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Abstract. Let X, Y be complex vector spaces. It is shown that if a mapping f : X → Y satisfies

f (x + iy) + f (x− iy) = 2f (x) − 2f (y) (0.1)

or

f (x + iy) − f (ix + y) = 2f (x) − 2f (y) (0.2)

for all x, y ∈ X , then the mapping f : X → Y satisfies

f (x + y) + f (x− y) = 2f (x) + 2f (y)

for all x, y ∈ X .
Furthermore, we prove the generalized Hyers-Ulam stability of the functional equations

(0.1) and (0.2) in complex Banach spaces.

1. Introduction

The stability problem of functional equations originated from a question of Ulam
[42] concerning the stability of group homomorphisms: Let (G1, ∗) be a group and let
(G2, �, d) be a metric group with the metric d(·, ·) . Given ε > 0 , does there exist a
δ(ε) > 0 such that if a mapping h : G1 → G2 satisfies the inequality

d(h(x ∗ y), h(x) � h(y)) < δ

for all x, y ∈ G1 , then there is a homomorphism H : G1 → G2 with

d(h(x), H(x)) < ε

for all x ∈ G1? If the answer is affirmative, we would say that the equation of homo-
morphism H(x ∗ y) = H(x) � H(y) is stable. The concept of stability for a functional
equation arises when we replace the functional equation by an inequality which acts
as a perturbation of the equation. Thus the stability question of functional equations
is that how do the solutions of the inequality differ from those of the given functional
equation?
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Hyers [9] gave a first affirmative partial answer to the question of Ulam for Banach
spaces. Let X and Y be Banach spaces. Assume that f : X → Y satisfies

‖f (x + y) − f (x) − f (y)‖ � ε

for all x, y ∈ X and some ε � 0. Then there exists a unique additive mapping
T : X → Y such that

‖f (x) − T(x)‖ � ε
for all x ∈ X.

Th. M. Rassias [32] provided a generalization of Hyers’ Theorem which allows the
Cauchy difference to be unbounded.

THEOREM 1.1. (Th. M. Rassias). Let f : E → E′ be a mapping from a normed
vector space E into a Banach space E′ subject to the inequality

‖f (x + y) − f (x) − f (y)‖ � ε(‖x‖p + ‖y‖p) (1.1)

for all x, y ∈ E , where ε and p are constants with ε > 0 and p < 1 . Then the limit

L(x) = lim
n→∞

f (2nx)
2n

exists for all x ∈ E and L : E → E′ is the unique additive mapping which satisfies

‖f (x) − L(x)‖ � 2ε

2 − 2p
‖x‖p

for all x ∈ E . Also, if for each x ∈ E the function f (tx) is continuous in t ∈ R , then
L is R -linear.

The above inequality (1.1) that was introduced for the first time by Th. M. Rassias
[32] for the proof of the stability of the linear mapping between Banach spaces has
provided a lot of influence in the development of what is now known as a general-
ized Hyers-Ulam stability or as Hyers-Ulam-Rassias stability of functional equations.
Beginning around the year 1980 the topic of approximate homomorphisms, or the sta-
bility of the equation of homomorphism, was studied by a number of mathematicians.
Găvruta [8] extended the Hyers-Ulam stability by proving the following theorem in the
spirit of Th. M. Rassias’ approach.

THEOREM 1.2. [8] Let f : E → E′ be a mapping for which there exists a function
ϕ : E × E′ → [0,∞) such that

ϕ̃(x, y) :=
∞∑
j=0

2−jϕ(2jx, 2jy) < ∞,

‖f (x + y) − f (x) − f (y)‖ � ϕ(x, y)

for all x, y ∈ E . Then there exists a unique additive mapping T : E → E′ such that

‖f (x) − T(x)‖ � 1
2
ϕ̃(x, x)

for all x ∈ E .
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A square norm on an inner product space satisfies the important parallelogram
equality

‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2.

The functional equation

f (x + y) + f (x − y) = 2f (x) + 2f (y)

is called a quadratic functional equation. In particular, every solution of the quadratic
functional equation is said to be a quadratic function. A generalized Hyers–Ulam
stability problem for the quadratic functional equation was proved by Skof [41] for
mappings f : X → Y , where X is a normed space and Y is a Banach space. Cholewa
[5] noticed that the theorem of Skof is still true if the relevant domain X is replaced
by an Abelian group. Czerwik [6] proved the generalized Hyers-Ulam stability of the
quadratic functional equation. The stability problems of several functional equations
have been extensively investigated by a number of authors and there are many interesting
results concerning this problem (see [1], [12], [14]–[30], [34]–[40], [43]).

