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ON A NEW GENERALIZATION OF MARTINS’ INEQUALITY
FENG QI AND SENLIN GUO

(communicated by N. Ujevic)

Abstract. Let n,m € N and {a;}}!|" be an increasing, logarithmically concave, positive, and

a; n+m—1 .
;—*]_‘ - 1} } is increasing. Then the
=1

following inequality between ratios of the power means and of the geometric means holds:

nonconstant sequence such that the sequence {i {

n

1/r

n+m
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where r is a positive number, ay! denotes the sequence factorial defined by H?:l a;j . The
upper bound is the best possible.

1. Introduction

It is well-known that the following inequality

n+1 1/r n/
n

n IS 1
_ o - o v 1
n+1< n;l/n+1;l = "/ (n+1)! M

holds for r > 0 and n € N. The lower and upper bounds in (1) are both sharp. We
call the left-hand side of this inequality Alzer’s inequality [1], and the right-hand side
Martins’ inequality [14].

The first easy proof of Alzer’s inequality is due to J. Sdndor who used Cauchy mean
value theorem and mathematical induction in his proof, see [31]. Also the method of
Lagrange mean value theorem and mathematical induction has been used by J. Sandor
in [32].

Also by induction, N. Elezovi¢ and J. Pecari¢ [6] generalized inequality (1) and
showed that, if the positive sequence {a,}5°, satisfies

; r+1
1<<an+2> {an+21+(a") ]7 nz0, a =0, )
An+1 Ant1 An+l
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then, for r > 0, we have

n n+1 /
< . 3
ap+1 (an ; /anJrl 1 ) ( )

i=

In [22], F. Qi and L. Debnath proved that: Let n,m € N and {a;}?°, be an
increasing sequence of positive real numbers satisfying

(k -+ 2)af — (k+ Ve () "
(k+1)ay, | — kaj, A1
for a given positive real number r and k € N. Then
an ( (/) 3L af )”’_ 5)
@nem— \(1/(n+m)) S a

The lower bound of (5) is the best possible.
In [9, 10, 19, 20, 25, 26, 27], the following inequalities and other more general
results are proved:

1/n 1/(n+m
nkl Hk ! Hk . )<\/W "
—_— i i < ——

n+m+k+1 i=k+1 i=k+1 n+m+k

1

aln+k+1)+b < [H, k+1(‘”+b)} <\/ a(n+k)+b
amn+m+k+1)+0b ik o n+m+k)+b’
( ) |:Hi:k+4ik (al + b):| ( )

where n,m € N, k is a nonnegative integer, a a positive constant, and b a nonnegative
constant. The equalities in (6) and (7) is valid for n =1 and m = 1.

In [8], the following monotonicity results for the gamma function were obtained:
The function

(7)

L +y+1)/Ty+ DY ®)
x+y+1
is decreasing in x > 1 for fixed y > 0. Then, for positive real numbers x and y, we
have

x+y+ 1 [D+y+1)/Te+ 1" 9)
x+y+2 " [[lc+y+2)/T(y+ DI/

In [18, 22], it is proved that: Let n and m be natural numbers, k a nonnegative

integer. Then
1/r
k n+k n+m+k
_rtrE L 7 (10)
n+m+k n+m
k+1

i= k+l

where r is a given positive real number. The lower bound is the best possible.
In [5, 24, 28], some more general results for the lower bound of ratio of power

means (1370 a7 /S a)) " for positive sequence {a;};en were obtained.
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An open problem in [17, 18] asked for the validity of the following inequality:

n n-+m /
( +k / + +k > B (n+k)!/k! (n
i=k+1 n+m i—=k+1 ”ﬂ\n/ (n+m+k)/k!
where r >0, n,meN, ke Z*.
Let {a;}ien be a positive sequence. If a;y1a;_1 > a? for i > 2, we call {a;}ien
a logarithmically convex sequence; if a;+ja;—; < al-2 for i > 2, we call {q;}icn a
logarithmically concave sequence. See [15, p. 284].

In [4], the open problem mentioned above was solved and generalized affirmatively:
Let {a;}!1" be an increasing, logarithmically concave, positive, and nonconstant se-

quence satisfying
ai\ Y @\
()~ ()
ay ar—1

for any positive integer £ > 1, then inequality (13) holds for r being a positive number,
n,m € N, and a,! denoting the sequence factorial []}_, a;. The upper bound in (13)
is best possible.

