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CONTRACTIONS OF A NUMERICAL SEMIGROUP
J. C. ROSALES

(communicated by R. Ger)

Abstract. Given a numerical semigroup S, a positive integer « and m € S\ {0} , we introduce
the set C(S,a,m) = {x € N | aw(xmod m) < x}, where {w(0),w(1),...,w(m — 1)} is the
Apéry set of m in S, which is a numerical semigroup and that we call (a,m) - contraction of S.
We study the Frobenius number and the singularity degree of C(S,a,m). We also characterize
the contractions C(S,a,m) that are symmetric and pseudo-symmetric numerical semigroups.
Finally we see that the contractions of N are solutions of modular Diophantine inequalities.

Introduction

A numerical semigroup S is a subset of N (the set of nonnegative integers) closed
under addition, 0 € S and so that N\ S has finitely many elements. The elements of
H(S) = N\ S are the gaps of S and its cardinality, denoted by #H(S), is the degree of
singularity of S, which has been widely studied in the literature (see for instance [2]).
Another important invariant of S is the largest integer not belonging to S, known as the
Frobenius number of S and denoted here by g(S) (see [2, 3, 6]). For m € S\ {0}, the
Apéry setof m in S istheset Ap(S,m) = {s € S|s—m & S} (see [1]). Itis well known
and easy to check (see for instance [9]) that Ap(S,m) = {w(0),w(1),...,w(m — 1)},
where w(i) is the least element in S congruent with i modulo m.

Let S be a numerical semigroup, m € S\ {0} and a a positive integer. Write as
above Ap(S,m) = {w(0),w(1),...,w(m —1)}. The (a,m)- contraction of S is the
set

C(S,a,m) = {x € N|aw(xmod m) < x},

where xmod m denotes the remainder of the division of x by m. In Section 1., we
prove that C(S,a,m) is a numerical semigroup contained in §. The main result in
this section gives a formula relating the degrees of singularity of S and C(S,a,m). In
Section 2., we present a similar result for the Frobenius number of C(S,a,m).

A numerical semigroup is irreducible if it cannot be expressed as an intersection of
two numerical semigroups properly containing it. A numerical semigroup is irreducible
if and only it is either symmetric or pseudo-symmetric, depending on the parity of
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its Frobenius number (see [8]). These two kinds of numerical semigroups have been
widely studied in the literature due to their connections with Commutative Algebra and
Algebraic Geometry (see [2] and the references given there).

From the results obtained in the preceding sections, in Section 3. we characterize
those numerical semigroups whose contractions yield irreducible numerical semigroups.

A modular Diophantine inequality is an expression of the form axmod b < x
where a and b are positive integers. In [10] it is shown that the set M(a, b) of integer
solutions of the above inequality is a numerical semigroup. At the beginning of Section
4. we point out that C(N,a,m) = M(a,am). This allows us to compare the results
appearing in [10] and the ones obtained in the present paper for (a,m) - contractions of
N.

1. The degree of singularity

In this section, and unless otherwise stated, S is a numerical semigroup, m is a
nonzero element of S and a is a positive integer. We write as usual Ap(S, m) = {w(0) =
0,w(l),...,w(m — 1)} and define the (a,m) - contraction of S as C(S,a,m) = {x €
N | aw(xmod m) < x}.

The nextresult follows from [9, Proposition 10.5]. It states the relationship between
the elements in Ap(S,m) and shows that the membership problem to S is trivial once
we know the elements of Ap(S,m).

LEMMA 1. Let x € N. Then x € S if and only if w(xmod m) < x. Moreover, if
i,j €{0,1,...,m— 1}, then w(i) + w(j) = w((i +j) mod m).

Aninteger x belongsto S if and only if w(x modm) < x, and belongs to C(S, a, m)
if and only if aw(xmod m) < x. This is why we have chosen the name contraction for
C(S,a,m).

With the above lemma is now easy to prove that C(S,a, m) is a numerical semi-
group.

PROPOSITION 1. C(S,a,m) is a numerical semigroup contained in S and m €
C(S,a,m). Moreover, if a > 2, then m is the least positive integer belonging to

C(S,a,m).

