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ON VAN DE LUNE – ALZER’S INEQUALITY

S. ABRAMOVICH, J. BARIĆ, M. MATIĆ AND J. PEČARIĆ

(communicated by N. Elezović)

Abstract. In this paper it is shown that the inequality known in the literature as Alzer’s inequality
(1993), has already been known since 1975. and is due to Jan van de Lune. A review of different
methods in proving Van de Lune - Alzer’s inequality and generalizations in a several directions,
is given. It is shown how some results and proofs can be corrected, refined and extended. New
results, inspired by the generalization of Van de Lune - Alzer’s inequality for increasing convex
sequences presented by N. Elezović and J. Pečarić, are obtained.

1. Introduction

In 1964. H. Minc and L. Sathre in [24] proved that, for n ∈ N the inequality
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holds.
In 1988. J. S. Martins, in [23], gave another lower bound for the ratio (n!)
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So, H. Alzer came to the idea to compare the left-hand sides of (1.1) and (1.2) and, in
1993 in [2], he proved the next theorem.

THEOREM 1. If r is a positive real number and if n is a positive integer, then
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Since then, the left-hand side of the inequality (1.3) is called Alzer’s inequality.
Alzer’s proof uses interesting techniques, but its complexity have invoked the

interest of several mathematicians. The first easy proof of Alzer’s inequality is due to J.
Sándor who used in his proof Cauchy mean value theorem and mathematical induction,
see [33]. Also, J. Sándor used in [36] the method of Lagrange mean value theorem and
mathematical induction. The second elementary proof is given by J. S. Ume in [38]
using differentiation and induction. And, finally, C.-P. Chen and F. Qi, in [6], presented
two other simple proofs of Alzer’s inequality using Lagrange’s mean value theorem,
monotonicity and convexity of functions, and mathematical induction.

However, in 1975, in [1], J. van de Lune stated Problem 399., which was solved by
several mathematicians, and which easily implicates Alzer’s inequality.

The purpose of this paper is to show that what is called since 1993 "Alzer’s
inequality" is the result of Jan van deLune’swork,known already since 1975. According
to that, in this paper the left-hand side of the inequality (1.3) will be called Van de Lune
- Alzer’s inequality.

We also give some generalizations of Alzer’s inequality as well as corrections and
refinements of alterative proofs of one of the inequalities in an article by H. Alzer ([2]).

2. Jan van de Lune’s results

The inequality, which we recognize as Alzer’s inequality, has already been known
at least since 1975 and is due to J. van de Lune. In this section we present J. van de
Lune’s Problem 399, (see [1, p. 254]), it’s connection with Alzer’s inequality and our
conclusions in the COMMENTS.

PROBLEM 399. For n ∈ N and s ∈ R let

σn(s) :=
n∑

k=1

ks, Un(s) := n−s−1σn(s), Ln(s) := n−s−1σn−1(s),

where σ0(s) = 0 . Prove that if s is positive, Un(s) is decreasing in n and Ln(s) is
increasing in n .

The mathematicians F. J. Barning, R. Doornbos, A. A. Jagers, J. H. van Lint, J.
van de Lune and G. R. Veldkamp gave solutions of Jan van de Lune’s Problem 399.
F. J. M. Barning, J. van de Lune, G. R. Veldkamp and R. Doornbos (this proof can be
seen in [1]) used mathematical induction and J. H. van Lint showed that the problem is
a special case of a more general situation in the following way:

Let f be increasing and convex on [0, 1] . Let us consider

Sn =
1
n

n∑
k=1

f
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k
n

)
(2.1)
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1
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)
. (2.2)
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Using convexity of f on [0, 1] J. van de Lint proved that (Sn)n∈N is a decreasing and

(sn)n∈N is an increasing sequence, i.e.

Sn+1 � Sn, (2.3)

and
sn � sn+1. (2.4)

By applying the result to the function g defined by g(x) = −f (1 − x) it is easy
to see that (2.3) and (2.4) also hold if f is increasing and concave. By applying the
result to f (x) = xs , (s > 0) , the assertion of the Problem 399 follows.

COMMENTS. If the considered function f is strictly increasing and convex or
strictly increasing and concave on [0, 1] then Sn is strictly decreasing and sn is strictly
increasing sequence. Now applying J. H. van Lint’s results on function f (x) = xs ,
s > 0 , we obtain that Un is strictly increasing and Ln is strictly decreasing function in
n ∈ N .

The fact that Un(s) is strictly decreasing in n is equivalent to

Un(s) > Un+1(s),

n−s−1(1s + 2s + · · · + ns) > (n + 1)−s−1(1s + 2s + · · · + (n + 1)s),
1s + 2s + · · · + ns

ns · n >
1s + 2s + · · · + (n + 1)s

(n + 1)s · (n + 1)
,

ns
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, (2.5)

where s is positive real number.
In 1993. Horst Alzer proved
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, (2.6)

where n ∈ N and r is positive real number.
It is obvious that Jan van de Lune’s inequality (2.5) directly implies inequality

(2.6) i.e. (2.5) holds with strict inequality "< " in place of "� ". Proving inequality
(2.6), J. Sándor, ([33]), and J. S. Ume, ([38]), also came to conclusion that (2.6) is true
for strict inequality.
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We formulate J. H. van Lint’s results in the following theorem:

THEOREM 2. Let f be an increasing and convex or an increasing and concave
function on [0, 1] . Let Sn and sn be defined by (2.1) and (2.2), respectively. Then Sn

is a decreasing sequence and sn is an increasing sequence i.e.
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)
� 1
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f

(
k
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)
. (2.8)

If f is strictly increasing and convex function or strictly increasing and concave function
on [0, 1] then Sn is strictly decreasing and sn is strictly increasing sequence and (2.7)
and (2.8) holds with strict inequality.

