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Abstract. Let n, m ∈ N and {ai}n+m
i=1 be an increasing, logarithmically concave, positive, and

nonconstant sequence such that the sequence
{

i
[

ai+1
ai

− 1
]}n+m−1

i=1
is increasing. Then the

following inequality between ratios of the power means and of the geometric means holds:

(
1
n

n∑
i=1

ar
i

/
1

n + m

n+m∑
i=1

ar
i

)1/r

<
n√an!

n+m√an+m!
,

where r is a positive number, an! denotes the sequence factorial defined by
∏n

i=1 ai . The
upper bound is the best possible.

1. Introduction

It is well-known that the following inequality

n
n + 1

<

(
1
n

n∑
i=1

ir
/

1
n + 1

n+1∑
i=1

ir
)1/r

<
n√n!

n+1
√

(n + 1)!
(1)

holds for r > 0 and n ∈ N . The lower and upper bounds in (1) are both sharp. We
call the left-hand side of this inequality Alzer’s inequality [1], and the right-hand side
Martins’ inequality [14].

The first easy proof of Alzer’s inequality is due to J. Sándor who used Cauchymean
value theorem and mathematical induction in his proof, see [31]. Also the method of
Lagrange mean value theorem and mathematical induction has been used by J. Sándor
in [32].

Also by induction, N. Elezović and J. Pečarić [6] generalized inequality (1) and
showed that, if the positive sequence {an}∞n=1 satisfies

1 �
(

an+2

an+1

)r[an+2

an+1
− 1 +

(
an

an+1

)r+1]
, n � 0, a0 = 0, (2)
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then, for r > 0 , we have

an

an+1
�
(

1
an

n∑
i=1

ar
i

/
1

an+1

n+1∑
i=1

ar
i

)1/r

. (3)

In [22], F. Qi and L. Debnath proved that: Let n, m ∈ N and {ai}∞i=1 be an
increasing sequence of positive real numbers satisfying

(k + 2)ar
k+2 − (k + 1)ar

k+1

(k + 1)ar
k+1 − kar

k

�
(

ak+2

ak+1

)r

(4)

for a given positive real number r and k ∈ N . Then

an

an+m
�
(

(1/n)
∑n

i=1 ar
i

(1/(n + m))
∑n+m

i=1 ar
i

)1/r

. (5)

The lower bound of (5) is the best possible.
In [9, 10, 19, 20, 25, 26, 27], the following inequalities and other more general

results are proved:

n + k + 1
n + m + k + 1

<

(
n+k∏

i=k+1

i

)1/n/(
n+m+k∏
i=k+1

i

)1/(n+m)

�
√

n + k
n + m + k

, (6)

a(n + k + 1) + b
a(n + m + k + 1) + b

<

[∏n+k
i=k+1(ai + b)

] 1
n

[∏n+m+k
i=k+1 (ai + b)

] 1
n+m

�
√

a(n + k) + b
a(n + m + k) + b

, (7)

where n, m ∈ N , k is a nonnegative integer, a a positive constant, and b a nonnegative
constant. The equalities in (6) and (7) is valid for n = 1 and m = 1 .

In [8], the following monotonicity results for the gamma function were obtained:
The function

[Γ(x + y + 1)/Γ(y + 1)]1/x

x + y + 1
(8)

is decreasing in x � 1 for fixed y � 0 . Then, for positive real numbers x and y , we
have

x + y + 1
x + y + 2

� [Γ(x + y + 1)/Γ(y + 1)]1/x

[Γ(x + y + 2)/Γ(y + 1)]1/(x+1) . (9)

In [18, 22], it is proved that: Let n and m be natural numbers, k a nonnegative
integer. Then

n + k
n + m + k

<

(
1
n

n+k∑
i=k+1

ir
/

1
n + m

n+m+k∑
i=k+1

ir
)1/r

, (10)

where r is a given positive real number. The lower bound is the best possible.
In [5, 24, 28], some more general results for the lower bound of ratio of power

means
(

1
n

∑n
i=1 ar

i

/
1

n+m

∑n+m
i=1 ar

i

)1/r
for positive sequence {ai}i∈N were obtained.
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An open problem in [17, 18] asked for the validity of the following inequality:

(
1
n

n+k∑
i=k+1

ir
/

1
n + m

n+m+k∑
i=k+1

ir
)1/r

<
n
√

(n + k)!/k!
n+m
√

(n + m + k)!/k!
, (11)

where r > 0 , n, m ∈ N , k ∈ Z
+ .