Proof. If x,y € C(S,a,m), then aw(xmod m) < x and aw(ymod m) < y. By
Lemma 1, we have that aw((x + y) mod m) < a(w(xmod m) + w(ymod m)), and
consequently aw((x+y) modm) < x+y. Hence x+y € C(S,a,m). Besides, observe
that if x € N and x > a(max{w(1),...,w(m — 1)}), then x € C(S,a,m), which
implies that N\ C(S,a,m) has finitely many elements. Clearly, 0,m € C(S,a,m).
Thus C(S, a,m) is anumerical semigroup containing m . Note that since w(x modm) <
aw(xmod m), by using Lemma 1, we deduce that C(S,a,m) C §.

Assume that ¢ > 2 and that x € {l,...,m — 1}. Then x = xmod m <
w(xmod m) < aw(xmod m) and thus x & C(S, a,m). O

The least positive integer belonging to a numerical semigroup M is its multiplicity
and is denoted by m(M) . In view of Proposition 1, if a > 2, then m(C(S, a,m)) = m.
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As m € C(S,a,m), we can take into account the Apéry set of m in C(S,a,m).
Along this section we write Ap(C(S,a,m),m) = {w(0),w(1),...,w(m —1)}. The
following result can be easily proved.

LEMMA 2. Ifi€ {0,1,...,m— 1}, then W(i) is the least integer congruent with
i modulo m greater than or equal to aw(i).

With this we can explicitly describe the set Ap(C(S, a,m), m).
PROPOSITION 2. For i € {0,1,....,m— 1}, w(i) = aw(i) + (1 — a)imod m.

Proof. As 0 < (1 —a)imod m < m, in view of Lemma 2, it suffices to show that
aw(i) + (1 — a)imod m is congruent with i modulo m. This is easy to prove. O

The degree of singularity of a numerical semigroup can be computed from the
Apéry set of any of its nonzero elements as the next result appearing in [12] points out.

LEMMA 3. Let M be a numerical semigroup and let m € M \ {0}. Then

weEAp(M,m)

Hence in view of Proposition 2, we must be able to compute a sum of the form
27:11 (1 — a)imod m. This is accomplished in the next result that appears in [4] and
whose easy prove we include here.

LEMMA 4. Let o be an integer, 3 be a positive integer, and y = ged{a, B}
(where gcd stands for greatest common divisor). Then

B—1
; oimod f = M

Proof. Observe that

B-1 B-1 B _
;aimodﬁ—yggimodg—yZZi—yz (y b :ﬁ(ﬁ_}/).

Thus, we are now able to relate the degrees of singularity of S and C(S,a,m).

THEOREM 1. Let S be a numerical semigroup and m € S\ {0}. For a positive
integer a we have

alm—1)+1—ged{a — 1,m}

#H(C(S,a,m)) = a#H(S) + 5

Proof. In view of Lemma 3,

BH(C(S, a,m)) = w(0) +W(1)+n~1-~+w(m— 1 m; 1.
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From Proposition 2, we deduce that

BH(C(S, a,m)) :aw(O)er(l) +n-1~-+w(mf 1) 7am271

m—1 1m—l

—(l-a)=——+ > (1 - a)imod m.
i=0

By Lemma 3 (now for S) and Lemma 4, we obtain

H#H(C(S,a,m)) = a#H(S) — (1 — a) — L Lm(m — gedfa—1,m})

2 m 2
By simplifying, we get the desired formula. O
We illustrate the results appearing in this section with an example. If ny,...,n, €
N, we denote by (ni,...,n,) the numerical semigroup generated by {ni,...,n,},

that is, the set {An; +---+ Ayn, | A1,..., 4, € N}. From Lemma 1, one easily
deduces that S = ( Ap(S,m) U {m}) .

EXAMPLE 1. Let S = (4,5) . Then Ap(S,4) = {w(0) = 0,w(l) = 5,w(2) =
10,w(3) = 15}. By applying Proposition 2, we obtain that Ap(C(S,2,4),4) =
{0,13,22,31}. Hence C(S,2,4) = (4,13,22,31) . By using Lemma 3, we have that
#H(S) = 6 and #H(C(S,2,4)) = 15, which coincides with the result obtained from
Theorem 1.