Applying Theorem 2 to f (x) = xs , s > 0 , we get following corollaries:

COROLLARY 1. Let σn(s) =
n∑

k=1
ks , for n ∈ N and σ0(s) = 0 . Then

Un(s) = n−s−1σn(s),

is strictly decreasing function in n and

Ln(s) = n−s−1σn−1(s),

is strictly increasing function in n .

COROLLARY 2. Let f (x) = xs , where s ∈ R , s > 0 . Then for n ∈ N it holds

n
n + 1
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.

3. Alternative proofs

In 1995. J. Sándor, in a short paper [33], gave an alternative proof of H. Alzer’s
inequality
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based on mathematical induction and Cauchy’s mean value theorem of differential
calculus. In fact, he proved even sharper statement, discovered by Jan van de Lune in
1975, that (3.1) holds with strict inequality.

In 1996 J.S. Ume gave another elementary proof of inequality (3.1), (see [38]),
using induction and differentiation. However, his proof can bemodified, in the following
way, to get strict inequality in (3.1). We give J.S. Ume’s Lemma and it’s proof with our
corrections.

LEMMA 1. If r is a positive real number, then

1 < (1 + x)r
[
x + (1 − x)r+1

]
, 0 < x � 1. (3.2)

Proof. For x ∈ [0, 1] , define

f (x) = (1 + x)r
[
x + (1 − x)r+1

]− 1.

The function f is continuous on [0, 1] and f (0) = 0 . To prove inequality (3.2) it
suffices to show f ′(x) > 0 , for 0 < x < 1 . Differentiation of f yields

f ′(x) = (1 + x)r−1
{
r
[
x + (1 − x)r+1

]
+ (1 + x) [1 − (r + 1)(1 − x)r]

}
.

For x ∈ [0, 1] , let’s set

g(x) = r
[
x + (1 − x)r+1]+ (1 + x) [1 − (r + 1)(1 − x)r] .

The function g is continuous on [0, 1] and g(0) = 0 . Now we have

g′(x) = (r + 1){1 − (1 − x)r + r
[
(1 + x)(1 − x)r−1 − (1 − x)r

]}.
Since (1 − x)r < 1 and (1 − x)r < (1 + x)(1 − x)r−1 for 0 < x < 1 , it follows
g′(x) > 0 , for r > 0 and 0 < x < 1 . Therefore g(x) > g(0) which implies
f ′(x) > 0, for 0 < x < 1 . �

Now, (3.1) can be easily proved for strict inequality using mathematical induction
and Lemma 1 (see [38]).

In 2003. C.-P. Chen and F. Qi showed, in [6], that J. Sándor’s and J. S. Ume’s
proofs of (3.1) can be completed in other ways using Lagrange’s mean value theorem,
monotonicity and convexity of function’s, and mathematical induction.

4. Generalizations of Van de Lune - Alzer’s inequality

In 1999 F. Qi proved the next theorem.

THEOREM 3. Let n and m be natural numbers, k a nonnegative integer. Then

n + k
n + m + k

<

⎡
⎢⎢⎢⎣

1
n

n+k∑
i=k+1

ir

1
n+m
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ir

⎤
⎥⎥⎥⎦

1
r

, (4.1)

where r is any given positive real number. The lower bound is best possible.
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Theorem 3 is proved in [26] applying mathematical induction and Cauchy mean
value theorem. Some further results related to this can be found in [32] and [19].

In 2002. J. S. Ume, in [39], showed how the result of H. Alzer can be extended
using suitable mapping. His main result (contained in the following theorem) is proved
using two lemmas in which we made some improvements.

Let us quote the first lemma.

LEMMA 2. Let a , b , c and d be real numbers satisfying

1 < a, c, 0 < b, d < 1, 0 < ab � 1,

1 <
1
2
(c + d) and 1 � ac−1(ab)d.

If f (x) := (c − 1)ax + d(ab)x , then

1 < f (x), for all x ∈ [0,∞).

COMMENT. By careful inspection of Ume’s proof for the above Lemma we see that
the sign " < " in 1 < 1

2 (c + d) can be replaced with " � " and still it can be proved
that f (x) > f (0) = (c − 1) + d > 1 for all x ∈ (0, +∞), which is crucial for the the
rest of Ume’s results in [39] .

From Lemma 2 follows the next lemma.

LEMMA 3. Let ϕ : (0,∞) → (0,∞) be a function such that

ϕ is strictly increasing on (0,∞), (4.2)

ϕ′ exists on (0,∞), (4.3)

ϕ′ is strictly increasing on (0,∞), (4.4)

ϕ(x)
ϕ(x + 1)

� ϕ(x + 1)
ϕ(x + 2)

, for all x ∈ (0,∞), (4.5)

and

1 �
[
ϕ(u + 2)
ϕ(u + 1)

] ϕ(v+2)
ϕ(v+1) −1

·
[

ϕ(u)
ϕ(u + 1)

· ϕ(u + 2)
ϕ(u + 1)

] ϕ(v)
ϕ(v+1)

, (4.6)

for all u, v ∈ (0,∞).Then

ϕ(v+1) < [ϕ(v+2)−ϕ(v+1)]
{
ϕ(u+2)
ϕ(u+1)

}r

+ϕ(v)
{

ϕ(u)
ϕ(u+1)

· ϕ(u+2)
ϕ(u+1)

}r

, (4.7)

for all u, v ∈ (0,∞) and r > 0 .

