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ON A BOUNDED SUBCLASS OF CERTAIN ANALYTIC

FUNCTIONS SATISFYING A DIFFERENTIAL INEQUALITY
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(communicated by A. Čižmešija)

Abstract. In the present paper, using Jack’s lemma, the authors investigate the differential in-
equality ∣∣∣∣(1 − α)

Ip(n,λ)f (z)
zp

+ α
Ip(n + 1, λ)f (z)

Ip(n,λ)f (z)
− 1

∣∣∣∣ < μ, z ∈ E

regarding multivalent functions defined by multiplier transfomation in the open unit disk E =
{z : |z| < 1} . As consequences, sufficient conditions for univalence, starlikeness and strongly
starlikeness of certain analytic functions are obtained.

1. Introduction

Let Ap denote the class of functions of the form f (z) = zp +
∑∞

k=p+1 akzk, p ∈
N = {1, 2, ....} , which are analytic in the open unit disc E = {z : |z| < 1} . We write
A1 = A . A function f ∈ Ap is said to be p-valent starlike of order α(0 � α < p) in
E if

Re

(
zf

′
(z)

f (z)

)
> α, z ∈ E.

We denote by S∗p(α) , the class of all such functions. A function f ∈ Ap is said to be
p-valent convex of order α(0 � α < p) in E if

Re

(
1 +

zf
′′
(z)

f ′(z)

)
> α, z ∈ E.

Let Kp(α) denote the class of all those functions f ∈ Ap which are multivalently
convex of order α in E . Note that S∗1(α) and K1(α) are, respectively, the usual
classes of univalent starlike functions of order α and univalent convex functions of
order α, 0 � α < 1 , and will be denoted here by S∗(α) and K(α) , respectively. We
shall use S∗ and K to denote S∗(0) and K(0) , respectively which are the classes of
univalent starlike (w.r.t. the origin) and univalent convex functions.
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For f ∈ Ap , we define the multiplier transformation Ip(n, λ ) as

Ip(n, λ )f (z) = zp +
∞∑

k=p+1

(
k + λ
p + λ

)n

akz
k, (λ � 0, n ∈ Z). (1)

The operator Ip(n, λ ) has been recently studied by Aghalary et.al. [1]. Earlier, the
operator I1(n, λ ) was investigated by Cho and Srivastava [3] and Cho and Kim [4],
whereas the operator I1(n, 1) was studied by Uralegaddi and Somanatha [13]. I1(n, 0)
is the well-known Sălăgean [8] derivative operator Dn , defined as: Dnf (z) = z +∑∞

k=2 knakzk, n ∈ N0 = N ∪ {0} and f ∈ A .
A function f ∈ Ap is said to be in the class Sn(p, λ ,α) for all z in E if it satisfies

Re

[
Ip(n + 1, λ )f (z)

Ip(n, λ )f (z)

]
>

α
p

, (2)

for some α (0 � α < p, p ∈ N) . We note that S0(1, 0,α) and S1(1, 0,α) are the
usual classes S∗(α) and K(α) of starlike functions of order α and convex functions
of order α , respectively.

In 1989, Owa, Shen and Obradović [7] obtained a sufficient condition for a function
f ∈ A to belong to the class Sn(1, 0,α) = Sn(α) .

Recently, Li and Owa [6] studied the operator I1(n, 0) .
Let Hα(β) denote the class of functions f ∈ A which satisfy the condition

�
[
(1 − α)f ′(z) + α

(
1 +

zf ′′(z)
f ′(z)

)]
> β , z ∈ E,

where α and β are pre-assigned real numbers. Al-Amiri and Reade [2], in 1975, have
shown that for α � 0 and also for α = 1 , the functions in Hα(0) are univalent in E .
In 2005, Singh, Singh and Gupta [12] proved that for 0 < α < 1 , functions in Hα(α)
are also univalent. In 2007, Singh, Gupta and Singh [11] proved that functions in
Hα(β) satisfy the differential inequality � f ′(z) > 0, z ∈ E and hence are univalent
for all real numbers α and β satisfying α � β < 1 and that the result is sharp in
the sense that the constant β cannot be replaced by any real number less than α . The
starlikeness of the class Hα(β) is still, an open problem.