Let {ai}i∈N be a positive sequence. If ai+1ai−1 � a2
i for i � 2 , we call {ai}i∈N

a logarithmically convex sequence; if ai+1ai−1 � a2
i for i � 2 , we call {ai}i∈N a

logarithmically concave sequence. See [15, p. 284].
In [4], the open problem mentioned above was solved and generalized affirmatively:

Let {ai}n+m
i=1 be an increasing, logarithmically concave, positive, and nonconstant se-

quence satisfying (
a�+1

a�

)�

�
(

a�

a�−1

)�−1

(12)

for any positive integer � > 1 , then inequality (13) holds for r being a positive number,
n, m ∈ N , and an! denoting the sequence factorial

∏n
i=1 ai . The upper bound in (13)

is best possible.
On generalizations of Alzer’s inequality and Martins’ inequality (1) have invoked

the interest of several mathematicians and there is a rich literature. For more detailed
information, we refer the reader to [3, 7, 12, 13, 16, 21, 28, 23, 24, 31, 34, 35, 36] and
the references therein.

The purpose of this paper is to give a new generalization of inequality (11) as
follows.

THEOREM 1. Let n, m ∈ N and {ai}n+m
i=1 be an increasing, logarithmically

concave, positive, and nonconstant sequence such that the sequence
{
i
[ ai+1

ai
−1
]}n+m−1

i=1
is increasing. Then the following inequality between ratios of the power means and of
the geometric means holds:

(
1
n

n∑
i=1

ar
i

/
1

n + m

n+m∑
i=1

ar
i

)1/r

<
n
√

an!
n+m
√

an+m!
, (13)

where r is a positive number and an! denotes the sequence factorial
∏n

i=1 ai . The
upper bound is the best possible.

As a simple consequence of Theorem 1 by taking {ai}m+n
i=1 = {[a(i+ k)+ b]α}m+n

i=1
for positive parameters a and α , we have

COROLLARY 1. Let a > 0 , α > 0 , m, n ∈ N , and k a nonnegative integer. If
b > −a(1 + k) and the sequence

{
i

[(
1 +

a
a(i + k) + b

)α

− 1

]}m+n−1

i=1

(14)
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is increasing, then for any r > 0 , we have

(
1
n

∑k+n
i=k+1[(ai + b)α ]r

1
m+n

∑k+m+n
i=k+1 [(ai + b)α ]r

)1/r

<

n
√∏k+n

i=k+1(ai + b)α

m+n
√∏k+m+n

i=k+1 (ai + b)α
. (15)

The upper bound is the best possible.

If α = 1 , we have

COROLLARY 2. Let a > 0 , m, n ∈ N , and k a nonnegative integer. Then for any
r > 0 , b � −ak , we have

(
1
n

∑k+n
i=k+1(ai + b)r

1
m+n

∑k+m+n
i=k+1 (ai + b)r

)1/r

<

n
√∏k+n

i=k+1(ai + b)

m+n
√∏k+m+n

i=k+1 (ai + b)
. (16)

The upper bound is the best possible.

REMARK 1. By letting a = 1, b = 0 in 16, we recover inequality (11).

Taking α = 2 in Corollary 1 leads to the following

COROLLARY 3. Let a > 0, m, n ∈ N , and k a nonnegative integer. Then, for any
r > 0, b � a( 1

2 − k) , we have

(
1
n

∑k+n
i=k+1[(ai + b)2]r

1
m+n

∑k+m+n
i=k+1 [(ai + b)2]r

)1/r

<

n
√∏k+n

i=k+1(ai + b)2

m+n
√∏k+m+n

i=k+1 (ai + b)2
. (17)

The upper bound is the best possible.

Considering {ai}i∈N =
{
eiα
}

i∈N
in Theorem 1, standard argument gives us the follow-

ing

COROLLARY 4. Let m, n ∈ N,α ∈ (0, 1) such that

e(1+x)α − exα

xα−1 − (1 + x)α−1
� αxe(1+x)α , x ∈ [1,∞). (18)

Then, for any r > 0 , we have

(
1
n

∑n
i=1 eiα r

1
m+n

∑m+n
i=1 eiα r

)1/r

< exp

[
1
n

n∑
i=1

iα − 1
m + n

m+n∑
i=1

iα
]
. (19)

The upper bound is the best possible.
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2. Lemmas

To prove our main results, the following lemmas are necessary.