COMMENT. Considering the changes we made in Lemma 2 assertion (4.4) is
changed to

ϕ′ is increasing on (0,∞),

i.e., the function ϕ is convex on (0,∞) .
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THEOREM 4. Let ϕ : (0,∞) → (0,∞) be a function satisfying conditions (4.2),
(4.3), (4.4), (4.5) and

1 �
{
ϕ(n+m+k+2)
ϕ(n+m+k+1)

} ϕ(n+m+2)
ϕ(n+m+1)−1

·
{

ϕ(n+m+k)
ϕ(n+m+k+1)

· ϕ(n+m+k+2)
ϕ(n+m+k+1)

} ϕ(n+m)
ϕ(n+m+1)

,

(4.8)
for all n ∈ N , m, k ∈ N ∪ {0} and 1 � ϕ(1) � 1

2ϕ(2) . Then

ϕ(n + k)
ϕ(n + m + k)

<

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
ϕ(n)

n+k∑
i=k+1

[ϕ(i)]r

1
ϕ(n+m)

n+m+k∑
i=k+1

[ϕ(i)]r

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

1
r

, (4.9)

for all n, m ∈ N , k ∈ N ∪ 0 and r > 0 .

Applying the above theorem to the function ϕ(x) = ax , for all x ∈ (0,∞) , J.S.
Ume proved the following corollary.

COROLLARY 3. Let n, m ∈ N , k ∈ N ∪ {0} , r > 0 and a � 2 . Then

1
am

<

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
an

n+k∑
i=k+1

air

1
an+m

n+m+k∑
i=k+1

air

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

1
r

. (4.10)

In the next corollary J.S. Ume gave a generalization of H. Alzer’s inequality.

COROLLARY 4. If p = 1 or p � 2 then

(
n + k

n + m + k

)p

<

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
np

n+k∑
i=k+1

ipr

1
(n+m)p

n+m+k∑
i=k+1

ipr

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

1
r

, (4.11)

where n, m ∈ N , k ∈ N ∪ {0} and r > 0 .

In 2000. F. Qi, in [27], presented the inequality which generalizes Alzer’s result, as
well as one result proved by J.-C. Kuang and inequality (4.1). Namely, in 1999, J.-C.
Kuang, in [20], proved the following inequality

1
n

n∑
k=1

f

(
k
n

)
>

1
n + 1

n+1∑
k=1

f

(
k

n + 1

)
>

1∫
0

f (x)dx, (4.12)

for a strictly increasing convex (or concave) function f on (0, 1] .
Motivated by inequalities in (4.1) and (4.12), considering convexity, F. Qi proved

the next theorem.
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THEOREM 5. Let f be a strictly increasing convex (or concave) function in (0, 1] .

Then the sequence 1
n

n+k∑
i=k+1

f
(

i
n+k

)
is decreasing in n and k and has a lower bound∫ 1

0 f (t)dt , that is

1
n

n+k∑
i=k+1

f

(
i

n + k

)
>

1
n + 1

n+k+1∑
i=k+1

f

(
i

n + k + 1

)
>

1∫
0

f (t)dt, (4.13)

where k is a nonnegative integer and n is a natural number.

Applying Theorem 5 to f (x) = xr , for r > 0 and k = 0 it follows

1
n + 1

n+1∑
i=1

ir

(n + 1)r
<

1
n

n∑
i=1

ir

nr
,

nr

(n + 1)r
<

(n + 1)
n∑

i=1
ir

n
n+1∑
i=1

ir
,

i.e.

n
n + 1

<

⎡
⎢⎢⎢⎣

(n + 1)
n∑

i=1
ir

n
n+1∑
i=1

ir

⎤
⎥⎥⎥⎦

1
r

,

and that is Alzer’s inequality with "< " instead of "� ".
Furthermore, applying Theorem 5 on f (x) = xr , for r > 0 it follows

n+k∑
i=k+1

ir

n(n + k)r
>

n+k+1∑
i=k+1

ir

(n + 1)(n + k + 1)r
, (4.14)

i.e.
n+k∑

i=k+1
ir

n(n + k)r
>

n+k+m∑
i=k+1

ir

(n + m)(n + k + m)r
,

which is equivalent to inequality (4.1). For k = 0 inequality (4.13) becomes equivalent
to (4.12).

COMMENT. Notice that the left-hand inequality in (4.12) is equivalent to J. H. van
Lint’s result i.e. to inequality (2.7) in Theorem 2 for strictly increasing convex (or
concave) function f .
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In 2001 F. Qi, in [28], proved an algebraic inequality which is an integral analogue
of the following inequality

n + k
n + m + k

<

⎡
⎢⎢⎢⎣

1
n

n+k∑
i=k+1

ir

1
n+m

n+m+k∑
i=k+1

ir

⎤
⎥⎥⎥⎦

1
r

, (4.15)

proved in [26]. (An extension of this Qi’s result can be found in paper [41]).

THEOREM 6. Let b > a > 0 and δ > 0 be real numbers. Then for any given
positive r ∈ R we have

[
b + δ − a

b − a
· br+1 − ar+1

(b + δ)r+1 − ar+1

] 1
r

>
b

b + δ
. (4.16)

The lower bound in (4.16) is best possible.

The inequality (4.16) can be rewritten as

b
b + δ

<

⎡
⎢⎢⎢⎣

1
b−a

b∫
a

xrdx

1
b+δ−a

b+δ∫
a

xrdx

⎤
⎥⎥⎥⎦

1
r

. (4.17)

For a = k , b = n + k and δ = m , inequality(4.17) is integral analogue of the (4.15).
Inequality (4.17) was generalized by B. Gavrea and I. Gavrea in [18], to an in-

equality for linear positive functionals.
Using a completely different unexpected approach, I. Gavrea improved Van de

Lune - Alzar’s inequality and some related inequalities proved in [4]. Gavrea used
Bernstein and Bernstein - Stancu operators to get his many new results [17]. By using
Bernstein polynomials of degree n he improved inequality (2.3) for increasing convex
functions. He got the following inequalities:

1
6n (n + 1)

min
k=0,n−1

[
k
n
,
k + 1
n + 1

,
k + 1

n
; f

]
� 1

n + 1

n∑
k=0

f

(
k
n

)
− 1

n + 2

n+1∑
k=0

f

(
k

n + 1

)

� 1
6n (n + 1)

max
k=0,n−1

[
k
n
,
k + 1
n + 1

,
k + 1

n
; f

]
.