On generalizations of Alzer’s inequality and Martins’ inequality (1) have invoked
the interest of several mathematicians and there is a rich literature. For more detailed
information, we refer the reader to [3, 7, 12, 13, 16, 21, 28, 23, 24, 31, 34, 35, 36] and
the references therein.

The purpose of this paper is to give a new generalization of inequality (11) as
follows.

THEOREM 1. Let n,m € N and {a;}!"]" be an increasing, logarithmically
.. +m—1

concave, positive, and nonconstant sequence such that the sequence {1 [“’a—fl — 1] }7:1'7 "
is increasing. Then the following inequality between ratios of the power means and of

the geometric means holds:

n n+m 1/r n ]
ay.:

/ < 13

( Y/ 7w ) = "

where r is a positive number and a,! denotes the sequence factorial [[._, a;. The
upper bound is the best possible.

As a simple consequence of Theorem 1 by taking {a;}7"\" = {[a(i+ k) + b]*}\"
for positive parameters a and «, we have

COROLLARY 1. Let a >0, a >0, m,n € N, and k a nonnegative integer. If
b > —a(l + k) and the sequence

(0 i) ), "
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is increasing, then for any r > 0, we have

(15)

n . r 1/r n k+n .
( 2 i (@i + 5)7] ) _ YT i+ b
1 k+m+n . - T .
m+n Zi:kJrl [(al + b)a} m+tn Hf:k++l (al + b)a
The upper bound is the best possible.

If a =1, we have

COROLLARY 2. Let a > 0, m,n € N, and k a nonnegative integer. Then for any
r>0, b > —ak, we have

n . 1/r n k+n .
( ; Zi:kﬂ (ai +Db)" - Hi;rkJrl(al +b)
)’ m

1 k+m-+ . .
Zi:Zan(al +b +n Hf:;?fl”(ai N b)

(16)

m+n
The upper bound is the best possible.

REMARK 1. By letting @ = 1,b = 0 in 16, we recover inequality (11).

Taking o = 2 in Corollary 1 leads to the following

COROLLARY 3. Let a > 0,m,n € N, and k a nonnegative integer. Then, for any
r>0,b> a(% — k), we have

n . 1/r n ktn -
( byl by \Y T i 02
A

1 k+m-+n . .
Dk @i+ b)? Ry Hf:,:’ﬂ" (ai + b)?

m-+n

The upper bound is the best possible.
Considering {a;}ien = {eia }l. N in Theorem 1, standard argument gives us the follow-
ing

COROLLARY 4. Let myn € N, o € (0, 1) such that

e(1+x)a _ exa (L)
P ST > oxe , x€[l,00). (18)

Then, for any r > 0, we have

o 1/r
Ly e g 1K
n i=1 -0l -0l
< - — E . 19
( 1 z"’+"eiar> eXp|:n — ! m+n l:| (19)

m+n i=1

The upper bound is the best possible.
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2. Lemmas

To prove our main results, the following lemmas are necessary.

LEMMA 1.

[“t_ﬂ _
aj
a;!

i
{ aj+1

n an!

Let n,m € N, and {a;}! ”er“ a nonconstant positive sequence such

n+m .
1] }l.:l is increasing, then the sequence
}n+m
i=1

is decreasing. As a simple consequence, we have the following

Ap+1

>
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Antm !

Proof. For 1 <i <

to the following

\i/ ai! S

=
ait1

1/i
) >

Ak

= [
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Zn

ait1

—

it

i+1 aiy2

b
Ap+m+1

where a,! denotes the sequence factorial defined by [],_, a;.

n+m— 1, the monotonicity of the sequence (20) is equivalent

i+1/
! ai+1!
)

aiy2

(ﬁ

k=1

(22)

Ak

aiy2

) 1/(i+1)
i+1

Zl

/

l+1

Zln

az+2

23
az+l ( )

Since Inx is concave on (0, c0), by definition of concaveness, it follows that, for

1 <k<i,

k Ag+-1 i— k+ 1 In ay
i+1  aip i+1 ai2
< ln<. k AR
i+1 a2

i*k+1 ay

24
a2 ( )

)

—In (kdk+1 + (l —k + l)ak
(i + Daita

i+1
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. Taic n+m
Since the sequence { i [;—l 1] } .