LEMMA 1. Let n, m ∈ N , and {ai}n+m+1
i=1 a nonconstant positive sequence such

that the sequence
{
i
[ ai+1

ai
− 1
]}n+m

i=1
is increasing, then the sequence

{
i√ai!
ai+1

}n+m

i=1

(20)

is decreasing. As a simple consequence, we have the following

n√an!
n+m
√

an+m!
>

an+1

an+m+1
, (21)

where an! denotes the sequence factorial defined by
∏n

i=1 ai .

Proof. For 1 � i � n+m−1 , the monotonicity of the sequence (20) is equivalent
to the following

i√ai!
ai+1

�
i+1√ai+1!

ai+2
, (22)

⇐⇒
(

i∏
k=1

ak

ai+1

)1/i

�
(

i+1∏
k=1

ak

ai+2

)1/(i+1)

,

⇐⇒ 1
i

i∑
k=1

ln
ak

ai+1
� 1

i + 1

i+1∑
k=1

ln
ak

ai+2
,

⇐⇒ i
i + 1

i+1∑
k=1

ln
ak

ai+2
�

i∑
k=1

ln
ak

ai+1
. (23)

Since ln x is concave on (0,∞) , by definition of concaveness, it follows that, for
1 � k � i ,

k
i + 1

ln
ak+1

ai+2
+

i − k + 1
i + 1

ln
ak

ai+2

� ln

(
k

i + 1
· ak+1

ai+2
+

i − k + 1
i + 1

· ak

ai+2

)
(24)

= ln

(
kak+1 + (i − k + 1)ak

(i + 1)ai+2

)
.
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Since the sequence
{
i
[ ai+1

ai
−1
]}n+m

i=1
is increasing, we have, for 1 � i � n+m−1

and 1 � k � i , the following

(i + 1)ai+2

ai+1
− (i + 1) � iai+1

ai
− i,

⇐⇒ (i + 1)ai+2

ai+1
− (i + 1) � kak+1

ak
− k,

⇐⇒ kak+1 + (i − k + 1)ak

ak
� (i + 1)ai+2

ai+1
,

⇐⇒ kak+1 + (i − k + 1)ak

(i + 1)ai+2
� ak

ai+1
.

Combining the last line above with (24) yields

k
i + 1

ln
ak+1

ai+2
+

i − k + 1
i + 1

ln
ak

ai+2
� ln

ak

ai+1
. (25)

Summing up on both sides of (25) with k from 1 to i and simplifying reveals
inequality (23). The monotonicity follows.

Since {ai}n+m+1
i=1 is a nonconstant positive sequence, there exists at least one

number 1 � i0 � n+m−1 such that ai0 �= ai0+1 . The function ln x is strictly concave
on (0,∞) . Then, for any i such that i0 � i � n + m − 1 , we have

i0
i + 1

ln
ai0+1

ai+2
+

i − i0 + 1
i + 1

ln
ai0

ai+2

< ln

(
i0

i + 1
· ai0+1

ai+2
+

i − i0 + 1
i + 1

· ai0

ai+2

)
(26)

= ln

(
i0ai0+1 + (i − i0 + 1)ai0

(i + 1)ai+2

)

� ln
ai0

ai+1
,

notice that the last line follows from the sequence
{
i
[ ai+1

ai
− 1
]}n+m

i=1
being increasing.

Therefore, for any i such that i0 � i � n + m − 1 , inequality (22) is strict. Inequality
(21) is proved. The proof is complete. �

LEMMA 2. Let n > 1 be a positive integer and {ai}n
i=1 an increasing nonconstant

positive sequence such that
{
i
[ ai+1

ai
− 1
]}n−1

i=1
is increasing. Then the sequence{

ai

(ai!)
1/i

}n

i=1

(27)

is increasing, and, for any positive integer � satisfying 1 � � < n ,

a�

an
<

(a�!)
1/�

(an!)
1/n

, (28)

where an! denotes the sequence factorial
∏n

i=1 ai .
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Proof. For 1 � � � n − 1 , the monotonicity of the sequence (27) is equivalent to

a�

(a�!)
1/�

� a�+1

(a�+1!)
1/(�+1) ,

⇐⇒
(

�∏
j=1

aj

a�

) 1
�

�
(

�+1∏
j=1

aj

a�+1

) 1
�+1

,

⇐⇒ 1
�

�−1∑
j=1

ln
aj

a�
� 1

� + 1

�∑
j=1

ln
aj

a�+1
,

⇐⇒
�−1∑
j=1

ln
aj

a�
� �

� + 1

�∑
j=1

ln
aj

a�+1
. (29)

Since ln x is concave on (0,∞) , by definition of concaveness, it follows that, for
1 � j � � ,

j
� + 1

ln
aj+1

a�+1
+

� − j + 1
� + 1

ln
aj

a�+1

� ln

(
j

� + 1
· aj+1

a�+1
+

� − j + 1
� + 1

· aj

a�+1

)
(30)

= ln

(
jaj+1 + (� − j + 1)aj

(� + 1)a�+1

)
.