Using Bernstein-Stancu type operators Gavrea proved some general inequalities from
which he got

0 � 1
n

n−1∑
k=0

f

(
k + 1
n + 1

)
− 1

n − 1

n−2∑
k=0

f

(
k + 1

n

)

� 1
6

([
n − 1

n
,

n
n + 1

; f

]
−
[
1
n
,

1
n + 1

; f

])
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as well as

β + 1
2 (n + β) (n + β + 1)

[
β

n + β
,

β + 1
n + β + 1

; f

]

� 1
n

n∑
i=1

f

(
i + β
n + β

)
− 1

n + 1

n+1∑
i=1

f

(
i + β

n + β + 1

)

� β + 1
2 (n + β) (n + β + 1)

[
n + β

n + β + 1
, 1; f

]

for β � 0, where

[x1, x2; f ] :=
f (x2) − f (x1)

x2 − x1
; [x1, x2, x3;; f ] :=

[x2, x3; f ] − [x1, x2; f ]
x3 − x1

.

Also by using inequalities resulting from Bernstein-Stancu operators he got as a special
case the known inequality proved by F. Qi and B-N. Guo in [30]:

1
n

n∑
k=1

f

(
ak

an

)
� 1

n + 1

n+1∑
k=1

f

(
ak

an+1

)

which holds for an increasing sequence (an)n∈N
, an ∈ [0, 1] , such that

(
n
(
1− an

an+1

))
n∈N

is also an increasing sequence , and for increasing convex function f on [0, 1] .

5. Applications to sequences

In 1998 N. Elezović and J. Pečarić, in [16], showed that Alzer’s inequality is
satisfied for a large class of increasing convex sequences. They gave a generalization
of (3.1) contained in the next theorem.

THEOREM 7. If the sequence (an)n�1 , of positive real numbers satisfies

1 �
(

an+2

an+1

)r
[

an+2

an+1
− 1 +

(
an

an+1

)r+1
]

, (5.1)

for n � 0 , a0 = 0 , r ∈ R
+ , then

an

an+1
�

⎛
⎜⎜⎜⎝

an+1

n∑
i=1

ar
i

an

n+1∑
i=1

ar
i

⎞
⎟⎟⎟⎠

1
r

. (5.2)

N. Elezović and J. Pečarić proved Theorem 7 using mathematical induction and
Lemma 1. In [16] they also gave a simplification of proof of Lemma 1 as well as
the following examples and corollaries of Theorem 7 for sequences of positive real
numbers.
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COROLLARY 5. Let the sequence (an) of positive real numbers satisfy

a2

a1
�
(

a1

a2

)r

+ 1, (5.3)

an − 2an+1 + an+2 � 0, n � 1. (5.4)

Then (5.2) holds.

EXAMPLE 1. The sequence an = n satisfies (5.3) and (5.4). Hence, Theorem 7
generalizes Alzer’s inequality.

COROLLARY 6. For each strictly increasing sequence (an) of positive real numbers
there exist an r > 0 such that (5.2) holds.

EXAMPLE 2. The sequence an = 2n − 1 satisfies (5.3) and (5.4). Therefore we
have

2n − 1
2n + 1

�

⎛
⎜⎜⎜⎝

(2n + 1)
n∑

i=1
(2i − 1)r

(2n − 1)
n+1∑
i=1

(2i − 1)r

⎞
⎟⎟⎟⎠

1
r

.

EXAMPLE 3. The sequence an = k(n − 1) + 1 , k > 0 , satisfies (5.4). Further,
(5.3) is equivalent to

k(k + 1)r � 1. (5.5)

Therefore, (5.2) holds for this sequence whenever (5.5) is valid.

EXAMPLE 4. The sequence an = an , a > 1 , satisfies (5.4). Further, (5.3) is
equivalent to

a � 1
ar

+ 1. (5.6)

As in previous example, for each r > 0 there exist a > 1 for which (5.6) is valid.

COMMENTS. Inequality (5.2) is equivalent to

n+1∑
i=1

ar
i

ar
n+1 · an+1

�

n∑
i=1

ar
i

an · ar
n

If we regard the left and right sides of the last inequality as members of a real sequence
(An) we can conclude that sequence (An) is decreasing i.e.

(∀n ∈ N) (∀p ∈ N) An+p � An.

Hence, inequality (5.2) is equivalent to

n+m∑
i=1

ar
i

ar
n+m · an+m

�

n∑
i=1

ar
i

an · ar
n
,
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i.e.

an

an+m
�

⎡
⎢⎢⎣

an+m

n∑
i=1

ar
i

an

n+m∑
i=1

ar
i

⎤
⎥⎥⎦

1
r

.

NEW RESULTS. Following the reasoning of N. Elezović and J. Pečarić in results
presented above ([16]) we extend the results obtained there for f (x) = xr, x � 0,
r � 0 to an increasing f (x) where xf (x) is convex.

Instead of dealing with

n∑
i=1

ar
i

ar+1
n

�
n+1∑
i=1

ar
i

ar+1
n+1

, r > 0, an > 0, n = 1, 2, ... (5.7)

we deal with
n∑

i=1

1
an

(
f (ai)
f (an)

)
�

n+1∑
i=1

1
an+1

(
f (ai)

f (an+1)

)
. (5.8)

REMARK 1. Inequality (5.8) is equivalent to

n+1∑
i=1

f (ai)
(

1 − anf (an)
an+1f (an+1)

)
� f (an+1) . (5.9)

Therefore, if ai > 0 , f (ai) > 0 i=1,... the inequality

1 − anf (an)
an+1f (an+1)

� 0 (5.10)

is a necessary condition for (5.8) to hold.

THEOREM 8. Let an > 0, n = 1, ... and let the function f (x) > 0 be defined
on [0,∞) , and satisfies (5.10). If

f (an+2)
f (an+1)

[
an+2

an+1
− 1 +

anf (an)
an+1f (an+1)

]
� 1 (5.11)

for n � 0, a0 = 0, then (5.8) holds.