2. The Frobenius number

As in the preceding section, S is a numerical semigroup, m is a nonzero element
of S and a is a positive integer. We also assume that

Ap(S,m) = {w(0),w(1),...,wim—1)}

and
Ap(C(S,a,m),m) = {w(0),w(l),...,w(m—1)}.

For i € {0,...,m — 1} there exists k;, k; € N such that w(i) = ksm + i and w(i) =

Observe that both S and C(S,a,m) are determined by the k;’s and the ;’s,
respectively. Thus it is interesting to describe the relationship between them, as we did
for w(i) and w(i).

Let ¢ be arational number. Denote by |g| (respectively [g] ) the greatest integer
less than (respectively smallest integer greater than) or equal to g.

LEMMA 5. Foric {0,1,...,m— 1}, k; = ak; + [%W

Proof. Let k € N. As km +i > a(kym + i) if and only if k > ak; + % , the
result follows from Lemma 2. ]
As occurred with the degree of singularity, the Frobenius number of a numerical
semigroup is also easily determined once we know the Apéry set of any of its nonzero

elements. This is a well known result (and easy to prove) that can be found for instance
in [9].
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LEMMA 6. Let M be a numerical semigroup and let m be a nonzero element of
M. Then
g(M) = max Ap(M, m) — m.
Since we already know the relationship between w(i) and w(i), as well as the one
existing between k; and k;, we can try to see how g(S) and g(C(S,a,m)) are related.

THEOREM 2. Let S be a numerical semigroup and m € S\ {0}. For a positive
integer a we have

+(a—1)m if (a—1)g(S)modm =0,
+am — ((a — 1)g(S) mod m) otherwise.

(c(s.am) = { &

Proof Let g = g(S) and r = gmod m. We see that k,m + r =
max Ap(C(S,a,m),m). Thus, we must show that for i € {0,1,...,m — 1}, the
inequality kym + i < km + r holds. In view of Lemma 5, we must prove that
(ak; + [( )—‘)erl < (ak, + P >—‘) + r. From Lemma 6, we know that
g+ m = km+r and that k,m + i < k,m + r. Hence k; < k.. We distinguish two
cases.

e If k; < k., then (ak—&—{ f‘)m—l—z—akm—&—[( >—‘m+l\akim+

(a — 1)m + i, since [(”_I)W < [(”_1)}1(1”—”—‘ =la-1-%1] < 1. As
—1)i

m m

a-—
akm + (a — 1)m + i < a(k; + 1)m, we deduce that (ak; + [ W m+i<

a(ki + 1)m < ak,m < (ak, —|—[( >—‘)m—|—r
o If k; = k,, then as kym + i < k.m + r, we have that i < r.. Hence (ak; +
Pa 1>—‘)m+l (ak, + [( br —‘)m—i—r
The rest of the proof follows from Lemma 6, by taking into account that if (a —
1)rmod m # 0, then [W—‘ = {WJ + 1 andthat (@ — 1)r = L%Jm—&- (a—
1)rmodm. O
We illustrate these result with several examples.
EXAMPLE 2. Let S = (4,5) be as in Example 1. Then g(S) = 11. By taking

a =2 and m = 4, we obtain that (a — 1)11 mod m = 3. Theorem 2 is telling us that
g(C(5,2,4)) = 27.

EXAMPLE 3. For § = N, #H(S) = 0 and g(S) = —1. Hence for m and a
positive integers, we obtain in view of Theorems 1 and 2 that

am—1)+1—ged{a— 1,m}

#H(C(N,a,m)) = 3 ,

and

[ (@a-1)m-a if (1 —a)modm =0,
g(C(N,a,m)) = { am—a— (1 —a)modm otherwise.
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EXAMPLE 4. Let b € N\ {0,1}. If S = {0,b, —} (the symbol — means that
all the integers greater than b are also in the set), and a,m are positive integers such
that m > b, then #H(S) = g(S) = b — 1. By Theorems 1 and 2, we have that

am—1)+1—ged{a— 1,m}

#H(C({0,b,—},a,m)) =a(b—1) + 5

and
~Jalb-1)+ (a—1)m, if (a—1)(b—1)modm =0,
g(C({0,b,—~},a,m)) = { alb—1)4+am— (a—1)(b— 1) mod m, otherwise.
EXAMPLE 5. Let s and ¢ be two coprime integers greater than or equal to two.
—1)(r—1
Then #H((s,1)) = w and g({s,1)) = (s — 1)(r — 1) — 1 (see [14, 13]).
Hence, by Theorems 1 and 2, we get

