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ON INEQUALITIES FOR SUMS OF BOUNDED RANDOM VARIABLES

IOSIF PINELIS

(communicated by G. Peskir)

Abstract. A new upper bound on P(a1η1 + a2η2 + . . . � x) is obtained, where η1,η2, . . . are
independent zero-mean random variables such that |ηi| � 1 for all i . A multidimensional ana-
logue of this result and extensions to (super)martingales are presented, as well as an application
to self-normalized sums (or, equivalently, to t -statistics).

1. Introduction and summary

Let η1,η2, . . . be independent (not necessarily identically distributed) zero-mean
random variables (r.v.’s) such that |ηi| � 1 almost surely (a.s.) for all i ; the most
important special case is when ηi = εi for all i , where the εi ’s are independent
Rademacher r.v.’s, so that P(εi = 1) = P(εi = −1) = 1

2 for all i . Let

S := a1η1 + a2η2 + . . . ;

here and in what follows, it is assumed that a1, a2, . . . are any real numbers satisfying
the normalization condition

a2
1 + a2

2 + · · · = 1. (1)

It follows from a result of Hoeffding [11] that

P(S � x) � e−x2/2 for all x � 0. (2)

For ηi = εi , inequality (1) can be also deduced from the inequality E |S|p � E |Z|p
due to Whittle [29] for p � 3 and to Haagerup [10] for p � 2 . The general case of
any r.v.’s ηi as described above can then be obtained using a result by Hunt [12]; cf.
[5, Lemma 2]. With an extra constant factor e

√
2 , bound (1) for ηi = εi was already

given by Khinchin [13]; cf. [14, (1.11)].
Note that the upper bound e−x2/2 in (1) coincides for all x � 0 with the best

upper exponential bound, inft�0 e−tx E etZ , on the tail probability P(Z � x) for a
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standard normal r.v. Z . Thus, a factor of the order of magnitude of 1
x is “missing" in

this bound, compared with the asymptotics P(Z � x) ∼ 1
x ϕ(x) as x → ∞ , where

ϕ(x) := e−x2/2/
√

2π is the density function of Z . (We write a ∼ b for a/b → 1 .)
Now it should be clear that any exponential upper bound on the tail probabilities for
sums of independent random variables must be missing the 1

x factor.
Eaton [5] proved that P(|S| � x) � 2 E(|Z| − t)3

+/(x − t)3 for all x and t such
that 0 < t < x , from which he deduced another upper bound on P(|S| � x) , which is
asymptotic to c3 P(|Z| � x) as x → ∞ , where

c3 :=
2e3

9
≈ 4.46,

and he conjectured that P(|S| � x) � 2c3
1
x ϕ(x) for x >

√
2 . The stronger form of

this conjecture,

P(S � x) � c P(Z � x) (3)

for all x ∈ R with c = c3 was proved by Pinelis [16], along with a multidimensional
extension. (More exactly, in [16] a two-tail version of inequality (3) was given. The
right-tail inequality (3) can be proved quite similarly; alternatively, it follows from
general results of [17].) Various generalizations and improvements of inequality (3) as
well as related results were given by Pinelis [17, 18, 22, 24, 25, 27] and Bentkus [1, 2, 3].

For ηi = εi , Bobkov, Götze and Houdré (BGH) [4] gave a simple proof of (3)
with a constant factor c ≈ 12.01 . Their method was based on a Chapman-Kolmogorov
identity. Such an identity was used, e.g., in [19] concerning a conjecture by Graversen
and Peškir [9]. In [28], it was shown that a modification of the BGH method can be
used to show that for the least possible absolute constant factor c∗ in inequality (3) for
all x ∈ R (again, for ηi = εi ) one has

c∗ ∈ [c0, c1] ≈ [3.18, 3.22], where

c0 :=
1

4 P(Z �
√

2)
, c1 := c0 ·

(
1 + 1

250

(
1 + r(

√
3 )

)) ≈ c0 · 1.01,

and r(x) := P(Z � x)/ϕ(x) is the inverse Mills ratio.
On the other hand, also for ηi = εi , Edelman [7] proposed the interesting inequality

P(S � x) � P (Z � x − 1.5/x) for all x > 0. (4)

Employing certain conditioning, Edelman [7] also offered applications of inequality (4)
to statistical inference based on Student’s t statistic. Before that, the same conditioning
idea (in relation with inequality (2) in place of (4)) was presented by Efron [8] and
then by Eaton and Efron [6], in more general settings. The sketch of proof suggested in
[7] for inequality (4) required an apparently nontrivial iterative computation procedure,
which I have not been able to reproduce within a reasonable amount of computer time,
because of rapid deterioration of precision at every step of the iterative procedure.
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In this note, a simple proof of the following improvements of inequality (4) is
presented.