Proof. The proof is by induction and follows the steps of the proof of Theorem 7.
For n = 1 inequality (5.8) is equal to (5.11) for n = 0 . For a general n inequality
(5.8) is equivalent to (5.9) and therefore the induction hypothesis is equivalent to

n+1∑
i=1

f (ai) � an+1f 2 (an+1)
an+1f (an+1) − anf (an)

which means that
n+2∑
i=1

f (ai) � an+1f 2 (an+1)
an+1f (an+1) − anf (an)

+ f (an+2)
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and hence it is sufficient to prove that

an+1f 2 (an+1)
an+1f (an+1) − anf (an)

+ f (an+2) � an+2f 2 (an+2)
an+2f (an+2) − an+1f (an+1)

(5.12)

which is equivalent to (5.11). �

THEOREM 9. Let f (x) be a positive increasing function on [0,∞) such that
xf (x) is convex and

f (xA) f

(
A
x

)
� f 2 (A) , 1 � x � 2. (5.13)

Let the sequence an > 0, n = 1, ..., a0 = 0 satisfy

an+2 − an+1 � an+1 − an, (5.14)

and
a2

a1
� f (a1)

f (a2)
+ 1. (5.15)

Then (5.8) holds.

Proof. Inequality (5.15) is equivalent to (5.11) for n = 0 . Let us denote

w =
an+2

an+1
− 1. (5.16)

Then it follows from (5.14) that w > 0 .
If an+2

an+1
� 2 then w � 1 and then

f (an+2)
f (an+1)

[
an+2

an+1
− 1 +

anf (an)
an+1f (an+1)

]
� f (an+2)

f (an+1)
� 1.

Therefore, in this case (5.11) holds and from Theorem 8 we get that (5.8) holds.
If 0 � w � 1, inequality (5.14) is equivalent to

an � (1 − w) an+1. (5.17)

As f (x) � 0 and is increasing we get that

f (an+2)
f (an+1)

[
an+2

an+1
− 1 +

anf (an)
an+1f (an+1)

]

� f (an+1 (1 + w))
f (an+1)

[
w +

(1 − w) f (an+1 (1 − w))
f (an+1)

]

=

(
(1 + w) (an+1) f ((1 + w) an+1)

((an+1) f (an+1))
2

)

×
(

w
1 + w

(an+1f (an+1)) +
1

1 + w
an+1 (1 − w) f (an+1 (1 − w))

)
.

(5.18)
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As xf (x) is convex, we get that

w
1 + w

(an+1f (an+1)) +
1

1 + w
(an+1 (1 − w) f (an+1 (1 − w)))

� an+1

(
w

1 + w
+

1 − w
1 + w

)
f

(
an+1

(
w

1 + w
+

1 − w
1 + w

))

=
an+1

1 + w
f

(
an+1

1 + w

)
.

(5.19)

Inserting (5.19) in (5.18) we get that

f (an+2)
f (an+1)

[
an+2

an+1
− 1 +

anf (an)
an+1f (an+1)

]

� (1 + w) (an+1) f ((1 + w) an+1)

((an+1) f (an+1))
2

an+1

(1 + w)
f

(
an+1

1 + w

)

=
f ((1 + w) an+1) f

( an+1

1+w

)
f 2 (an+1)

.

(5.20)

As 0 � w � 1, therefore 1 � 1 + w � 2 . Then, from (5.13) we get that

f ((1 + w) an+1) f

(
an+1

1 + w

)
� f 2 (an+1) . (5.21)

Together with (5.20) we get that (5.11) holds. Hence (5.8) is proved. �

COROLLARY 7. Let f (x) = xr, r � 0, x � 0. Therefore xf (x) = xr+1 is convex
for x � 0, so (5.21) holds with equality and inequality (5.8) becomes equal to inequality
(5.7).

COROLLARY 8. Let log f (x) be a convex function. Then (5.21) holds and as f (x)
is increasing, also f (x) is convex and therefore (5.8) holds.

In 2000 F. Qi and L. Debnath, in [29], using mathematical induction and Cauchy
mean value theorem, proved following results.

THEOREM 10. Let n and m be natural numbers. Suppose {a1, a2, · · · } is a
positive and increasing sequence satisfying

(k + 2)ar
k+2 − (k + 1)ar

k+1

(k + 1)ar
k+1 − kar

k

�
(

ak+2

ak+1

)r

, (5.22)

for any given positive real number r and k ∈ N . Then we have the inequality

an

an+m
�

⎡
⎢⎢⎣

1
n

n∑
i=1

ar
i

1
n+m

n+m∑
i=1

ar
i

⎤
⎥⎥⎦

1
r

. (5.23)

The lower bound of (5.23) is best possible.
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COROLLARY 9. Let n and m be natural numbers. Suppose a = {a1, a2, · · · } is
a positive and increasing sequence satisfying

a2
k+1 � akak+2, (5.24)

ak+1 − ak

a2
k+1 − akak+2

� max

{
k + 1
ak+1

,
k + 2
ak+2

}
, k ∈ N. (5.25)

Then, for any given positive real number r , we have inequality (5.23). The lower bound
of (5.23) is best possible.

Applying Corollary 9 to a = (k + 1, k + 2, · · · ) inequality (4.1) follows.
In 2002 Z. Xu and D. Xu, in [40], gave some new results related to Alzer’s and

Martin’s inequality. We will present the results related to Alzer’s inequality.

THEOREM 11. Let (an)n∈N be a strictly increasing positive sequence, and let m
be a natural number and r be a positive real number. If

(
an

an−1

) n−1
n

� an+1

an
� an

an−1
, n � 2, (5.26)

then

an

an+m
<

⎡
⎢⎢⎣

1
n

n∑
i=1

ar
i

1
n+m

n+m∑
i=1

ar
i

⎤
⎥⎥⎦

1
r

, n � 1. (5.27)

The lower bound in (5.27) is best possible.