In the present paper, the particular case where p = 1, n = 1 and λ = 0 of our
main results reduces to

∣∣∣∣(1 − α)f ′(z) + α
(

1 +
zf ′′(z)
f ′(z)

)
− 1

∣∣∣∣ < μ, z ∈ E,

for f ∈ A . In this particular case, we study the univalence, starlikeness and strongly
starlikeness of this bounded form of Hα(0) for 0 < α < 2 .
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2. Preliminaries

To prove our results, we shall make use of the following definition and lemmas.

DEFINITION 2.1. A function f ∈ A is said to be strongly starlike of order α ,
0 < α � 1 , if ∣∣∣∣∣arg zf

′
(z)

f (z)

∣∣∣∣∣ <
απ
2

, z ∈ E

or, equivalently

zf
′
(z)

f (z)
≺
(

1 + z
1 − z

)α

, z ∈ E.

LEMMA 2.1. (Jack [5]) Suppose w(z) be a nonconstant analytic function in E
with w(0) = 0 . If |w(z)| attains its maximum value at a point z0 ∈ E on the circle
|z| = r < 1 , then z0w′(z0) = mw(z0) , where m, m � 1 is some real number.

LEMMA 2.2. [9] Suppose f ∈ A be such that f
′
(z) ≺ 1 + az in E , where

0 < a � 1 , then
zf

′
(z)

f (z)
≺
(

1 + z
1 − z

)μ

, z ∈ E

where 0 < a � 2 sin( πμ
2 )√

5+4 cos( πμ
2 )

, 0 < μ < 1 .

LEMMA 2.3. [10] Suppose f ∈ A be such that f
′
(z) ≺ 1 + az in E , where

0 < a � 1
2 , then

zf
′
(z)

f (z)
≺ 1 +

(
3a

2 − a

)
z, z ∈ E

We, now, state and prove our main results.

3. Main Results

LEMMA 3.1. If u(z) = 1 + u1z + u2z2 + . . . be an analytic function in E and
satisfies the condition

(1 − α)u(z) + α

(
1 + β

zu
′
(z)

u(z)

)
≺ 1 + μz, z ∈ E, (3)

for some α, β ∈ R with α � 1, 0 < αβ < 1 and 0 < μ � αβ
2 , then

u(z) ≺ 1 +
2μ
αβ

z, z ∈ E.
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Proof. Let us write

u(z) = 1 +
2μ
αβ

w(z)

where w(z) be analytic in E with w(0) = 0 .
Now we will show that |w(z)| < 1 , z ∈ E . If |w(z)| ≮ 1 , by lemma 2.1, there

exists z0 , |z0| < 1 such that |w(z0)| = 1 and z0w
′
(z0) = kw(z0) where k � 1 . When

we put w(z0) = eiθ , we have∣∣∣∣∣(1 − α)u(z0) + α

(
1 +

βz0u
′
(z0)

u(z0)

)
− 1

∣∣∣∣∣

=

∣∣∣∣∣(1 − α)
(

1 +
2μ
αβ

w(z0)
)

+ α

(
1 +

β 2μ
αβ z0w

′
(z0)

1 + 2μ
αβ w(z0)

)
− 1

∣∣∣∣∣
=

∣∣∣∣∣2(1 − α)μ
αβ

eiθ +
2μkeiθ

1 + 2μ
αβ eiθ

∣∣∣∣∣
� 2μ

∣∣∣∣∣1 − α
αβ

+
1

1 + 2μ
αβ eiθ

∣∣∣∣∣
� 2μ

αβ + 2μ

∣∣∣∣(1 − α)
(

1 +
2μ
αβ

eiθ
)

+ αβ
∣∣∣∣

=
2μ

αβ + 2μ

∣∣∣∣1 − α + αβ +
2μ(1 − α)

αβ
eiθ
∣∣∣∣

� 2μ
αβ + 2μ

∣∣∣∣1 − α + αβ − 2μ(1 − α)
αβ

∣∣∣∣
� μ

which is a contradiction to (3). Therefore, we must have |w(z)| < 1, z ∈ E .
Hence

u(z) ≺ 1 +
2μ
αβ

z, z ∈ E. �

LEMMA 3.2. If u(z) = 1 + u1z + u2z2 + . . . be an analytic function in E and
satisfies the condition

(1 − α)u(z) + α

(
1 + β

zu
′
(z)

u(z)

