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CONSOLIDATIONS OF EXTENDED QI’S

INEQUALITY AND BOUGOFFA’S INEQUALITY

WENJUN LIU, CHUNCHENG LI AND JIANWEI DONG

(communicated by J. Pečarić)

Abstract. In this paper, an extension of Bougoffa’s inequality is given, which gives a complete
answer to an open problem posed by Bougoffa in [3]. Moreover, consolidations of extended Qi’s
inequality and Bougoffa’s inequality are obtained.

1. Introduction

In the paper [9] Qi proposed the following open problem, which has attracted much
attention from some mathematicians (cf. [1, 2, 7, 8, 10, 11]).

Open Problem 1. Under what conditions does the inequality

∫ b

a
[f (x)]tdx �

(∫ b

a
f (x)dx

)t−1

(1)

hold for t > 1 ?

Similar to Open Problem 1, in the paper [3] Bougoffa proposed the following

Open Problem 2. Under what conditions does the inequality

∫ b

a
[f (x)]tdx �

(∫ b

a
f (x)dx

)1−t

(2)

hold for t < 1 ?

By using Hölder’s inequality, Bougoffa obtained an answer to Open Problem 2
for 0 < t � 1/2 and min

[a,b]
f (x) > 0 . In the previous paper [6], we gave an answer to

Open Problem 2 for 0 < t < 1/2 and obtained an consolidation of Qi’s inequality and
Bougoffa’s inequality.
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In the present paper, we first give an extension of Bougoffa’s inequality from
which we can give a complete answer to Problem 2. Then, we obtain consolidations of
extended Qi’s inequality and Bougoffa’s inequality.

2. An extension of Bougoffa’s inequality

In [10], the authors obtained the following result, which was an extension of Qi’s
inequality.

PROPOSITION 1. Let f (x) be continuous and not identically zero on [a, b] ,
differentiable in (a, b) with f (a) = 0 , and let α, β be positive real numbers such that
α > β > 1 . If

[f (α−β)/(β−1)]′(x) � (α − β)β1/(β−1)

α − 1
(3)

for all x ∈ (a, b) , then

∫ b

a
[f (x)]αdx �

(∫ b

a
f (x)dx

)β

. (4)

Based on Proposition 1, we can obtain an extension of Bougoffa’s inequality as
follow, in which setting α = 1/t and β = 1/(1 − t) for t ∈ (0, 1

2 ) ∪ ( 1
2 , 1) , and

α = β = 2 for t = 1
2 , we can give a direct answer to Open Problem 2.

THEOREM 1. Let f (x) be continuous and not identically zero on [a, b] , differen-
tiable in (a, b) with f (a) = 0 , and let α, β be positive real numbers.

(1) In case of α > β > 1 . If

[f (α−β)/α(β−1)]′(x) � 0 and [f (α−β)/α(β−1)]′(x) � (α − β)β1/(β−1)

α − 1
(5)

for all x ∈ (a, b) , then

∫ b

a
[f (x)]

1
α dx �

(∫ b

a
f (x)dx

) 1
β

. (6)

(2) In case of α = β > 1 . If

[ln f (x)]′ � 0 and [ln f (x)]′ � αα/(α−1) (7)

for all x ∈ (a, b) , then (6) holds.
(3) In case of β > α > 1 . If

[f (α−β)/α(β−1)]′(x) � (α − β)β1/(β−1)

α − 1
(8)

for all x ∈ (a, b) , then

∫ b

a
[f (x)]

1
α dx �

(∫ b

a
f (x)dx

) 1
β

. (9)
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Proof. (1) Substitute f (x) in Proposition 1 with [f (x)]
1
α .

(2) If the condition (7) is satisfied, we may assume f (x) > 0 for x ∈ (a, b] . Thus
both sides of (6) are not 0. By using Cauchy’s Mean Value Theorem twice, we have

∫ b
a [f (x)]

1
α dx(∫ b

a f (x)dx
) 1

α
=

[f (b1)]
1
α−1

1
α

(∫ b1

a f (x)dx
) 1

α−1
(a < b1 < b) (10)

=

( ∫ b1

a f (x)dx

α
α

1−α f (b1)

)1− 1
α

(11)

=

(
1

α
α

1−α [ln f (x)]′x=b2

)1− 1
α

(a < b2 < b1) (12)

� 1. (13)

So the inequality (6) holds.