We recall two fundamental results in fixed point theory. The reader is referred to
the book of D. H. Hyers, G. Isac and Th. M. Rassias [10] for an extensive account of
fixed point theory with several applications.

THEOREM 1.3. [3, 4, 31] Let (X, d) be a complete metric space and let J : X → X
be strictly contractive, i.e.,

d(Jx, Jy) � Lf (x, y), ∀x, y ∈ X

for some Lipschitz constant L < 1 . Then
(1) the mapping J has a unique fixed point x∗ = Jx∗ ;
(2) the fixed point x∗ is globally attractive, i.e.,

lim
n→∞ Jnx = x∗

for any starting point x ∈ X ;
(3) one has the following estimation inequalities:

d(Jnx, x∗) � Lnd(x, x∗),

d(Jnx, x∗) � 1
1 − L

d(Jnx, Jn+1x),

d(x, x∗) � 1
1 − L

d(x, Jx)

for all nonnegative integers n and all x ∈ X .

Let X be a set. A function d : X × X → [0,∞] is called a generalized metric on
X if d satisfies
(1) d(x, y) = 0 if and only if x = y ;
(2) d(x, y) = d(y, x) for all x, y ∈ X ;
(3) d(x, z) � d(x, y) + d(y, z) for all x, y, z ∈ X .
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THEOREM 1.4. [7] Let (X, d) be a complete generalized metric space and let
J : X → X be a strictly contractive mapping with Lipschitz constant L < 1 . Then for
each given element x ∈ X , either

d(Jnx, Jn+1x) = ∞
for all nonnegative integers n or there exists a positive integer n0 such that
(1) d(Jnx, Jn+1x) < ∞, ∀n � n0 ;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) < ∞} ;
(4) d(y, y∗) � 1

1−Ld(y, Jy) for all y ∈ Y .

In this paper, we solve the functional equations (0.1) and (0.2) and by using the
fixed point method, we prove the generalized Hyers-Ulam stability of the functional
equations (0.1) and (0.2) in complex Banach spaces.

In 1996, G. Isac and Th. M. Rassias [13] were the first to provide applications of
stability theory of functional equations for the proof of new fixed point theorems with
applications.

2. Quadratic functional equations

Throughout this section, assume that X and Y are complex vector spaces.

PROPOSITION 2.1. If a mapping f : X → Y satisfies

f (x + iy) + f (x − iy) = 2f (x) − 2f (y) (2.1)

for all x, y ∈ X , then the mapping f : X → Y is quadratic, i.e.,

f (x + y) + f (x − y) = 2f (x) + 2f (y)

holds for all x, y ∈ X . If a mapping f : X → Y is quadratic and f (ix) = −f (x) holds
for all x ∈ X , then the mapping f : X → Y satisfies (2.1).

Proof. Assume that f : X → Y satisfies the equation (2.1).
Letting x = y in (2.1), we get f ((1 + i)x) + f ((1 − i)x) = 0 for all x ∈ X . So

f (2ix) + f (2x) = 0 for all x ∈ X . Hence f (ix) = −f (x) for all x ∈ X . Thus

f (x + iy) + f (x − iy) = 2f (x) − 2f (y) = 2f (x) + 2f (iy) (2.2)

for all x, y ∈ X . Letting z = iy in (2.2), we get

f (x + z) + f (x − z) = 2f (x) + 2f (z)

for all x, z ∈ X .
Assume that a quadratic mapping f : X → Y satisfies f (ix) = −f (x) for all

x ∈ X .
f (x + iy) + f (x − iy) = 2f (x) + 2f (iy) = 2f (x) − 2f (y)

for all x, y ∈ X . So themapping f : X → Y satisfies (2.1). �
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PROPOSITION 2.2. If a mapping f : X → Y satisfies f (0) = 0 and

f (x + iy) − f (ix + y) = 2f (x) − 2f (y) (2.3)

for all x, y ∈ X , then the mapping f : X → Y is quadratic. If a mapping f : X → Y
is quadratic and f (ix) = −f (x) holds for all x ∈ X , then the mapping f : X → Y
satisfies (2.3).