(s—1)(r—1) N am—1)+1—ged{a — 1,m}

#H(C((5,1) ,a,m)) = ar— 2

and

LT

if (a—1)((s—1)(r—1)—1)modm =0,

g(C((s,7),a,m)) = a((s—1)(t—=1)—1)+am—(a—1)((s—1)(z—1)—1) mod m,
otherwise.

These examples can be used to construct numerical semigroups with given mul-
tiplicity, Frobenius number and degree of singularity, and thus coordinate rings of
curves with these properties (see [2] for the correspondence between these concepts in
numerical semigroups and in one-dimensional unramified local domains).

3. Irreducible contractions

It is well known (see for instance [2, 5]) that if S is a numerical semigroup, then
2#H(S) > g(S) + 1. We say that a numerical semigroup is symmetric (respectively
pseudo-symmetric) if 2#H(S) = g(S) + 1 (respectively 2#H(S) = g(S) + 2). Hence,
symmetric (respectively pseudo-symmetric) numerical semigroups are those irreducible
numerical semigroups with odd (respectively even) Frobenius number.

As in the preceding sections, assume that S is a numerical semigroup, m € S\ {0}
and that a is a positive integer.

3.1. Symmetric contractions

PROPOSITION 3.  C(S,a,m) is symmetric if and only if S is symmetric and
ged{a — 1,m} € {m, (a — 1)g(S) mod m}.

Proof. Let d = ged{a — 1,m}, g = g(S) and h = #H(S). We know that
C(S,a,m) is symmetric if and only if 2#H(C(S,a,m)) = g(C(S,a,m)) + 1. We
distinguish two possibilities, depending on the cases we apply from Theorems 1 and 2.
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e Assume that (¢ — 1)gmod m = 0. Then by Theorems 1 and 2, we deduce that
C(S, a,m) is symmetricif and only if 2ah+a(m—1)—d+1 = ag+(a—1)m+1,
or equivalently, a(2h — g) =a+d—m. As2h—g>1and a+d—m < a,
this equality holds if and only if 22 — g = 1 and d — m = 0. Thus, C(S,a, m)
is symmetric if and only d = m and S is symmetric.

e Assume now that (¢ — 1)gmod m # 0. Then again by Theorems 1 and 2, we
deduce that C(S,a,m) is symmetric if and only if 2ah +a(m — 1) —d + 1 =
ag +am — ((a — 1)gmod m) + 1. This is equivalent to a(2h — g) =a+d —
((a—1)gmod m). Since d < a—1 and (a — 1)gmod m > 0, we have that
a+d—((a—1)gmodm) < 2a—1. Hence a(2h—g) = a+d— ((a—1)g modm)
ifandonly if 2h — g =1 and d — ((a — 1)gmod m) = 0. Thus, C(S,a,m) is
symmetric if and only d = (¢ — 1)gmod m and S is symmetric.

The proof now follows easily. ]

By using this last proposition, from a given symmetric numerical semigroup, we
can construct families with infinitely many elements of contractions of S that are again
symmetric. The following two corollaries materialize two of these families.

COROLLARY 1. If S is a symmetric numerical semigroup and m € S\ {0}, then
for every nonnegative integer k, the semigroup C(S,km + 1,m) is also symmetric.
Moreover, g(C(S,km + 1,m)) = (km + 1)g(S) + km?.

COROLLARY 2. Let S be a symmetric numerical semigroup with Frobenius
number g. Let m and d be positive integers such that dm € S and gcd{g,m} = 1.
Let a be a positive integer such that agmodm = 1. Then C(S, ad+1,md) is symmetric
and g(C(S,ad + 1,md)) = (ad + 1)(g + md) — d.