(3) Suppose that [f (α−β)/α(β−1)]′(x) � 0 for x ∈ (a, b) , then f (α−β)/α(β−1)(x)
is non-increasing function. It follows that f (x) � 0 for x ∈ (a, b] . If the condition (8)
satisfied, we may assume f (x) > 0 for x ∈ (a, b] . Thus, we have

∫ b
a [f (x)]

1
α dx(∫ b

a f (x)dx
) 1

β
=

[f (c1)]
1
α−1

1
β
(∫ c1

a f (x)dx
) 1
β −1

(a < c1 < b) (14)

=

⎛
⎝ ∫ c1

a f (x)dx

β
β

1−β [f (c1)]
(α−1)β
α(β−1)

⎞
⎠

1− 1
β

(15)

=

⎛
⎜⎝ 1

β
β

1−β (α−1)β
α(β−1) [f (c2)]

(α−1)β
α(β−1)

−2
f ′(c2)

⎞
⎟⎠

1− 1
β

(a < c2 < c1) (16)

=

⎛
⎜⎝ 1

β
1

1−β α−1
α−β [f

α−β
α(β−1) ]′(c2)

⎞
⎟⎠

1− 1
β

(17)

� 1. (18)

So the inequality (9) holds. �
In case of β > α > 1 , it’s easy to see that there is no function f (x) to satisfy the

conditions of Theorem 1 and (α−β)β1/(β−1)

α−1 � [f (α−β)/α(β−1)]′(x) � 0 for all x ∈ (a, b)
simultaneously. Therefore, we now seek another method to obtain the reverse inequality
of (9). For this purpose, we need the reversed Hölder inequality of Nehari’s (see [8]).
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LEMMA 1. Let f , g be nonnegative concave functions on [a, b] . Then, for
p, q > 0 such that p−1 + q−1 = 1 , we have

(∫ b

a
f p

)1/p(∫ b

a
gq

)1/q

� N(p, q)
∫ b

a
f g, (19)

where

N(p, q) =
6

(1 + p)1/p(1 + q)1/q
. (20)

THEOREM 2. Let f (x) be nonnegative, concave and integrable on [a, b] and
β > α > 1 . Suppose

f (x) �
(

(1 + α)(2α − 1)α−1

6α(α − 1)α−1(b − a)1−β

) α
α−β

(21)

for x ∈ [a, b] . Then the inequality (9) reverses.

Proof. Put f ≡ 1, q = α into Lemma 1. Then we clearly obtain

∫ b

a
gα(x)dx � Nα

(
α

α − 1
,α
)

(b − a)1−α

(∫ b

a
g(x)dx

)α−β (∫ b

a
g(x)dx

)β

(22)

� Nα
(

α
α − 1

,α
)

(b − a)1−β(min
[a,b]

g(x))α−β

(∫ b

a
g(x)dx

)β

. (23)

Here N(·, ·) is the Nehari constant given by (20). Set gα = f , we have

∫ b

a
f (x)dx � Nα

(
α

α − 1
,α
)

(b − a)1−β(min
[a,b]

f (x))
α−β
α

(∫ b

a
f

1
α (x)dx

)β

, (24)

By (24) the proof is complete. �

3. Consolidations of two extended inequalities

In this section, by combiningTheorem1 and Proposition 1, we obtain another result
of this paper which gives consolidations of extended Qi’s inequality and Bougoffa’s
inequality. To our best knowledge, this result is not found in other works.

THEOREM 3. Let f (x) be continuous and not identically zero on [a, b] , differ-
entiable in (a, b) with f (a) = 0 , and let α, β be positive real numbers such that
α > β > 1 .

(1) If

[f
α−β
α(β−1) ]′(x) � (α − β)β1/(β−1)

α − 1
and [f

α−β
β−1 ]′(x) � (α − β)β1/(β−1)

α − 1
(25)
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for x ∈ (a, b) , then

(∫ b

a
[f (x)]

1
α dx

)β

�
∫ b

a
f (x)dx �

(∫ b

a
[f (x)]αdx

) 1
β

. (26)

(2) If

0 � [f
α−β
α(β−1) ]′(x) � (α − β)β1/(β−1)

α − 1
and 0 � [f

α−β
β−1 ]′(x) � (α − β)β1/(β−1)

α − 1
(27)

for x ∈ (a, b) , then the inequality (26) reverses.
(3) If

[f
β−α
β(α−1) ]′(x) � (β − α)α1/(α−1)

β − 1
and [f

α−β
β−1 ]′(x) � (α − β)β1/(β−1)

α − 1
(28)

for x ∈ (a, b) , then

(∫ b

a
[f (x)]

1
β dx

)α

�
∫ b

a
f (x)dx �

(∫ b

a
[f (x)]αdx

) 1
β

. (29)

Proof. The case (1) and (2) are from Proposition 1 and (1) of Theorem 1. For the
proof of (3) we need to substitute α, β in (3) of Theorem 1 with β ,α respectively and
combine with Proposition 1. �

In [6], the following result was obtained.