COMMENTS. Notice that the inequality (5.27) is equal to (5.23) with different
conditions. Condition (5.26) can be interpreted in the following way:

The inequality (
an

an−1

) n−1
n

� an+1

an

is equivalent to (
an

an−1

)n−1

�
(

an+1

an

)n

,

which means that the sequence
{(

an+1

an

)n}
n∈N

is increasing in n .

Furthermore, inequality
an+1

an
� an

an−1

is equivalent to
an−1an+1 � a2

n,

which means that the sequence (an)n∈N is logarithmic concave for n � 2 .
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As a consequence of Theorem 11 Z. Xu and D. Xu easily proved that the inequality

n + k
n + m + k

<

⎡
⎢⎢⎣

1
n

n∑
i=1

(i + k)r

1
n+m

n+m∑
i=1

(i + k)r

⎤
⎥⎥⎦

1
r

, (5.28)

is valid for any nonnegative real number k and not only for k being nonnegative integer
like it was presented in above cases.

In 2004. F. Qi, B.-N. Guo and L. Debnath, in [31], using mathematical induction,
proved inequality (5.27), mentioned above, with different conditions. We quote their
result and corollary.

THEOREM 12. Let n and m be natural numbers. Suppose (ai)n+m
i=1 is an increas-

ing, logarithmically convex, and positive sequence. Denote the power mean Pn(r) for
any given positive real number r by

Pn(r) =

(
1
n

n∑
i=1

ar
i

) 1
r

. (5.29)

Then the sequence
{

Pi(r)
ai

}n+m

i=1
is decreasing for any given positive real number r , that

is
Pn(r)

Pn+m(r)
� an

an+m
(5.30)

The lower bound in (5.30) is the best possible.

Considering that the exponential functions axα and aα
x
, for given constants α � 1

and a > 1 , are logarithmically convex on [0,∞) , as a corollary of Theorem 12 it
follows.

COROLLARY 10. Let α � 1 and a > 1 be two constants. For any given real
number r the following inequalities hold

a(n+k)α

a(n+m+k)α �

⎛
⎜⎜⎜⎝

1
n

n+k∑
i=k+1

aiα r

1
n+m

n+m+k∑
i=k+1

aiα r

⎞
⎟⎟⎟⎠

1
r

, (5.31)

aα
n+k

aαn+m+k �

⎛
⎜⎜⎜⎝

1
n

n+k∑
i=k+1

aα
ir

1
n+m

n+m+k∑
i=k+1

aα ir

⎞
⎟⎟⎟⎠

1
r

, (5.32)

where n an m are natural numbers, and k is a nonnegative integer. The lower bounds
in (5.31) and (5.32) are the best possible.
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6. An inequality of Van de Lune - Alzer for negative powers

The inequality of Van de Lune - Alzer for negative powers was proved by H. Alzer
in [3].

The results which we will present here offer new proofs and extensions.
In 2003. C.-P. Chen and F. Qi, in [7], proved that Van de Lune - Alzer’s inequality

is valid for all real numbers r (not only for r > 0 ). We now quote their result.

THEOREM 13. Let n be a natural number. Then for all real numbers r it holds

n
n + 1

<

⎡
⎢⎢⎢⎣

1
n

n∑
i=1

ir

1
n+1

n+1∑
i=1

ir

⎤
⎥⎥⎥⎦

1
r

< 1. (6.1)

Both bounds are best possible.

Theorem 13 is proved by using mathematical induction and Jensen’s inequality. J.
Sándor, in [34], gave an elegant proof of inequality (6.1) using Cauchy’s mean value
theorem instead of Jensen’s inequality. For some further results on this topic the reader
is also referred to the papers [10], [11] and [12] written by C.-P. Chen and F. Qi.

In 2004. C.-P. Chen and F. Qi, in [9], studyingmonotonicity property of generalized
logarithmic means defined by

Lp(a, b) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
bp+1−ap+1

(p+1)(b−a)

] 1
p
, p �= −1, 0;

b−a
ln b−ln a , p = −1;

1
e

(
bb

aa

) 1
b−a

, p = 0,

proved the following theorem.

THEOREM 14. Let c > b > a > 0 be real numbers. Then the function

f (r) =
Lr(a, b)
Lr(a, c)

(6.2)

is strictly decreasing with r ∈ (−∞,∞) .

The following corollary is straightforward.

COROLLARY 11. Let c > b > a > 0 be real numbers. Then for any real number
r ∈ R

b
c

<
Lr(a, b)
Lr(a, c)

. (6.3)

The lower bound in (6.3) is best possible.
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For c = b + δ , δ > 0 , Corollary 11 gives an extension of integral version of Van
de Lune - Alzer’s inequality i.e. inequality

b
b + δ

<

⎡
⎢⎢⎢⎣

1
b−a

b∫
a

xrdx

1
b+δ−a

b+δ∫
a

xrdx

⎤
⎥⎥⎥⎦

1
r

,

which is valid for all real numbers r .
In 2005. C.-P. Chen and F. Qi, in [8], proved that Theorem 14 can be generalized

as follows.

THEOREM 15. Let c > b > a and r be real numbers, and let f be a positive,
twice differentiable function and satisfy f ′(t) > 0 and (ln f (t))′′ � 0 on (a, +∞) .
Then

supx∈[a,b] f (x)
supx∈[a,c] f (x)

<

⎛
⎜⎜⎜⎝

1
b−a

b∫
a

f r(x)dx

1
c−a

c∫
a

f r(x)dx

⎞
⎟⎟⎟⎠

1
r

< 1, (6.4)

for all real r . Both bounds in (6.4) are best possible.