Proof. Observe that gcd{g,m} = 1. Then the existence of a is guaranteed and
gcd{a,m} = 1. The result now follows from Proposition 3, by taking into account that
gcd{ad,md} = d and that adg mod md = d(agmod m) = d. The computation of
g(C(S,ad + 1,md)) is done by using Theorem 2. O

3.2. Pseudo-symmetric contractions

We proceed analogously for the pseudo-symmetric case, though the results obtained
are not as the reader would probably expect.

PROPOSITION 4.  C(S,a,m) is pseudo-symmetric if and only if S is symmetric,
ged{a—1,m} =1 and (a—1)g(S)modm = 2.

Proof. Let d = ged{a — 1,m}, g = g(S) and h = #H(S). We know that
C(S,a,m) is pseudo-symmetric if and only if 2#H(C(S,a,m)) = g(C(S,a,m)) + 2.
As above, we distinguish two possibilities, depending on the cases we apply from
Theorems 1 and 2.

e We see that if (a — 1)gmod m = 0, then C(S,a,m) is not pseudo-symmetric.
Assume to the contrary that C(S,a,m) is pseudo-symmetric. Then in view of
Theorems 1 and 2, we have that 2ah+a(m—1)—d+1=ag+ (a— 1)m+2.
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Hence a2h—g)=a+d—-m+1. Asa+d—m+1<2a— 1, we have that
2h—g=1andd—m+1=0. Hence m = d + 1 and since d | m, we have
that d = 1. This implies that m = 2 and that a — 1 is odd, because d = 1.
Observe also thatas 2 = m € S, then ¢ must be odd. Then (¢ — 1)gmod2 # 0,
contradicting the hypothesis.

e Assume now that (a — 1)gmod m # 0. Then once more by Theorems 1
and 2, we deduce that C(S,a,m) is pseudo-symmetric if and only if 2ah +
alm—1)—d+1=ag+am— ((a — 1)gmod m) + 2. This is equivalent to
a(2h—g) =a+d—((a—1)gmodm)+1. Since a+d— ((a—1)gmodm)+1 <
at+a—1—-141= 2a—-1, C(S,a,m) is pseudo-symmetric if and only
2h—g=1and d— ((a—1)gmodm)+ 1 = 0, or equivalently, S is symmetric
and (a — 1)gmodm = d + 1. Note that since d = ged{a — 1,m}, we have that
d | (a — 1)gmod m, whence d|d + 1. This forces d to be 1.

]

With this proposition we can construct families of pseudo-symmetric numerical
semigroups from a single symmetric numerical semigroup. One of these families is
presented in the next corollary.

COROLLARY 3. Let S be a symmetric numerical semigroup with Frobenius
number g. Let m € S\ {0} be an odd integer such that m > 3 and gcd{g,m} = 1.
Let a be a positive integer such that agmod m = 2. Then C(S,a + 1,m) is a
pseudo-symmetric numerical semigroup with Frobenius number (a+ 1)(g +m) — 2.

Proof. The existence of a follows from the conditions ged{g,m} =1 and m > 3.
As agmod m = 2, gcd{a,m}|2. Since m is odd, this implies that ged{a,m} = 1.
The proof now follows from Proposition 4 and Theorem 2. (]

4. Contractions of N and modular numerical semigroups

Let a and b be positive integers. Denote by M(a, b) the set {x € N | axmod b <
x}. As we pointed out in the Introduction, M(a,b) is a numerical semigroup. A
numerical semigroup is modular if it is of this form. There is a relationship between
modular semigroups and contractions of N as the next result shows.

PROPOSITION 5. Let a and m be positive integers. Then C(N, a,m) = M(a, am).

Proof. Clearly, Ap(N,m) = {0,1,...,m—1}. Hence x € C(N,a,m) if and only
if a(xmod m) < x, or equivalently, axmod am < x. O

In Section 5 of [10] we studied numerical semigroups of the form M(a, ma) . Thus
some of the results appearing there can also be achieved from the tools introduced in this
paper. Of course, some of the results presented in [10] can be used to obtain information
for (a,m)- contractions of N. The rest of this section is devoted to this exchange of
information.
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Given a and m positive integers, from [10, Theorem 44] one has the following
description of the Apéry set of m in M(a, am)

Ap(M(a, am), m) = H%Mmﬁie {0,....,m— 1}}.