i1 is increasing, we have, for | < i< n+m—1
and 1 < k < i, the following

(i+ Daiy2 _i+1) > Wiyl i
ait1 ai
(i+Daio (i+1)> ka1 Y
Q1 Qg
kag 1 + (i —k+ 1)(1k < (i + 1)(1i+2
A b ait1 ’
kay 1 + (l —k+ l)ak < ay
(i+ Daiw S ai

Combining the last line above with (24) yields

.k Aj+1 l'f.k+11n ay <1 ak'
i+1 a2 i+1 aiy2 ait1
Summing up on both sides of (25) with k£ from 1 to i and simplifying reveals
inequality (23). The monotonicity follows.
Since {@;}Z/"*! is a nonconstant positive sequence, there exists at least one
number 1 < iy < n+m—1 such that a;, # a;,11 . The function Inx is strictly concave
on (0,00). Then, for any i such that iy < i< n+m— 1, we have

(25)

. Io In Q41 l— ip+ 1 In a;,
i+1 a2 i+1 aiy2
. l_ il a
<n[ 0 Grt Il i (26)
i+1 a2 i+1 Ait2
i ioaiy+1 + (i — io + aj,
(i+ Daitz
<In o
ait1

notice that the last line follows from the sequence {i[“t — 1] }-" being increasing.

Therefore, for any i such that iy < i< n+m— 1, inequality (22) is strict. Inequality
(21) is proved. The proof is complete. ]

LEMMA 2. Let n > 1 be apositive integer and {a;}"_, an increasing nonconstant

. T ai -1, . .
positive sequence such that { i [“;—“ - 1] }Zl | is increasing. Then the sequence
; -

{ (ai!;l/i }i—l 7

is increasing, and, for any positive integer € satisfying 1 < ¢ <n,
1/¢
ap ayg!
—“<7( “)W, (28)
an (an!)

where a,! denotes the sequence factorial ], a;.
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Proof. For 1 < £ < n— 1, the monotonicity of the sequence (27) is equivalent to

—1 ¢
1 a; 1 a
— - InL>— > In—2L
Y4 Z ap +1 Z n ag4
j=1 j=1
&g - a
= In-<>—"% In—, 29
P ap €+1j:21na[+1 ( )

Since Inx is concave on (0, 00), by definition of concaveness, it follows that, for
1<j<d,

a
In ——
C+1 ary £+1 apt1

j o oan  L—j+1 a_,-)
<L & T 4 30

(€+1 ari1 C+1  apn G0
i <jaj+1 +(0—j+ 1)“;‘)

j | aipr L—j+1

(f + l)a[H

Straightforward computation gives us

l . .
Z{ T &L +€77J+11n—aj }
o Y4 + 1 ap+q Y4 + 1 ap+q
l

E+1Zl art1 +ZL— E]

) l 1+1

e PILFERD S
J= J=

ln— (31)

ap+1
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From combining of (29), (30) and (31), it suffices to prove for 1 < j < ¢
Japn+(C—j+ Ve _ g

(0 + Dag S

Jjap + (0 —j+ Ve _ (L4 Darn

)

)

a; ay
Jaj1 iy | < (€ + 1)a€+1’
aj ay
— (€+1) [@ - 1} {“’“ - 1] (32)
ay a;

Since the sequences {a;}! , and {l[";—tl —1] }::11
(32) holds.
Moreover, the sequence {a;}?_, is nonconstant positive, then there exists at least
one number 1 < i; < n—1 suchthat a; # a;,+1 . The function Inx is strictly concave
n (0,00). Then, for any ¢ such that i1y < ¢ < n — 1, we have

are increasing, the inequality

il ai +1 f - il + 1 In a;,
C+1 apy £+1 api1
ir ayy L—ii+1 g
<In L - 33
<f+1 apy1 +1 aé’ﬂ) (33)
_ ln(ilailJrl + (f —i + l)a,-l>
(€ + Dapss
(1,‘1
< In—.
ay

Therefore, for any ¢ such that i; + 1 < £ < n, inequality (29) is strict, and

1/¢
as (a/!)
A 34
apyt = (aps1 )1/(”1) G4)

and then inequality (28) is strict. The proof is complete. O

REMARK 2. Some problems similar to Lemma 1 and Lemma 2 were discussed in
[10, 25] by the author and B.-N. Guo.
The methods proving Lemma 1 and Lemma 2 had been used in [24] and others.