)
≺ 1 + μz, z ∈ E, (4)

for some α, β ∈ R with α � 1, 0 < αβ − 2(α − 1) < 2 and 0 < μ � αβ−2(α−1)
2 ,

then

u(z) ≺ 1 +
2μ

αβ − 2(α − 1)
z, z ∈ E.
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Proof. Let us write

u(z) = 1 +
2μ

αβ − 2(α − 1)
w(z)

where w(z) be analytic in E with w(0) = 0 .
Now we will show that |w(z)| < 1, z ∈ E . If |w(z)| ≮ 1 , by lemma 2.1, there

exists z0 , |z0| < 1 such that |w(z0)| = 1 and z0w
′
(z0) = kw(z0) where k � 1 . When

we put w(z0) = eiθ , we have∣∣∣∣∣(1 − α)u(z0) + α

(
1 +

βz0u
′
(z0)

u(z0)

)
− 1

∣∣∣∣∣

=

∣∣∣∣∣(1 − α)
(

1 +
2μ

αβ − 2(α − 1)
w(z0)

)
+ α

(
1 +

β 2μ
αβ−2(α−1)z0w

′
(z0)

1 + 2μ
αβ−2(α−1)w(z0)

)
− 1

∣∣∣∣∣
=

∣∣∣∣∣∣
2(1 − α)μ

αβ − 2(α − 1)
eiθ +

2αβμkeiθ

αβ−2(α−1)

1 + 2μ
αβ−2(α−1)e

iθ

∣∣∣∣∣∣
� 2μ

αβ − 2(α − 1)

∣∣∣∣∣∣
(1 − α)

(
1 + 2μ

αβ−2(α−1)e
iθ
)

+ αβ

1 + 2μ
αβ−2(α−1)e

iθ

∣∣∣∣∣∣
� 2μ

αβ − 2(α − 1)

∣∣∣1 − α + αβ − 2μ(α−1)
αβ−2(α−1)e

iθ
∣∣∣

1 + 2μ
αβ−2(α−1)

� μ

which is a contradiction to (4). Therefore, we must have |w(z)| < 1, z ∈ E .
Hence

u(z) ≺ 1 +
2μ

αβ − 2(α − 1)
z, z ∈ E. �

THEOREM 3.1. If f ∈ Ap satisfies

(1 − α)
Ip(n, λ )f (z)

zp
+ α

Ip(n + 1, λ )f (z)
Ip(n, λ )f (z)

≺ 1 + μz, z ∈ E

for some α ∈ R with α � 1, 0 < α
λ+p < 1 and 0 < μ � α

2(λ+p) , then

Ip(n, λ )f (z)
zp

≺ 1 +
2(λ + p)μ

α
z, z ∈ E.

Proof. Let us write

Ip(n, λ )f (z)
zp

= u(z), z ∈ E.
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Differentiate logarithmetically, we obtain

zI
′
p(n, λ )f (z)

Ip(n, λ )f (z)
− p =

zu
′
(z)

u(z)
, z ∈ E. (5)

Using the fact that

zI
′
p(n, λ )f (z) = (p + λ )Ip(n + 1, λ )f (z) − λ Ip(n, λ )f (z)

Thus (5) reduces to

Ip(n + 1, λ )f (z)
Ip(n, λ )f (z)

= 1 +
zu

′
(z)

(λ + p)u(z)
.

By taking β = 1
λ+p , the proof, now follows by lemma 3.1. �

THEOREM 3.2. If f ∈ Ap satisfies

(1 − α)
Ip(n, λ )f (z)

zp
+ α

Ip(n + 1, λ )f (z)
Ip(n, λ )f (z)

≺ 1 + μz, z ∈ E

for some α ∈ R with α � 1, 0 < α
λ+p − 2(α− 1) < 2 and 0 < μ �

α
λ+p−2(α−1)

2 , then

Ip(n, λ )f (z)
zp

≺ 1 +
2μ

α
λ+p − 2(α − 1)

z, z ∈ E.

Proof. Let us write

Ip(n, λ )f (z)
zp

= u(z), z ∈ E.

Differentiate logarithmetically, we obtain

zI
′
p(n, λ )f (z)

Ip(n, λ )f (z)
− p =

zu
′
(z)

u(z)
, z ∈ E. (6)

Using the fact that

zI
′
p(n, λ )f (z) = (p + λ )Ip(n + 1, λ )f (z) − λ Ip(n, λ )f (z).

Thus (6) reduces to

Ip(n + 1, λ )f (z)
Ip(n, λ )f (z)

= 1 +
zu

′
(z)

(λ + p)u(z)
.