Proof. Assume that f : X → Y satisfies the equation (2.3).
Letting y = 0 in (2.3), we get f (x) − f (ix) = 2f (x) for all x ∈ X . So

f (ix) = −f (x) for all x ∈ X . Thus

f (x + iy) + f (x − iy) = f (x + iy) − f (ix + y)
= 2f (x) − 2f (y) = 2f (x) + 2f (iy) (2.4)

for all x, y ∈ X . Letting z = iy in (2.4), we get

f (x + z) + f (x − z) = 2f (x) + 2f (z)

for all x, z ∈ X .
Assume that a quadratic mapping f : X → Y satisfies f (ix) = −f (x) for all

x ∈ X .

f (x + iy) − f (ix + y) = f (x + iy) + f (x − iy) = 2f (x) + 2f (iy) = 2f (x) − 2f (y)

for all x, y ∈ X . So themapping f : X → Y satisfies (2.3). �

3. Generalized Hyers-Ulam stability of quadratic functional equations

Throughout this section, assume that X is a normed vector space with norm || · ||
and that Y is a Banach space with norm ‖ · ‖ .

For a given mapping f : X → Y , we define

Cf (x, y) : = f (x + iy) + f (x − iy) − 2f (x) + 2f (y)

for all x, y ∈ X .
We prove the generalizedHyers-Ulam stability of the quadratic functional equation

Cf (x, y) = 0 .

THEOREM 3.1. Let p < 2 and θ be positive real numbers, and let f : X → Y be
a mapping satisfying f (ix) = −f (x) and

‖Cf (x, y)‖ � θ(||x||p + ||y||p) (3.1)

for all x, y ∈ X . Then there exists a unique quadratic mapping Q : X → Y such that

‖f (x) − Q(x)‖ � 2θ
4 − 2p

||x||p (3.2)

for all x ∈ X .
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Proof. Since f (ix) = −f (x) for all x ∈ X , f (0) = 0 .

f (−x) = f (i2x) = −f (ix) = f (x)

for all x ∈ X .
Letting y = −ix in (3.1), we get

‖f (2x) − 4f (x)‖ � 2θ||x||p (3.3)

for all x ∈ X . So

‖f (x) − 1
4
f (2x)‖ � θ

2
||x||p

for all x ∈ X . Hence

‖ 1
4l

f (2lx) − 1
4m

f (2mx)‖ �
m−1∑
j=l

2pjθ
22j+1

||x||p (3.4)

for all nonnegative integers m and l with m > l and all x ∈ X . It follows from
(3.4) that the sequence { 1

4n f (2nx)} is Cauchy for all x ∈ X . Since Y is complete, the
sequence { 1

4n f (2nx)} converges. So one can define the mapping Q : X → Y by

Q(x) := lim
n→∞

1
4n

f (2nx)

for all x ∈ X .
By (3.1),

‖CQ(x, y)‖ = lim
n→∞

1
4n

‖Cf (2nx, 2ny)‖ � lim
n→∞

2pnθ
4n

(||x||p + ||y||p) = 0

for all x, y ∈ X . So CQ(x, y) = 0 . By Proposition 2.1, the mapping Q : X → Y is
quadratic. Moreover, letting l = 0 and passing to the limit as m approaches infinity in
(3.4), we get (3.2).

Now, let T : X → Y be another quadratic mapping satisfying (2.1) and (3.2).
Then we have

‖Q(x) − T(x)‖ =
1
4n

‖Q(2nx) − T(2nx)‖

� 1
4n

(‖Q(2nx) − f (2nx)‖ + ‖T(2nx) − f (2nx)‖)

� 4θ
4 − 2p

· 2pn

4n
||x||p,

which tends to zero as n → ∞ for all x ∈ X . So we can conclude that Q(x) = T(x) for
all x ∈ X . This proves the uniqueness of Q . So there exists a unique quadraticmapping
Q : X → Y satisfying (2.1) and (3.2). �

THEOREM 3.2. Let p > 2 and θ be positive real numbers, and let f : X → Y
be a mapping satisfying (3.1) and f (ix) = −f (x) for all x ∈ X . Then there exists a
unique quadratic mapping Q : X → Y such that