THEOREM 1. One has

P(S � x) � P(Z � x − λ/x) for all x > 0, (5)

with
λ = λ3 := ln c3 = 1.495 . . . .

Moreover, if ηi = εi for all i , then inequality (5) holds with the better constant

λ = λ1 := ln c1 = 1.168 . . . .

One application of Theorem 1 is to self-normalized sums

V :=
X1 + · · · + Xn√
X2

1 + · · · + X2
n

, (6)

where, following Efron [8], we assume that the Xi ’s satisfy the so-called orthant sym-
metry condition: the joint distribution of δ1X1, . . . , δnXn is the same for any choice
of signs δ1, . . . , δn ∈ {1,−1} , so that, in particular, each Xi is symmetrically dis-
tributed. It suffices that the Xi ’s be independent and symmetrically (but not necessarily
identically) distributed. In particular, V = S if Xi = aiεi ∀i . It was noted by
Efron that (i) Student’s statistic T is a monotonic function of the self-normalized sum:

T =
√

n−1
n V/

√
1 − V2/n and (ii) the orthant symmetry implies in general that the

distribution of V is a mixture of the distributions of normalized Rademacher sums S .
Thus, one obtains

COROLLARY 2. Inequality (5) with V in place of S holds for λ = λ1 .

REMARK 1. Another immediate corollary of Theorem 1 is the following two-tail
counterpart of (5):

P(|S| � x) � P(|Z| � x − λ/x) for all x > 0, (7)

with λ = λ3 = 1.495 . . . for the ηi ’s in general, and with λ = λ1 = 1.168 . . . when
ηi = εi for all i .

Moreover, following the lines of proof in [17], [3], or [25], it is easy to see that the
upper bounds in (5) and (7) with λ = λ3 = 1.495 . . . hold for Sn in place of S , ∀n ,
where (Si) is a martingale with S0 = 0 a.s. and differences Xi := Si − Si−1 ( i � 1 )
such that

∑
i ess sup |Xi|2 � 1 . Other extensions hold as well; look e.g. in [27] for

appearances of the constant c3,0 = 2e3/9 together with P(Z � . . .) or P(|Z| � . . .) .
Furthermore, using the dimensionality reduction device given in [23], one imme-

diately obtains a multi-dimensional generalization of (7):

P (‖η1x1 + η2x2 + . . . ‖ � x) � P(|Z| � x − λ/x) ∀x > 0,
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where x1, x2, . . . are any non-random vectors in a Hilbert space (H, ‖ · ‖) such that
‖x1‖2 + ‖x2‖2 + · · · = 1 ; here, again, λ = λ3 = 1.495 . . . in general, and λ = λ1 =
1.168 . . . when ηi = εi for all i . (Cf. [27, Remark 1.4].)

2. Proofs

Theorem 1 follows immediately from Proposition 1 (below) and inequalities (2)
and (3) (with c = c3 in general and with c = c1 when ηi = εi for all i ).

PROPOSITION 1. For all c ∈ [c0, c3] and all x > 0 ,

min
(
e−x2/2, c P(Z � x)

)
� P

(
Z � x − (ln c)/x

)
. (8)

Note that the constant ln c is the best possible in inequality (8); indeed, using
l’Hospital’s rule for limits it is easy to see that c P(Z � x) ∼ P

(
Z � x − (ln c)/x

)
as

x → ∞ . Moreover, (8) will hold (for all x > 0 ) even for some (but not all) c ∈ (0, c0)
and for some (but not all) c ∈ (c3,∞) . However, Proposition 1 as presented here will
be sufficient for the purposes of this paper.

The proof of Proposition 1 is based on the following three lemmas.

LEMMA 1.
(i) For each λ ∈ R there exists a unique point x∗(λ ) ∈ R such that

min
(
e−x2/2, eλ P(Z � x)

)
=

{
e−x2/2 if x � x∗(λ ),
eλ P(Z � x) if x � x∗(λ ).

(ii) For each x ∈ R , let λ∗(x) := ln
(
e−x2/2/ P(Z � x)

)
, so that λ = λ∗(x) is

the only solution of equation e−x2/2 = eλ P(Z � x) . Then x = x∗(λ ) ⇐⇒
λ = λ∗(x) , for all real λ and x . Moreover, the function λ∗ is increasing
and concave.

LEMMA 2. For any λ > 0 and b > 0 , one has inf
x∈(0,b]

r1(x) = min
(
1, r1(b)

)
,

where r1(x) := ex2/2 P(Z � x − λ/x) .

LEMMA 3. For any λ > 0 and b > 0 , one has inf
x∈[b,∞)

r2(x) = min
(
1, r2(b)

)
,

where r2(x) := P(Z � x − λ/x)/
(
eλ P(Z � x)

)
.

