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ON INEQUALITIES FOR SUMS OF BOUNDED RANDOM VARIABLES

IOSIF PINELIS

Abstract. A new upper bound on P(a1η1 + a2η2 + . . . � x) is obtained, where η1,η2, . . . are
independent zero-mean random variables such that |ηi| � 1 for all i . A multidimensional ana-
logue of this result and extensions to (super)martingales are presented, as well as an application
to self-normalized sums (or, equivalently, to t -statistics).
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