On the other hand, in 1994., C. E. M. Pearce and J. Pečarić, in [25], proved the
following theorem which generalizes Theorem 14.

THEOREM 16. Let ai , bi , (i = 1, 2) , be positive numbers satisfying

max

(
a1

a2
,
a2

a1

)
� max

(
b1

b2
,
b2

b1

)
.

Then the function G defined by

G(r) =
Lr(a1, a2)
Lr(b1, b2)

(6.5)

is nondecreasing.

We quote the proof:

Proof. Power integral means of order p are defined by

Mp(f ; a, b) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
1

b−a

b∫
a

f (t)pdt

] 1
p

, p �= 0,

exp

[
1

b−a

b∫
a

log f (t)dt

]
, p = 0.

If e(t) = t , ex,y(t) = xt + y(1 − t) , then the generalized logarithmic means have the
two integral representations

Lp(x, y) = Mp(e; x, y), Lp(x, y) = Mp(ex,y; 1, 0).
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Thus

G(r) =
Mr(ea1,a2 ; 0, 1)
Mr(eb1,b2 ; 0, 1)

and our result is a simple consequence of the following result (see [22]).
Let f and g be positive and integrable functions on [a, b] . If the maps x →

g(x) , x → f (x)
g(x) are monotonic in the same sense, then the functionF defined byF(r) =

Mr(f ;a,b)
Mr(g;a,b) is nondecreasing.

In our case f (t) = ea1,a2(t) and g(t) = eb1,b2(t) . If b1 = b2 then the denominator
in (6.5) is independent of r and the claim reduces to the well-known result on the
nondecreasing character of Lr . If b1 �= b2 , then since the denominator in the definition
for G is invariant under the interchange of b1 and b2 , we may without loss of generality
suppose that b1 > b2 . Similar symmetry in the numerator of (6.5) allows us to assume
a1 � a2 , so that we can suppose that a1

a2
� b1

b2
> 1 .

If b1 > b2 the function g is increasing and since(a
b

)′
=

b2a1 − a2b1

(eb1,b2(t))2
,

(6.5) tells us that f
g is nondecreasing, concluding the proof. �

The same assertion as one that C. E. M. Pearce and J. Pečarić gave in Theorem 16
was obtained by A.-J. Li, X.-M. Wang and C.-P. Chen, in [21], in 2006.

Extending the Ky Fan inequality to several general integral forms, they obtained the
following theorems on monotonic properties of the function Ls(a,b)

Ls(α−a,α−b) with α, a, b ∈
(0, +∞) and s ∈ R .

THEOREM 17. Let

fα(s) =

⎛
⎜⎜⎜⎝

b∫
a

xsdx

b∫
a
(α − x)sdx

⎞
⎟⎟⎟⎠

1
s

=
Ls(a, b)

Ls(α − a,α − b)
,

s ∈ (−∞, +∞) and α be a positive number. Then fα(s) is a strictly increasing
function for [a, b] ⊆ (

0, α2
]
, and is a strictly decreasing function for [a, b] ⊆ [α

2 ,α
)
.

THEOREM 18. Let

f (s) =

⎛
⎜⎜⎜⎝

1
b−a

b∫
a

xsdx

1
d−c

d∫
c

xsdx

⎞
⎟⎟⎟⎠

1
s

=
Ls(a, b)
Ls(c, d)

,

s ∈ (−∞, +∞) and a, b, c, d be positive numbers. Then f (s) is a strictly increasing
function for ad < bc , or a strictly decreasing function for ad > bc .
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Proofs of Theorem 17 and Theorem 18 are done using analogous method as one
that C.-P. Chen and F. Qi used in [9] to prove Theorem 14.

In 2006. J. Sándor, in [37], proved the following theorem.

THEOREM 19. Suppose that f : (0, 1] → R is a strictly decreasing, convex (or
concave) function. Then one has the inequality

1
n + 1

n+1∑
i=1

f

(
i

n + 1

)
>

1
n

n∑
i=1

f
( i

n

)
. (6.6)

COMMENTS. Notice that the reversed sign inequality, when f is strictly increasing
and concave or convex function, was proved by J.-C. Kuang, in [20], in 1999, and,
moreover, was known since 1975. thanks to Jan van de Lune’s work ([1, p. 254]).

J. Sándor’s proof is based on the method of J.-C. Kuang, [20].
Applying Theorem 19 to the function f (x) = 1

xs = x−s , which is convex and
strictly decreasing, we get

1
n + 1

n+1∑
i=1

(
n + 1

i

)s

>
1
n

n∑
i=1

(n
i

)s
,

which is equivalent to left-hand side of (6.1) for r = −s , s > 0 .

7. Application in guessing theory

In 1998 S. S. Dragomir and J. van der Hoek, in [14], proved an analytic inequal-
ity which has important applications to the estimation for the moments of guessing
mappings.

To prove their main result they start with sequences Sp(n) and Gp(n) defined in
the following way:

Sp(n) =
n∑

j=1

jp and Gp(n) =
Sp(n)
np+1

,

where p is positive real number and n � 1 is natural number. Then the next theorem
holds.

THEOREM 20. Let p � 1 , p ∈ R . Then
(1) The lower bound for Gp(n) is

Gp(n) � (n + 1)p

(n + 1)p+1 − np+1
, for all n � 1; (7.1)

(2) The sequence Gp(·) is nonincreasing, i.e.

