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ON INEQUALITIES FOR SUMS OF BOUNDED RANDOM VARIABLES

JOSIF PINELIS

(communicated by G. Peskir)

Abstract. A new upper bound on P(a;n; +axn, + ... > x) is obtained, where 1y, 1, ... are
independent zero-mean random variables such that |1;| < 1 forall /. A multidimensional ana-
logue of this result and extensions to (super)martingales are presented, as well as an application
to self-normalized sums (or, equivalently, to 7 -statistics).

1. Introduction and summary

Let 1My, N2, . .. be independent (not necessarily identically distributed) zero-mean
random variables (r.v.’s) such that |n;| < 1 almost surely (a.s.) for all i; the most
important special case is when 1n; = ¢ for all i, where the g ’s are independent
Rademacherr.v.’s, so that P(g = 1) = P(g; = —1) = 1 forall i. Let

Si=am +anm+...;

here and in what follows, it is assumed that a;,a, ... are any real numbers satisfying
the normalization condition

a+ad+-=1. (1)
It follows from a result of Hoeffding [11] that

P(S>x)<e /% forall x>0. ()

For n; = &, inequality (1) can be also deduced from the inequality E S|P < E|Z|?
due to Whittle [29] for p > 3 and to Haagerup [10] for p > 2. The general case of
any r.v.’s 7); as described above can then be obtained using a result by Hunt [12]; cf.
[5, Lemma 2]. With an extra constant factor ev/2, bound (1) for n; = & was already
given by Khinchin [13]; cf. [14, (1.11)].

Note that the upper bound e/2 in (1) coincides for all x > 0 with the best
upper exponential bound, inf,~9e " Ee?, on the tail probability P(Z > x) for a

Mathematics subject classification (2000): 60E15, 60G50, 60G42, 60G48, 26A48, 26D10.

Keywords andphrases: Upperbounds, probability inequalities, bounded random variables, Rademacher
random variables, sums of independent random variables, (super)martingales, self-normalized sums, 7-
statistics.

© ey, Zagreb 1

Paper IMI-02-01



2 IOSIF PINELIS

standard normal r.v. Z. Thus, a factor of the order of magnitude of )1—( is “missing" in

this bound, compared with the asymptotics P(Z > x) ~ 1 ¢(x) as x — oo, where

o(x) = e‘xz/z/\/Zrc is the density function of Z. (We write a ~ b for a/b — 1.)
Now it should be clear that any exponential upper bound on the tail probabilities for
sums of independent random variables must be missing the % factor.

Eaton [5] proved that P(|S| > x) < 2E(|Z| — )3 /(x — )® for all x and ¢ such
that 0 < ¢ < x, from which he deduced another upper bound on P(|S| > x), which is
asymptotic to ¢3 P(|Z] > x) as x — oo, where

2¢°
c3 = ? ~ 446,

and he conjectured that P(|S| > x) < 2c3! ¢(x) for x > /2. The stronger form of
this conjecture,

P(S > x) < ¢P(Z > x) (3)

for all x € R with ¢ = ¢3 was proved by Pinelis [16], along with a multidimensional
extension. (More exactly, in [16] a two-tail version of inequality (3) was given. The
right-tail inequality (3) can be proved quite similarly; alternatively, it follows from
general results of [17].) Various generalizations and improvements of inequality (3) as
well as related results were given by Pinelis [17, 18, 22, 24, 25, 27] and Bentkus [1, 2, 3].

For n; = &, Bobkov, Gotze and Houdré (BGH) [4] gave a simple proof of (3)
with a constant factor ¢ ~ 12.01. Their method was based on a Chapman-Kolmogorov
identity. Such an identity was used, e.g., in [19] concerning a conjecture by Graversen
and Peskir [9]. In [28], it was shown that a modification of the BGH method can be
used to show that for the least possible absolute constant factor ¢, in inequality (3) for
all x € R (again, for n; = &) one has

Cx € [co,c1] = [3.18,3.22], where

1
Co = m, C1 :Co(l“v‘ﬁ(l"‘r(\/g))) %CO'I.OI,

and r(x) := P(Z > x)/@(x) is the inverse Mills ratio.
On the other hand, also for 1; = &; , Edelman [7] proposed the interesting inequality

PS>x)<P(Z>x—-15/x) forall x>0. 4)

Employing certain conditioning, Edelman [7] also offered applications of inequality (4)
to statistical inference based on Student’s ¢ statistic. Before that, the same conditioning
idea (in relation with inequality (2) in place of (4)) was presented by Efron [8] and
then by Eaton and Efron [6], in more general settings. The sketch of proof suggested in
[7] for inequality (4) required an apparently nontrivial iterative computation procedure,
which I have not been able to reproduce within a reasonable amount of computer time,
because of rapid deterioration of precision at every step of the iterative procedure.
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In this note, a simple proof of the following improvements of inequality (4) is
presented.