‖f (x) − Q(x)‖ � 2θ
2p − 4

||x||p (3.5)

for all x ∈ X .
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Proof. It follows from (3.3) that

‖f (x) − 4f (
x
2
)‖ � 2θ

2p
||x||p

for all x ∈ X . Hence

‖4lf (
x
2l

) − 4mf (
x
2m

)‖ �
m−1∑
j=l

2 · 4jθ
2pj+p

||x||p (3.6)

for all nonnegative integers m and l with m > l and all x ∈ X . It follows from
(3.6) that the sequence {4nf ( x

2n )} is Cauchy for all x ∈ X . Since Y is complete, the
sequence {4nf ( x

2n )} converges. So one can define the mapping Q : X → Y by

Q(x) := lim
n→∞ 4nf (

x
2n

)

for all x ∈ X .
By (3.1),

‖CQ(x, y)‖ = lim
n→∞ 4n‖Cf (

x
2n

,
y
2n

)‖ � lim
n→∞

4nθ
2pn

(||x||p + ||y||p) = 0

for all x, y ∈ X . So CQ(x, y) = 0 . By Proposition 2.1, the mapping Q : X → Y is
quadratic. Moreover, letting l = 0 and passing the limit m → ∞ in (3.6), we get (3.5).

The rest of the proof is similar to the proof of Theorem3.1. �

THEOREM 3.3. Let p < 1 and θ be positive real numbers, and let f : X → Y be
a mapping satisfying f (ix) = −f (x) and

‖Cf (x, y)‖ � θ · ||x||p · ||y||p (3.7)

for all x, y ∈ X . Then there exists a unique quadratic mapping Q : X → Y such that

‖f (x) − Q(x)‖ � θ
4 − 4p

||x||2p (3.8)

for all x ∈ X .

Proof. Letting y = −ix in (3.7), we get

‖f (2x) − 4f (x)‖ � θ||x||2p (3.9)

for all x ∈ X . So

‖f (x) − 1
4
f (2x)‖ � θ

4
||x||2p

for all x ∈ X . Hence

‖ 1
4l

f (2lx) − 1
4m

f (2mx)‖ �
m−1∑
j=l

4pjθ
4j+1

||x||2p (3.10)
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for all nonnegative integers m and l with m > l and all x ∈ X . It follows from
(3.10) that the sequence { 1

4n f (2nx)} is Cauchy for all x ∈ X . Since Y is complete,
the sequence { 1

4n f (2nx)} converges. So one can define the mapping Q : X → Y by

Q(x) := lim
n→∞

1
4n

f (2nx)

for all x ∈ X .
By (3.7),

‖CQ(x, y)‖ = lim
n→∞

1
4n

‖Cf (2nx, 2ny)‖ � lim
n→∞

4pnθ
4n

· ||x||p · ||y||p = 0

for all x, y ∈ X . So CQ(x, y) = 0 . By Proposition 2.1, the mapping Q : X → Y is
quadratic. Moreover, letting l = 0 and passing the limit m → ∞ in (3.10), we get
(3.8).

The rest of the proof is similar to the proof of Theorem3.1. �

THEOREM 3.4. Let p > 1 and θ be positive real numbers, and let f : X → Y
be a mapping satisfying (3.7) and f (ix) = −f (x) for all x ∈ X . Then there exists a
unique quadratic mapping Q : X → Y such that

‖f (x) − Q(x)‖ � θ
4p − 4

||x||2p (3.11)

for all x ∈ X .

Proof. It follows from (3.9) that

‖f (x) − 4f (
x
2
)‖ � θ

4p
||x||2p

for all x ∈ X . Hence

‖4lf (
x
2l

) − 4mf (
x
2m

)‖ �
m−1∑
j=l

4jθ
4pj+p

||x||2p (3.12)

for all nonnegative integers m and l with m > l and all x ∈ X . It follows from
(3.12) that the sequence {4nf ( x

2n )} is Cauchy for all x ∈ X . Since Y is complete, the
sequence {4nf ( x

2n )} converges. So one can define the mapping Q : X → Y by

Q(x) := lim
n→∞ 4nf (

x
2n

)

for all x ∈ X .
By (3.7),

‖CQ(x, y)‖ = lim
n→∞ 4n‖Cf (

x
2n

,
y
2n

)‖ � lim
n→∞

4nθ
4pn

· ||x||p · ||y||p = 0

for all x, y ∈ X . So CQ(x, y) = 0 . By Proposition 2.1, the mapping Q : X → Y is
quadratic. Moreover, letting l = 0 and passing the limit m → ∞ in (3.12), we get
(3.11).