Straightforward computation gives us

�∑
j=1

[
j

� + 1
ln

aj+1

a�+1
+

� − j + 1
� + 1

ln
aj

a�+1

]

=
�

� + 1

�∑
j=1

ln
aj

a�+1
+

�∑
j=1

[
j

� + 1
ln

aj+1

a�+1

]
−

�∑
j=1

j − 1
� + 1

ln
aj

a�+1
(31)

=
�

� + 1

�∑
j=1

ln
aj

a�+1
+

�+1∑
j=2

[
j − 1
� + 1

ln
aj

a�+1

]
−

�∑
j=1

j − 1
� + 1

ln
aj

a�+1

=
�

� + 1

�∑
j=1

ln
aj

a�+1
.
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From combining of (29), (30) and (31), it suffices to prove for 1 � j � �

jaj+1 + (� − j + 1)aj

(� + 1)a�+1
� aj

a�
,

⇐⇒ jaj+1 + (� − j + 1)aj

aj
� (� + 1)a�+1

a�
,

⇐⇒ jaj+1

aj
+ � − j + 1 � (� + 1)a�+1

a�
,

⇐⇒ (� + 1)
[a�+1

a�
− 1
]

� j
[aj+1

aj
− 1
]
. (32)

Since the sequences {ai}n
i=1 and

{
i
[ ai+1

ai
− 1
]}n−1

i=1
are increasing, the inequality

(32) holds.
Moreover, the sequence {ai}n

i=1 is nonconstant positive, then there exists at least
one number 1 � i1 � n−1 such that ai1 �= ai1+1 . The function ln x is strictly concave
on (0,∞) . Then, for any � such that i1 < � � n − 1 , we have

i1
� + 1

ln
ai1+1

a�+1
+

� − i1 + 1
� + 1

ln
ai1

a�+1

< ln

(
i1

� + 1
· ai1+1

a�+1
+

� − i1 + 1
� + 1

· ai1

a�+1

)
(33)

= ln

(
i1ai1+1 + (� − i1 + 1)ai1

(� + 1)a�+1

)

� ln
ai1

a�
.

Therefore, for any � such that i1 + 1 � � < n , inequality (29) is strict, and

a�

a�+1
<

(a�!)
1/�

(a�+1!)
1/(�+1) , (34)

and then inequality (28) is strict. The proof is complete. �

REMARK 2. Some problems similar to Lemma 1 and Lemma 2 were discussed in
[10, 25] by the author and B.-N. Guo.

The methods proving Lemma 1 and Lemma 2 had been used in [24] and others.

LEMMA 3. (König’s inequality [2, p. 149], [11, p. 24] and [14, 30]) Let {ai}n
i=1

and {bi}n
i=1 be decreasing nonnegative n -tuples such that

k∏
i=1

bi �
k∏

i=1

ai, 1 � k � n, (35)

then, for r > 0 , we have
k∑

i=1

br
i �

k∑
i=1

ar
i , 1 � k � n. (36)

The equality in (36) is valid if and only if ai = bi for all 1 � i � n .
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3. Proofs of Theorem 1

Inequality (13) holds for n = 1 by the power mean inequality and its case of
equality.

For n � 2 , inequality (13) is equivalent to(
1
n

n∑
i=1

ar
i

/
1

n + 1

n+1∑
i=1

ar
i

)1/r

<
n√an!

n+1√an+1!
, (37)

which is equivalent to

1
n

n∑
i=1

(
ai

n√an!

)r

<
1

n + 1

n+1∑
i=1

(
ai

n+1√an+1!

)r

. (38)

Set

bjn+1 = bjn+2 = · · · = bjn+n = an+1−j
n+1
√

an+1!
, 0 � j � n; (39)

cj(n+1)+1 = cj(n+1)+2 = · · · = cj(n+1)+(n+1) = an−j
n√an!