The proofs of these lemmas will be given at the end of the paper. They (as
well as the proof of Proposition 1) make use of the following l’Hospital-type rules for
monotonicity:

PROPOSITION 2. Let −∞ � a < b � ∞ . Let f and g be real-valued
differentiable functions, defined on the interval (a, b) , such that g and g′ do not take
on the zero value on (a, b) . Let

r := f /g and ρ := f ′/g′.
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(i) [26, Corollary 3.1] If ρ is monotonic on (a, b) , then r may switch at most
once on (a, b) – either from increase to decrease or vice versa.

(ii) [26, Proposition 4.3] At this point suppose in addition that f (b−) =
g(b−) = 0 ; suppose also that ρ ↗↘ on (a, b) – that is, for some c ∈ [a, b] ,
ρ ↗ (ρ is increasing) on (a, c) and ρ ↘ on (c, b) . Then r ↗↘ on (a, b) .
Moreover, if ρ ↗ on (a, b) then r is so. (Note that the symbol ↗↘ has a
slightly different meaning in [26]: there c cannot equal a or b .)

Alternatively, instead of Proposition 2, one can use results of [20].

Proof of Proposition 1. By part (ii) of Lemma 1, λ∗(x) increases from λ0 :=
ln c0 = 1.156 . . . to λ3 = ln c3 = 1.495 . . . as x increases from x0 := x∗(λ0) =
0.670 . . . to x3 := x∗(λ3) = 1.312 . . . ; moreover, by the concavity of the function λ∗ ,

λ∗(x) � λ∗∗(x) := λ0 +
λ3 − λ0

x3 − x0
(x − x0) for all x ∈ [x0, x3]. (9)

Consider now the ratios r3 := f /g and ρ := f ′/g′ , where f (x) := P(Z � x−λ∗∗(x)/x)
and g(x) := e−x2/2 . Then ρ has the form R1eR2 , where R1 and R2 are certain rational
functions; hence, ρ′ has the same form, whence it is straightforward to see that ρ′ > 0
and hence ρ ↗ on (x0, x3/2) , and ρ′ < 0 and hence ρ ↘ on (x3/2, x3) , where
x3/2 = 0.718 . . . is the only root of ρ′ in the interval (x0, x3) . So, by part (i) of
Proposition 2, on each of the intervals (x0, x3/2) and (x3/2, x3) , the ratio r3 may switch
at most once from increase to decrease or vice versa. However, r′3(x0) = −0.080 . . . <
0 , r′3(x3/2) = −0.093 . . . < 0 , and r′3(x3) = −0.023 . . . < 0 . Therefore, r3 ↘ on
each of the intervals (x0, x3/2) and (x3/2, x3) , and hence r3 ↘ on the entire interval
(x0, x3) . Since r3(x3) = 1.020 . . . > 1 , one has r3 > 1 on the interval [x0, x3] . Hence,
in view of (9), P(Z � x−λ∗(x)/x) > e−x2/2 for all x ∈ [x0, x3] ; that is, r1(x∗(λ )) > 1
for all λ ∈ [λ0, λ3] . It remains to refer to part (i) of Lemma 1 and Lemmas 2 and 3.

�

Proof of Lemma 1. Apparently, this lemma is essentially known. A quick way
to prove it is to observe that the Mills ratio

√
2πex2/2 P(Z � x) is identical to∫ ∞

0 e−xu−u2/2 du , and hence decreasing (to 0 ) and log-convex (in x ∈ R ). Alter-
natively, one can use here the mentioned l’Hospital-type rule for monotonicity. (Cf.
[21, 22].) �

Proof of Lemma 2. Write r1 = f /g and consider the ratio ρ := f ′/g′ , where
f (x) := P(Z � x − λ/x) and g(x) := e−x2/2 . Then

ρ(x) =
λ + x2

√
2π x3 e

λ2

2x2 −λ
and ρ′(x) =

λ 3 − (3 − λ )λx2 − x4

√
2π x6 e

λ2

2x2 −λ
,

so that ρ′ changes sign from + to − on (0,∞) and hence ρ ↗↘ on (0,∞) . So, by
Proposition 2, r1 ↗↘ on (0,∞) . Also, r1(0+) = 1 . Now Lemma 2 follows. �
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Proof of Lemma 3. Write r2 = f /g and consider the ratio ρ := f ′/g′ , where
f (x) := P(Z � x − λ/x) and g(x) := eλ P(Z � x) for x > 0 . Then

ρ(x) = e−
λ2

2x2 (1 + λ
x2 ) and ρ′(x) =

(
λ 2 − (2 − λ )x2

)
λ x−5 e−

λ2

2x2 ,

so that ρ ↗↘ on (0,∞) . By Proposition 2, one now has r2 ↗↘ on (0,∞) . Also,
by l’Hospital’s rule for limits, r2(∞−) = ρ(∞−) = 1 . Now Lemma 3 follows. �
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