COROLLARY 1. Let p > 2 be a positive number and f (x) be continuous on [a, b]
and differentiable on (a, b) such that f (a) = 0 .

(1) If [f p−2]′(x) � pp(p − 2)/(p − 1)p+1 and [f
1

p−2 ]′(x) � (p − 1)
1

p−2−1 for
x ∈ (a, b) , then(∫ b

a
[f (x)]

1
p dx

)p

�
(∫ b

a
f (x)dx

)p−1

�
∫ b

a
[f (x)]pdx. (30)

(2) If 0 � [f p−2]′(x) � pp(p−2)/(p−1)p+1 and 0 � [f
1

p−2 ]′(x) � (p−1)
1

p−2−1

for x ∈ (a, b) , then the inequality (30) reverses.

Note that when selecting appropriate α, β in (1) and (2) of Theorem 3 we can
obtain Corollary 1. So Corollary 1 is just a special case of Theorem 3.

COROLLARY 2. Let f (x) be continuous and not identically zero on [a, b] and
differentiable on (a, b) such that f (a) = 0 .

(1) If [f
1
3 ]′(x) � 1 and f ′(x) � 1 for x ∈ (a, b) , then

(∫ b

a
[f (x)]

1
3 dx

)2

�
∫ b

a
f (x)dx �

(∫ b

a
[f (x)]3dx

) 1
2

. (31)
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(2) If 0 � [f
1
3 ]′(x) � 1 and 0 � f ′(x) � 1 for x ∈ (a, b) , then the inequality

(31) reverses.

(3) If [f − 1
4 ]′(x) � −√

3 and f ′(x) � 1 for x ∈ (a, b) , then

(∫ b

a
[f (x)]

1
2 dx

)3

�
∫ b

a
f (x)dx �

(∫ b

a
[f (x)]3dx

) 1
2

. (32)

Proof. Set α = 3 and β = 2 in Theorem 3. �
In order to illustrate a possible practical use of Corollary 2, we shall give three

simple examples in which we can apply the inequalities.

EXAMPLE 1. Let f (x) = 8(ex − e) on [1, 2] , we see that [f
1
3 ]′(x) =

2
3
ex(ex −

e)−
2
3 > 1 and f ′(x) > 8e > 1 for x ∈ (1, 2) , other conditions of Corollary 2 are

fulfilled and straightforward computation yields

(∫ 2

1
[8(ex−e)]

1
3 dx

)2

≈ 5.4 <

∫ 2

1
8(ex−e)dx ≈ 15.6 <

(∫ 2

1
[8(ex−e)]3dx

) 1
2

≈ 98.0.

EXAMPLE 2. Let f (x) =
1
8
x3 on [0, 1] , then 0 � [f

1
3 ]′(x) < 1 and 0 � f ′(x) < 1

for x ∈ (0, 1) , other conditions of Corollary 2 are fulfilled and direct calculation
produces that

(∫ 1

0

[
1
8
x3

] 1
3

dx

)2

=
1
16

>

∫ 1

0

1
8
x3dx =

1
32

>

(∫ 1

0

[
1
8
x3

]3

dx

) 1
2

=
1√
5120

.

EXAMPLE 3. Let f (x) =
1
3
(x3−1) on [1, 1.1] , we see that [f − 1

4 ]′(x) = −3
5
4 x2(x3−

1)−
5
4 /4 < −√

3 and f ′(x) > 1 for x ∈ (1, 1.1) , other conditions of Corollary 2 are
fulfilled and straightforward computation yields

(∫ 1.1

1

[
1
3
(x3−1)

] 1
2

dx

)3

<

∫ 1.1

1

1
3
(x3−1)dx ≈ 0.0053 <

(∫ 1.1

1

[
1
3
(x3−1)

]3

dx

) 1
2

.
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