The rest of the proof is similar to the proof of Theorem3.1. �



QUADRATIC FUNCTIONAL EQUATIONS 523

4. Fixed points and generalized Hyers-Ulam stability of quadratic functional
equations

Throughout this section, assume that X is a normed vector space with norm || · ||
and that Y is a Banach space with norm ‖ · ‖ .

For a given mapping f : X → Y , we define

Df (x, y) : = f (x + iy) − f (ix + y) − 2f (x) + 2f (y)

for all x, y ∈ X .
Using the fixed point method, we prove the generalized Hyers-Ulam stability of

the quadratic functional equation Df (x, y) = 0 .

THEOREM 4.1. Let f : X → Y be a mapping with f (ix) = −f (x) for all x ∈ X
for which there exists a function ϕ : X2 → [0,∞) such that

∞∑
j=0

4−jϕ(2jx, 2jy) < ∞, (4.1)

‖Df (x, y)‖ � ϕ(x, y) (4.2)

for all x, y ∈ X . If there exists an L < 1 such that ϕ(x,−ix) � 4Lϕ( x
2 ,− ix

2 ) for all
x ∈ X , then there exists a unique quadratic mapping Q : X → Y satisfying (2.3) and

‖f (x) − Q(x)‖ � 1
4 − 4L

ϕ(x,−ix) (4.3)

for all x ∈ X .

Proof. Since f (ix) = −f (x) for all x ∈ X , f (0) = 0 .

f (−x) = f (i2x) = −f (ix) = f (x)

for all x ∈ X . So Df (x, y) = Cf (x, y) for all x, y ∈ X .
Consider the set

S := {g : X → Y}
and introduce the generalized metric on S :

d(g, h) = inf{K ∈ R+ : ‖g(x) − h(x)‖ � Kϕ(x,−ix), ∀x ∈ X}.
It is easy to show that (S, d) is complete.

Now we consider the linear mapping J : S → S such that

Jg(x) :=
1
4
g(2x)

for all x ∈ X .
By Theorem 3.1 of [3],

d(Jg, Jh) � Ld(g, h)

for all g, h ∈ S .
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Letting y = −ix in (4.2), we get

‖f (2x) − 4f (x)‖ � ϕ(x,−ix) (4.4)

for all x ∈ X . So

‖f (x) − 1
4
f (2x)‖ � 1

4
ϕ(x,−ix)

for all x ∈ X . Hence d(f , Jf ) � 1
4 .

By Theorem 1.4, there exists a mapping Q : X → Y such that
(1) Q is a fixed point of J , i.e.,

Q(2x) = 4Q(x) (4.5)

for all x ∈ X . The mapping Q is a unique fixed point of J in the set

M = {g ∈ S : d(f , g) < ∞}.
This implies that Q is a unique mapping satisfying (4.5) such that there exists
K ∈ (0,∞) satisfying

‖f (x) − Q(x)‖ � Kϕ(x,−ix)

for all x ∈ X .
(2) d(Jnf , Q) → 0 as n → ∞ . This implies the equality

lim
n→∞

f (2nx)
4n

= Q(x) (4.6)

for all x ∈ X .
(3) d(f , Q) � 1

1−Ld(f , Jf ) , which implies the inequality

d(f , Q) � 1
4 − 4L

.

This implies that the inequality (4.3) holds.
It follows from (4.1), (4.2) and (4.6) that

‖DQ(x, y)‖ = lim
n→∞

1
4n

‖Df (2nx, 2ny)‖ � lim
n→∞

1
4n
ϕ(2nx, 2ny) = 0

for all x, y ∈ X . So DQ(x, y) = 0 for all x, y ∈ X .
Similarly, one can show that Q(ix) = −Q(x) for all x ∈ X . By Proposition 2.2, the

mapping Q : X → Y is quadratic, as desired. �

COROLLARY 4.2. Let p < 2 and θ be positive real numbers, and let f : X → Y
be a mapping satisfying f (ix) = −f (x) and