, 0 � j � n − 1. (40)

Direct calculation yields

n(n+1)∑
i=1

br
i=

n∑
j=0

n∑
k=1

br
jn+k

= n
n∑

j=0

(
an+1−j

n+1√an+1!

)r

(41)

= n
n+1∑
i=1

(
ai

n+1√an+1!

)r

and
n(n+1)∑

i=1

cr
i = (n + 1)

n∑
i=1

(
ai

n√an!

)r

. (42)

Since {ai}n+1
i=1 is increasing, the sequence {bi}n(n+1)

i=1 and {ci}n(n+1)
i=1 are decreasing.

Therefore, by Lemma 3, to obtain inequality (38), it is sufficient to prove inequality

bm! � cm! (43)

for 1 � m � n(n + 1) .
It is easy to see that bn(n+1)! = cn(n+1)! = 1 . Thus, inequality (43) is equivalent to

n(n+1)∏
i=m

bi �
n(n+1)∏

i=m

ci (44)

for 2 � m � n(n + 1) .
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For 0 � � � n and 0 � j � n − 2 , we have 2 � (n − �)n + (n − j) =
(n − �)(n + 1) + (� − j) � n(n + 1) . Then

n(n+1)∏
i=(n−�)n+(n−j)

bi =
(a�+1)j+1(a�!)n

(an+1!)
�n+j+1

n+1

; (45)

n(n+1)∏
i=(n−�)(n+1)+(�−j)

ci =
(a�)n−�+j+2(a�−1!)n+1

(an!)
�n+j+1

n

, � > j; (46)

n(n+1)∏
i=(n−�)(n+1)+(�−j)

ci =
n(n+1)∏

i=(n−�−1)(n+1)+(n+1+�−j)

ci

=
(a�+1)j−�+1(a�!)n+1

(an!)
�n+j+1

n

, � � j; (47)

where a0 = 1 .
The last term in (47) is bigger than the right term in (46), so, without loss of

generality, we can assume j < � . Therefore, from formulae (45) and (46), inequality
(44) is reduced to

(a�+1)j+1(a�!)n(an+1!)
�−j−1

n+1

(an+1!)�
� (a�)n−�+j+2(a�−1!)n+1

(an!)�(an!)
j+1
n

, (48)

that is
(a�+1)j+1(an+1!)

�−j−1
n+1

(a�!)(a�)j−�+1
� (an+1)�(an!)

−�
n

(an!)
j−�+1

n

, (49)

this is further equivalent to

(a�+1)j+1(an+1!)
�−j−1

n+1

a�!(a�)j−�+1(an!)
�−j−1

n

� (an+1)�

(an!)
�
n

, (50)

which can be rearranged as

(
a�+1

a�
·

n√an!
n+1√an+1!

) j+1
�

�
�
√

a�!
a�

· an+1
n+1√an+1!

, j + 1 � � � n. (51)

Utilizing Lemma 2 and the logarithmical concaveness of the sequence {ai}n+1
i=1

yields
n√an!

n+1√an+1!
>

an

an+1
� a�

a�+1
. (52)

Since j+1
� � 1 and a�+1

a�
· n√an!

n+1
√

an+1!
> 1 by (52), thus, to obtain (51), it suffices to

prove
a�+1

n
√

an! < an+1
�
√

a�!, (53)
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this follows from Lemma 1.
Since the sequence {ai}n+1

i=1 is increasing and nonconstant, then it is a well known
fact that n√an! < n+1√an+1! which is equivalent to bn(n+1) < cn(n+1) . This implies that
inequality (37), and then inequality (13), from Lemma 3, is strict.

By L’Hospital rule, easy calculation produces

lim
r→0

(
1
n

n∑
i=1

ar
i

/
1

n + m

n+m∑
i=1

ar
i

)1/r

=
n√an!

n+m√an+m!
, (54)

thus, the upper bound is the best possible. The proof is complete.

REMARK 3. Recently, some new inequalities for the ratios of the mean values of
functions were established in [33].
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[12] J.-CH. KUANG, Some extensions and refinements of Minc-Sathre inequality, Math. Gaz. 83 (1999),

123–127.
[13] ZH. LIU, New generalization of H. Alzer’s inequality, Tamkang J. Math. 34 (2003), no. 3, 255–260.
[14] J. S. MARTINS, Arithmetic and geometric means, an application to Lorentz sequence spaces, Math.

Nachr. 139 (1988), 281–288.
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