and only if gcd{a−1, b}+(a−1) modb = b−1 " (and not b+1
as written originally). This lead to the erroneous conclusion given in [10, Corollary 60].
We reformulate [10, Proposition 58] with the language used in the preceding sections.
We also include an alternative proof inspired in Propositions 3 and 4.

PROPOSITION 6. Let a and m be positive integers. Then
(1) C(N, a, m) is symmetric if and only if gcd{a − 1, m} + (a − 1) mod m = m,
(2) C(N, a, m) is pseudo-symmetric if and only if gcd{a− 1, m} + (a − 1) mod m =

m − 1 .

Proof. Set d = gcd{a − 1, m} .
(1) In view of Proposition 3, it suffices to show that d + (a − 1) mod m = m if

and only if d ∈ {m, (1 − a) mod m} . Assume that d + (a − 1) mod m = m .
If (a − 1) mod m = 0 , then d = m . If to the contrary (a − 1) mod m �= 0 ,
then d = m − (a − 1) mod m = (1 − a) mod m . Conversely, if d = m , then
(a − 1) mod m = 0 and thus d + (a − 1) mod m = m . If d = (1 − a) mod m ,
then (a − 1) mod m = m − d and d + (a − 1) mod m = m .

(2) Proposition 4 asserts that we must prove that d + (a − 1) mod m = m − 1 if
and only if d = 1 and (1 − a) mod m = 2 . As d = gcd{a − 1, m} , we have
that d | (a − 1) mod m . Hence if d + (a − 1) mod m = m − 1 , we deduce that
d|m − 1 . But then d|m and d|m − 1 , which leads to d = 1 . This implies that
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(a − 1) mod m = m − 2 , or equivalently, (1 − a) mod m = 2 .. Conversely, if
(1 − a) mod m = 2 , then (a − 1) mod m = m− 2 . If in addition d = 1 , then we
conclude that d + (a − 1) mod m = m − 1 .

�
Every numerical semigroup has a unique minimal system of generators. The

cardinality of this set is known as the embedding dimension of the numerical semigroup.
In Section 5 of [10], the set of minimal generators of a numerical semigroup of the
form M(a, am) is described (see Theorem 49 in that paper). By using this together
with Proposition 5, we can obtain a description of the minimal generators of (a, m) -
contractions of N . As a consequence of [10, Corollary 53] we obtain the following
lower bound for the embedding dimension of an (a, m) - contraction of N , when a � 3 .

COROLLARY 4. Let a and m be positive integerswith a � 3 . Then the embedding

dimension of C(N, a, m) is greater than or equal to
⌊

m
a−1

⌋
+ 1 .

For a numerical semigroup S , the set of pseudo-Frobenius numbers is defined as

T(S) = {x ∈ Z | x + s ∈ S for all s ∈ S \ {0}},

where Z denotes as usual the set of integers. Its cardinality, t(S) , is the (Cohen-
Macaulay) type of S (this set and its cardinality have special relevance in the study of
the semigroup ring associated to the numerical semigroup; see for instance [2]). The
set of pseudo-Frobenius numbers of M(a, am) can be described by using Lemma 54
and Theorem 56 of [10], and thus in view of Proposition 5, we obtain a description of
the pseudo-Frobenius numbers of the (a, m) - contractions of N .
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