LEMMA 3. (Konig’s inequality [2, p. 149], [11, p. 24] and [14, 30]) Ler {a;}"
and {b;}!_, be decreasing nonnegative n-tuples such that

k k
[I6: <[]a 1<k<n, (35)
i=1

i=1
then, for r > 0, we have

Zb’ Z{ 1<k<n. (36)
i=1

The equality in (36) is valid if and only lf ai=Db; forall 1 <i<n.
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3. Proofs of Theorem 1

Inequality (13) holds for n = 1 by the power mean inequality and its case of
equality.
For n > 2, inequality (13) is equivalent to

n n+1 /r
Va,!
< Z /n +1 Za > < n+1/a—n+1!’ (37)

which is equivalent to

1 n a; r 1 n+1 a; r
- < . 38
2 (v) <772 () )

Set
bjn+1 = YOin+2 = " = Ojpntn = ni%y 0 <jsm (39)
Ci(n+1)+1 = Cj(n+1)+2 = = = Cj(nt1)+(n+1) — %, 0<j<n—1. (40)

Direct calculation yields

n(n+1)

Z bi= Jn+k

Ap+1—;j '

e e B 41
( n+\/l an+1!> ( )

r
a; >
1/
s api1 !

and

n(n+1) n w r

S d=mt0Y (i) (42)
i=1 i=1 n

Since {a;}1* isincreasing, the sequence {b; }” ")) and {e:}i] 1) are decreasing.

Therefore, by Lemma 3, to obtain inequality (38), it is sufficient to prove inequality

bu! = cp! (43)
forl<m<nn+1).
Itis easy to see that by(,11)! = cy(ne1)! = 1. Thus, inequality (43) is equivalent to
n(n+1) n(n+1)

IIe< ][« (44)

i=m i=m



512 FENG QI AND SENLIN GUO

For0 < {<nand 0 <j<n—2,wehave 2 < (n—On+ (n—j) =
m=0Om+1)+ (¢ —j)<n@m+1). Then
(n+1) j+1 1\n
[T &= CEZDACT (45)
i=(n—L)n+(n—j) (@ni1!) 7o
n(n+1) Nn—L+j+2 P+l
[ = (a) o™y (46)
i=(n—0) (n+1)+(t—j) (an!) ™
n(n+1) n(n+1)
H Ci = H Ci
i=(n—0)(n+1)+({—j) i=(n—0—1)(n+1)+(n+14+0—))
(a[ l)j—[Jrl (al!)nJrl )
= - Intj+1 ) E g J5 (47)

(a,,!) n

where ag = 1.

The last term in (47) is bigger than the right term in (46), so, without loss of
generality, we can assume j < £. Therefore, from formulae (45) and (46), inequality
(44) is reduced to

. {—j—1 )
(a1} (ar!)" (@i ) 7 < (a[)"féﬂﬂ(a[—l!)”“ (48)
, < : ,
(@)’ (an)) (@) T
that is
i1 | L—j—1 Y, ' =
/+1 n+1- n+1 ne
(a[ )] (a ) i < (Cl ) (Cl ) " (49)
(@Day=tt = g nER
!
this is further equivalent to
. {—j—1
(ar1) ! (@nn ) 7 < (an1)' 50
. (—j—1 L ( )
ap(ay—t(a,!) ™ (ap)n
which can be rearranged as
j%l
g+ Va,! ) Vay! an+1 :
L A A <Y — ——, j+1I<i<n (51)
a Vany1! ay V1!

Utilizing Lemma 2 and the logarithmical concaveness of the sequence {a; ?jll
yields

Ya,! a, ay

> > —. 52
n+\l/an+l! Apt1 - ag+1 ( )

Since J%l <1 and ag—(“ Val - by (52), thus, to obtain (51), it suffices to

n+]1 /tln+1!
ar 1 vVay! < apiq Vay!, (53)

prove



ON A NEW GENERALIZATION OF MARTINS’ INEQUALITY 513

this follows from Lemma 1.

Since the sequence {a;}"*/ is increasing and nonconstant, then it is a well known
fact that {/a,! < "/a,1! which is equivalent to by, 1) < ¢y(u+1). This implies that
inequality (37), and then inequality (13), from Lemma 3, is strict.

By L’Hospital rule, easy calculation produces

A T ey
(i ) = =

thus, the upper bound is the best possible. The proof is complete.

REMARK 3. Recently, some new inequalities for the ratios of the mean values of
functions were established in [33].
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