‖Df (x, y)‖ � θ(||x||p + ||y||p) (4.7)

for all x, y ∈ X . Then there exists a unique quadratic mapping Q : X → Y satisfying
(2.3) and

‖f (x) − Q(x)‖ � 2θ
4 − 2p

||x||p

for all x ∈ X .
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Proof. The proof follows from Theorem 4.1 by taking

ϕ(x, y) := θ(||x||p + ||y||p)
for all x, y ∈ X . Then L = 2p−2 and we get the desired result. �

COROLLARY 4.3. Let p < 1 and θ be positive real numbers, and let f : X → Y
be a mapping satisfying f (ix) = −f (x) and

‖Df (x, y)‖ � θ · ||x||p · ||y||p (4.8)

for all x, y ∈ X . Then there exists a unique quadratic mapping Q : X → Y satisfying
(2.3) and

‖f (x) − Q(x)‖ � θ
4 − 4p

||x||2p

for all x ∈ X .

Proof. The proof follows from Theorem 4.1 by taking

ϕ(x, y) := θ · ||x||p · ||y||p

for all x, y ∈ X . Then L = 4p−1 and we get the desired result. �

THEOREM 4.4. Let f : X → Y be a mapping with f (ix) = −f (x) for all x ∈ X
for which there exists a function ϕ : X2 → [0,∞) satisfying (4.2) such that

∞∑
j=0

4jϕ(
x
2j

,
y
2j

) < ∞ (4.9)

for all x, y ∈ X . If there exists an L < 1 such that ϕ(x,−ix) � 1
4Lϕ(2x,−2ix) for all

x ∈ X , then there exists a unique quadratic mapping Q : X → Y satisfying (2.3) and

‖f (x) − Q(x)‖ � L
4 − 4L

ϕ(x,−ix) (4.10)

for all x ∈ X .

Proof. We consider the linear mapping J : S → S such that

Jg(x) := 4g(
x
2
)

for all x ∈ X .
It follows from (4.4) that

‖f (x) − 4f (
x
2
)‖ � ϕ(

x
2
,− ix

2
) � L

4
ϕ(x,−ix)

for all x ∈ X . Hence d(f , Jf ) � L
4 .

By Theorem 1.4, there exists a mapping Q : X → Y such that
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(1) Q is a fixed point of J , i.e.,

Q(2x) = 4Q(x) (4.11)

for all x ∈ X . The mapping Q is a unique fixed point of J in the set

M = {g ∈ S : d(f , g) < ∞}.
This implies that Q is a unique mapping satisfying (4.11) such that there exists
K ∈ (0,∞) satisfying

‖f (x) − Q(x)‖ � Kϕ(x,−ix)

for all x ∈ X .
(2) d(Jnf , Q) → 0 as n → ∞ . This implies the equality

lim
n→∞ 4nf (

x
2n

) = Q(x)

for all x ∈ X .
(3) d(f , Q) � 1

1−Ld(f , Jf ) , which implies the inequality

d(f , Q) � L
4 − 4L

,

which implies that the inequality (4.10) holds.
The rest of the proof is similar to the proof of Theorem4.1. �

COROLLARY 4.5. Let p > 2 and θ be positive real numbers, and let f : X → Y
be a mapping satisfying (4.7) and f (ix) = −f (x) for all x ∈ X . Then there exists a
unique quadratic mapping Q : X → Y satisfying (2.3) and

‖f (x) − Q(x)‖ � 2θ
2p − 4

||x||p

for all x ∈ X .

Proof. The proof follows from Theorem 4.4 by taking

ϕ(x, y) := θ(||x||p + ||y||p)
for all x, y ∈ X . Then L = 22−p and we get the desired result. �

COROLLARY 4.6. Let p > 1 and θ be positive real numbers, and let f : X → Y
be a mapping satisfying (4.8) and f (ix) = −f (x) for all x ∈ X . Then there exists a
unique quadratic mapping Q : X → Y satisfying (2.3) and

‖f (x) − Q(x)‖ � θ
4p − 4

||x||2p

for all x ∈ X .
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Proof. The proof follows from Theorem 4.4 by taking

ϕ(x, y) := θ · ||x||p · ||y||p

for all x, y ∈ X . Then L = 41−p and we get the desired result. �
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