But this description is also an immediate consequence of Proposition 5 and Lemma 5.
By using Lemma 6 (as done in [10, Corollary 45]) one obtains a formula for the
Frobenius number of M(a,am):

m

eM(asam) = [,

For a and b positive integers, [10, Theorem 12] states that

#H(M(a, b)) — b+1-— gcd{a,bi —ged{a — 1,b}.

Thus particularizing for b = am, we get that

am+1—a—ged{a—1,m}
2

#H(a,am) =

as presented in Example 3.

Propositions 4 and 5 allow us to assert that there are numerical semigroups of the
form M(a, ab) that are pseudo-symmetric. Thus, [10, Corollary 60] is false, as stated in
[11]. Corollary 60 in [10] was deduced from the second part of [10, Proposition 58], and
there is a mistake in that statement. The correct statement should be that “M(a, ab) is
pseudo-symmetric if and only if gcd{a—1,b}+ (a¢—1)modb =b—1" (andnot b+ 1
as written originally). This lead to the erroneous conclusion given in [10, Corollary 60).
We reformulate [10, Proposition 58] with the language used in the preceding sections.
We also include an alternative proof inspired in Propositions 3 and 4.

PROPOSITION 6. Let a and m be positive integers. Then

(1) C(N,a,m) is symmetric if and only if gcd{a — 1,m} + (a — 1) mod m = m,

(2) C(N,a,m) is pseudo-symmetric if and only if gcd{a — 1,m} + (a — 1) mod m =
m—1.

Proof. Set d = ged{a — 1,m}.

(1) In view of Proposition 3, it suffices to show that d + (¢ — 1) mod m = m if
and only if d € {m, (1 — a) mod m}. Assume that d + (@ — 1) mod m = m.
If (a—1)modm = 0, then d = m. If to the contrary (¢ — 1)mod m # 0,
then d = m — (a — 1)mod m = (1 — a)mod m. Conversely, if d = m, then
(a—1)modm =0 and thus d + (a — 1)mod m = m. If d = (1 — a) mod m,
then (¢ — 1)modm =m —d and d + (a — 1) mod m = m.

(2) Proposition 4 asserts that we must prove that d + (¢ — 1)mod m = m — 1 if
andonly if d =1 and (1 —a)modm = 2. As d = gcd{a — 1,m}, we have
that d | (a — 1) mod m. Hence if d + (a — 1) mod m = m — 1, we deduce that
dim — 1. But then d|m and d|lm — 1, which leads to d = 1. This implies that
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(a — 1)mod m = m — 2, or equivalently, (1 — a)mod m = 2.. Conversely, if
(1 —a)modm = 2, then (a — 1)mod m = m — 2. If in addition d = 1, then we
conclude that d + (¢ — 1)modm =m — 1.

]

Every numerical semigroup has a unique minimal system of generators. The
cardinality of this set is known as the embedding dimension of the numerical semigroup.
In Section 5 of [10], the set of minimal generators of a numerical semigroup of the
form M(a, am) is described (see Theorem 49 in that paper). By using this together
with Proposition 5, we can obtain a description of the minimal generators of (a,m)-
contractions of N. As a consequence of [10, Corollary 53] we obtain the following
lower bound for the embedding dimension of an (a, m) - contractionof N, when a > 3.

COROLLARY 4. Let a and m be positive integers with a > 3. Then the embedding

dimension of C(N,a,m) is greater than or equal to {;—’IJ + 1.

For a numerical semigroup S, the set of pseudo-Frobenius numbers is defined as
TS)={xc€Z|x+seSforalls e S\ {0}},

where Z denotes as usual the set of integers. Its cardinality, t(S), is the (Cohen-
Macaulay) type of S (this set and its cardinality have special relevance in the study of
the semigroup ring associated to the numerical semigroup; see for instance [2]). The
set of pseudo-Frobenius numbers of M(a,am) can be described by using Lemma 54
and Theorem 56 of [10], and thus in view of Proposition 5, we obtain a description of
the pseudo-Frobenius numbers of the (a,m) - contractions of N.
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