THEOREM 1. One has
PS>x)<PZ>=x—A/x) forall x>0, (5)

with
A 23,3 ::lnC3 =1495....
Moreover, if n; = & for all i, then inequality (5) holds with the better constant

A :Al ::lncl =1.168....
One application of Theorem 1 is to self-normalized sums

R e (6)
where, following Efron [8], we assume that the X;’s satisfy the so-called orthant sym-
metry condition: the joint distribution of 0;Xi,...,,X, is the same for any choice
of signs 0y,...,6, € {l,—1}, so that, in particular, each X; is symmetrically dis-
tributed. It suffices that the X;’s be independent and symmetrically (but not necessarily
identically) distributed. In particular, V = § if X; = a;& Vi. It was noted by
Efron that (i) Student’s statistic T is a monotonic function of the self-normalized sum:

T = /"=1V/\/1 —V2/n and (ii) the orthant symmetry implies in general that the

n
distribution of V is a mixture of the distributions of normalized Rademacher sums S.
Thus, one obtains

COROLLARY 2. Inequality (5) with V in place of S holds for A = A;.

REMARK 1. Another immediate corollary of Theorem 1 is the following two-tail
counterpart of (5):

P(IS| = x) <P(|Z| > x — A/x) forall x>0, (7)

with A = A3 = 1.495... for the n;’s in general, and with A = A; = 1.168... when
n; = & forall i.

Moreover, following the lines of proof in [17], [3], or [25], it is easy to see that the
upper bounds in (5) and (7) with A = A3 = 1.495... hold for S, in place of S, Vn,
where (S;) is a martingale with Sp = O a.s. and differences X; := S; — S;—; (i > 1)
such that ), esssup |X;|* < 1. Other extensions hold as well; look e.g. in [27] for
appearances of the constant ¢z = 2¢*/9 together with P(Z > ...) or P(|Z| > ...).

Furthermore, using the dimensionality reduction device given in [23], one imme-
diately obtains a multi-dimensional generalization of (7):

P(lmxi+mx2+...[| = x) <P(Z| >x—A/x) Vx>0,
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where Xi,Xp,... are any non-random vectors in a Hilbert space (H,| - ||) such that
%1 + ||%2||> + - -- = 1; here, again, A = A3 = 1.495... in general, and A = A; =
1.168... when 1n; = g forall i. (Cf. [27, Remark 1.4].)

2. Proofs

Theorem 1 follows immediately from Proposition 1 (below) and inequalities (2)
and (3) (with ¢ = ¢3 in general and with ¢ = ¢; when n; = ¢ forall 7).

PROPOSITION 1. Forall ¢ € [co,c3] and all x > 0,
min (¢=/%,¢P(Z > x)) <P (Z = x — (Inc)/x). (8)

Note that the constant Inc is the best possible in inequality (8); indeed, using
I'Hospital’s rule for limits it is easy to see that cP(Z > x) ~ P (Z > x — (Inc)/x) as
x — 00. Moreover, (8) will hold (for all x > 0) even for some (but not all) ¢ € (0, co)
and for some (but not all) ¢ € (c3,00). However, Proposition 1 as presented here will
be sufficient for the purposes of this paper.

The proof of Proposition 1 is based on the following three lemmas.

LEMMA 1.
(i) Foreach A € R there exists a unique point x.(A) € R such that
7x2/2 . < A{
min (e—x2/27e)t P(Z > )C)) — { € lf XX x*( )a
FP(Z>=x) if x>x.(A).

(ii) Foreach x € R, let A.(x) :=In (e_"z/z/ P(Z > x)), sothat A = A.(x) is
the only solution of equation e /% = ¢* P(Z > x). Then x = x,(A) <
A = Ai(x), for all real A and x. Moreover, the function A, is increasing
and concave.

