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FIXED POINTS AND GENERALIZED HYERS–ULAM

STABILITY OF QUADRATIC FUNCTIONAL EQUATIONS

CHOONKIL PARK AND THEMISTOCLES M. RASSIAS

Abstract. Let X, Y be complex vector spaces. It is shown that if a mapping f : X → Y satisfies

f (x + iy) + f (x− iy) = 2f (x) − 2f (y) (0.1)

or

f (x + iy) − f (ix + y) = 2f (x) − 2f (y) (0.2)

for all x, y ∈ X , then the mapping f : X → Y satisfies

f (x + y) + f (x− y) = 2f (x) + 2f (y)

for all x, y ∈ X .
Furthermore, we prove the generalized Hyers-Ulam stability of the functional equations

(0.1) and (0.2) in complex Banach spaces.
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