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ON A NEW GENERALIZATION OF MARTINS’ INEQUALITY

FENG QI AND SENLIN GUO

Abstract. Let n, m ∈ N and {ai}n+m
i=1 be an increasing, logarithmically concave, positive, and

nonconstant sequence such that the sequence
{
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i=1
is increasing. Then the

following inequality between ratios of the power means and of the geometric means holds:
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where r is a positive number, an! denotes the sequence factorial defined by
∏n

i=1 ai . The
upper bound is the best possible.
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