Gp(n + 1) � Gp(n), for all n � 1. (7.2)
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COMMENTS. Note that sequence Gp(n) is defined in the same way as the function
Un(s) in J. van de Lune’sProblem 399. Moreover, inequality (7.1) is identical to Alzer’s
inequality (3.1) (replace p with r ). Namely, according to the definition of Gp(n) and
the fact that

n+1∑
i=1

ip =
n∑

i=1

ip + (n + 1)p,

inequality (7.1) is equivalent to

n∑
i=1

ip

np+1
� (n + 1)p

(n + 1)p+1 − np+1
,

(n + 1)p+1
n∑

i=1

ip − np+1
n∑

i=1

ip � np+1(n + 1)p,

(n + 1)p+1
n∑

i=1

ip � np+1

(
n∑

i=1

ip + (n + 1)p

)
,

(n + 1)p+1
n∑

i=1

ip � np+1
n+1∑
i=1

ip,

n
n + 1

�

⎡
⎢⎢⎢⎣

(n + 1)
n∑

i=1
ip

n
n+1∑
i=1

ip

⎤
⎥⎥⎥⎦

1
p

,

for p ∈ R , p � 1 . Further, inequality (7.2) is equivalent to J. van de Lune’s statement
that function Un(s) is strictly decreasing in n ∈ N .

J. Sándor in his paper [35] (1999.) also point out two things. First, that (7.1)
is actually Alzer’s inequality proved also in his paper [33] for p > 0 and for strict
inequality and second, that (7.2) is equivalent to (7.1).

S. S. Dragomir and J. van der Hoek provedTheorem20 using the following lemma,

LEMMA 4. For p � 1 , p ∈ R and n � 1 we have

(n + 2)p
[
np+1 + (n + 1)p

]
� (n + 1)2p+1, (7.3)

and their main result is proved using Theorem 20.
In 2003. C.-P. Chen, F. Qi, P. Cerone and S. S. Dragomir, in [13], among other

results, presented the following theorem.

THEOREM 21. Let f be an increasing and convex (or concave) function defined

on [0, 1] . Then the sequence

{
1
n

n∑
i=1

f
(

i
n

)}
n∈N

decreases and

{
1
n

n−1∑
i=0

f
(

i
n

)}
n∈N
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increases, and

1
n

n∑
i=1

f
( i

n

)
� 1

n + 1

n+1∑
i=1

f

(
i

n + 1

)
�

1∫
0

f (t)dt

� 1
n + 1

n∑
i=0

f

(
i

n + 1

)
� 1

n

n−1∑
i=0

f
( i

n

)
.

(7.4)

COMMENTS. The first inequality in (7.4) is equivalent to Kuang’s inequality
(4.12), moreover it is equivalent to inequality (2.7) which was proved by J. H. van Lint
in Theorem 2. The last inequality in (7.4) is equivalent to inequality (2.8) which is also
known since 1975.

Applying Theorem 21 to f (x) = xr for x ∈ [0, 1] and r > 0 the authors of [13]
proved the following corollary.

COROLLARY 12. Let n ∈ N . Then for all real number r > 0 , it follows

⎛
⎜⎜⎜⎝

1
n

n−1∑
i=1

ir

1
n+1

n∑
i=1

ir

⎞
⎟⎟⎟⎠

1
r

� n
n + 1

�

⎛
⎜⎜⎜⎝

1
n

n∑
i=1

ir

1
n+1

n+1∑
i=1

ir

⎞
⎟⎟⎟⎠

1
r

. (7.5)

The right hand inequality in (7.5) is Van de Lune - Alzer’s inequality.
In 2003. I. Brnetić and J. Pečarić, in [5], generalized inequality (7.2) from Theorem

20. They used following function.

F(n, p, a) =

n∑
i=1

f (i)

nf (n)
,

where f (i) = (i + a)p . Obviously, F(n, p, 0) = Gp(n) . By obtaining the same result
as S. S. Dragomir and J. van der Hoek gave in [14] and [15], with F instead of G , I.
Brnetić and J. Pečarić obtained the best estimates for some inequalities in mentioned
papers.

Generalizing inequality (7.2), they presented the following theorem.

THEOREM 22. Let n � 2 be an integer and p � 1 , a � −1 be real numbers.
Let’s define

F(n, p, a) =

n∑
i=1

(i + a)p

n(n + a)p
.

Then F(n+ 1, p, a) � F(n, p, a) for each p � 1 , a � −1 and for each integer n � 2 .
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COMMENTS. Inequality

F(n + 1, p, a) � F(n, p, a)

is equivalent to
n+1∑
i=1

(i + a)p

(n + 1)(n + 1 + a)p
�

n∑
i=1

(i + a)p

n(n + a)p
,

i.e.

n + a
n + a + 1

�

⎡
⎢⎢⎢⎣

(n + 1)
n∑

i=1
(i + a)p

n
n+1∑
i=1

(i + a)p

⎤
⎥⎥⎥⎦

1
p

, (7.6)

for each integer n � 2 and for real numbers p � 1 , a � −1 .
Notice that inequality (7.6) is the generalization of F. Qi’s inequality (4.1) because

now it is proved for all real numbers k � −1 not only for nonnegative integers k .
The outline of the proof of Theorem 22 goes as follows:

It need’s to be shown that F(n, p, a)− F(n + 1, p, a) � 0 for p � 1 , a � 1 and
n � 2 . We have

F(n, p, a)− F(n + 1, p, a)

=

n∑
i=1

(i + a)p

n(n + a)p
−

n+1∑
i=1

(i + a)p

(n + 1)(n + 1 + a)p

=
n∑

i=1

(i + a)p

(
1

n(n + a)p
− 1

(n + 1)(n + 1 + a)p

)
− 1

n + 1

=
1

n + 1

(
F(n, p, a)

(n + 1)(n + 1 + a)p − n(n + a)p

(n + 1 + a)p
− 1

)
.

So, we have to prove that

F(n, p, a) � (n + 1 + a)p

(n + 1)(n + 1 + a)p − n(n + a)p
,

which is, by definition of function F(n, p, a) , equivalent to

n∑
i=1

(i + a)p � n(n + a)p(n + 1 + a)p

(n + 1)(n + 1 + a)p − n(n + a)p
. (7.7)

Inequality (7.7) was proved in [5], using mathematical induction, convexity of function
f (x) = (x + a)p , for p � 1 and x � −a and applying Jensen’s inequality.
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