LEMMA 2. Forany A > 0 and b > 0, one has i%)fb] ri(x) = min (1,r((b)),
xe (0,

where ri(x) := e/ P(Z>x—A/x).

LEMMA 3. Forany A > 0 and b > 0, one has i[nf )rz(x) = min (1,r,(b)),
x€[b,00

where ry(x) :=P(Z > x— A /x)/(e* P(Z > x)).

The proofs of these lemmas will be given at the end of the paper. They (as
well as the proof of Proposition 1) make use of the following 1’Hospital-type rules for
monotonicity:

PROPOSITION 2. Let —co < a < b < oo. Let f and g be real-valued
differentiable functions, defined on the interval (a,b), such that g and g' do not take
on the zero value on (a,b). Let

ri=f/g and p:=f'/g.
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(i) [26, Corollary 3.1] If p is monotonic on (a,b), then r may switch at most
once on (a,b) — either from increase to decrease or vice versa.

(ii) [26, Proposition 4.3] At this point suppose in addition that f(b—) =
g(b—) = 0; suppose also that p ,/"\, on (a,b) —that is, for some ¢ € [a,b],
o /" (p isincreasing)on (a,c) and p \, on (c¢,b). Then r /\, on (a,b).
Moreover, if p /* on (a,b) then r is so. (Note that the symbol ™\, has a
slightly different meaning in [26]: there ¢ cannot equal a or b.)

Alternatively, instead of Proposition 2, one can use results of [20].
Proof of Proposition 1. By part (i) of Lemma 1, A.(x) increases from Ay :=

Incg = 1.156... to A3 = Incz = 1.495... as x increases from xo := x.(Ay) =
0.670... to x3 := x,(A3) = 1.312... ; moreover, by the concavity of the function A, ,

(x —xp) forallx € [xo,x3]. 9)

Consider now theratios r3 :=f /g and p :=f'/g’, where f (x) := P(Z > x—A..(x)/x)
and g(x) := e~*/2 Then o has the form R;e®, where R, and R, are certain rational
functions; hence, p’ has the same form, whence it is straightforward to see that p’ > 0
and hence p " on (xo,x3/5), and p’ < O and hence p \, on (x3/,,x3), where
x3/2 = 0.718... is the only root of p’ in the interval (xo,x3). So, by part (i) of
Proposition 2, on each of the intervals (xo,x3/,) and (x3/,,x3), the ratio r3 may switch
at most once from increase to decrease or vice versa. However, #}(xp) = —0.080... <
0, r3(x32) = —0.093... <0, and r3(x3) = —0.023... < 0. Therefore, r3 \, on
each of the intervals (xo,x3/2) and (x35,x3), and hence r; \, on the entire interval
(x0,x3) . Since r3(x3) = 1.020... > 1, one has r; > 1 ontheinterval [xo,x3]. Hence,
in view of (9), P(Z > x— A, (x)/x) > e~/ forall x € [xo,x3]; thatis, r{(x. (1)) > 1
forall A € [Ag, A3]. It remains to refer to part (i) of Lemma 1 and Lemmas 2 and 3.

(Il

Proof of Lemma 1. Apparently, this lemma is essentially known. A quick way
to prove it is to observe that the Mills ratio V2me /2 P(Z > x) is identical to
1> e~/ gy and hence decreasing (to 0) and log-convex (in x € R). Alter-

natively, one can use here the mentioned 1’Hospital-type rule for monotonicity. (Cf.
[21,22].) O

Proof of Lemma 2. Write r; = f /g and consider the ratio p := f'/g’, where
f(x):=P(Z>x—A/x) and g(x) := e */2. Then

A+ X2 A3
pl) = X and iy = 2B
V2T X3 e2? V27 x0 e22

so that p’ changes sign from + to — on (0, c0) and hence p /™, on (0,00). So, by
Proposition 2, r; /™, on (0,00). Also, r1(0+) = 1. Now Lemma 2 follows. O

)
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Proof of Lemma 3. Write r, = f /g and consider the ratio p := f'/g’, where

f(x):=P(Z>=x—A/x) and g(x) := ¢* P(Z > x) for x > 0. Then

2

pl)=e W(1+4) and p/(x)= (A2~ 2 —A)P)AxSe 3,

so that p /™, on (0, 00). By Proposition 2, one now has r, ./, on (0,00). Also,
by 1"Hospital’s rule for limits, r,(co—) = p(co—) = 1. Now Lemma 3 follows. [
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