By taking β = 1
λ+p , the proof, now follows by lemma 3.2. �
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4. Corollaries

By taking p = 1 and λ = 0 in theorem 3.1. We have the following corollary.

COROLLARY 4.1. If f ∈ A satisfies

(1 − α)
Dnf (z)

z
+ α

Dn+1f (z)
Dnf (z)

≺ 1 + μz, z ∈ E

for some α ∈ R with 0 < α < 1 and 0 < μ � α
2 , then

Dnf (z)
z

≺ 1 +
2μ
α

z, z ∈ E.

By taking p = 1 and λ = 0 in theorem 3.2. We have the following corollary.

COROLLARY 4.2. If f ∈ A satisfies

(1 − α)
Dnf (z)

z
+ α

Dn+1f (z)
Dnf (z)

≺ 1 + μz, z ∈ E

for some α ∈ R with 1 � α < 2 and 0 < μ � 2−α
2 , then

Dnf (z)
z

≺ 1 +
2μ

2 − α
z, z ∈ E.

By taking p = 1, n = 1 and λ = 0 in theorem 3.1. We have the following
corollary.

COROLLARY 4.3. If f ∈ A satisfies

(1 − α)f
′
(z) + α

(
1 +

zf
′′
(z)

f ′(z)

)
≺ 1 + μz, z ∈ E

for some α ∈ R with 0 < α < 1 and 0 < μ � α
2 , then

f
′
(z) ≺ 1 +

2μ
α

z, z ∈ E

and therefore f is univalent in E .

By taking p = 1, n = 1 and λ = 0 in theorem 3.2. We have the following
corollary.

COROLLARY 4.4. If f ∈ A satisfies

(1 − α)f
′
(z) + α

(
1 +

zf
′′
(z)

f ′(z)

)
≺ 1 + μz, z ∈ E

for some α ∈ R with 1 � α < 2 and 0 < μ � 2−α
2 , then

f
′
(z) ≺ 1 +

2μ
2 − α

z, z ∈ E

and therefore f is univalent in E .

The corollary 4.3, together with lemma 2.2, gives the following result.
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COROLLARY 4.5. If f ∈ A satisfies

(1 − α)f
′
(z) + α

(
1 +

zf
′′
(z)

f ′(z)

)
≺ 1 + μz, z ∈ E

for some α ∈ R with 0 < α < 1 and 0 < μ � α
2 , then

zf
′
(z)

f (z)
≺
(

1 + z
1 − z

)δ

, z ∈ E

where 0 < 2μ
α � 2 sin( πδ

2 )√
5+4 cos( πδ

2 )
, 0 < δ < 1 and hence f is strongly starlike for

0 < α < 1 in E .

The corollary 4.4, together with lemma 2.2, gives the following result.

COROLLARY 4.6. If f ∈ A satisfies

(1 − α)f
′
(z) + α

(
1 +

zf
′′
(z)

f ′(z)

)
≺ 1 + μz, z ∈ E

for some α ∈ R with 1 � α < 2 and 0 < μ � 2−α
2 , then

zf
′
(z)

f (z)
≺
(

1 + z
1 − z

)δ

, z ∈ E

where 0 < 2μ
2−α � 2 sin( πδ

2 )√
5+4 cos( πδ

2 )
, 0 < δ < 1 and hence f is strongly starlike for

1 � α < 2 in E .

The corollary 4.3, together with lemma 2.3, gives the following result.

COROLLARY 4.7. If f ∈ A satisfies

(1 − α)f
′
(z) + α

(
1 +

zf
′′
(z)

f ′(z)

)
≺ 1 + μz, z ∈ E

for some α ∈ R with 0 < α < 1 and 0 < μ � α
4 , then

zf
′
(z)

f (z)
≺ 1 +

3μ
α − μ

z, z ∈ E

and hence f is starlike for 0 < α < 1 in E .

The corollary 4.4, together with lemma 2.3, gives the following result.
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COROLLARY 4.8. If f ∈ A satisfies

(1 − α)f
′
(z) + α

(
1 +

zf
′′
(z)

f ′(z)

)
≺ 1 + μz, z ∈ E

for some α ∈ R with 1 � α < 2 and 0 < μ � 2−α
4 , then

zf
′
(z)

f (z)
≺ 1 +

3μ
2 − α − μ

z, z ∈ E

and hence f is starlike for 1 � α < 2 in E .
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