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CHARACTERIZATIONS OF CONVEX FUNCTIONS OF A VECTOR

VARIABLE VIA HERMITE–HADAMARD’S INEQUALITY

TIBERIU TRIF

(communicated by J. Pečarić)

Abstract. The classical Hermite-Hadamard inequality characterizes the continuous convex func-
tions of one real variable. The aim of the present paper is to give an analogous characterization
for functions of a vector variable.

1. The Hermite-Hadamard inequality

In a letter sent on November 22, 1881, to the journal Mathesis (and published there
two years later), Ch. Hermite [10] noted that every convex function f : [a, b] → R
satisfies the inequalities

f

(
a + b

2

)
� 1

b − a

∫ b

a
f (x)dx � f (a) + f (b)

2
. (1)

The left-hand side inequality was rediscovered ten years later by J. Hadamard [7].
Nowadays, the double inequality (1) is called the Hermite-Hadamard inequality. The
interested reader can find its complete story in the historical note by D. S. Mitrinović
and I. B. Lacković [12].

TheHermite-Hadamard inequality has evoked the interest ofmanymathematicians.
Especially in the last three decades it has been intensively investigated and generalized
in several directions. For instance, a dual Hermite-Hadamard inequality was discussed
by C. P. Niculescu [13], while a complete extension of (1) to the class of n -convex
functions was obtained by M. Bessenyei and Zs. Páles [1]. Likewise, M. Bessenyei and
Zs. Páles [2] proved a generalization of (1) for real-valued functions defined on an open
interval I ⊆ R , which are convex with respect to a so-called positive regular pair over
I . For an account on various results dealing with the Hermite-Hadamard inequality, the
reader is referred to the monograph by S. S. Dragomir and C. E. M. Pearce [5].

In what follows, we are concerned with Hermite-Hadamard-type inequalities for
functions of a vector variable. As pointed out byC. P. Niculescu [15], the Choquet theory
(see [17]) provides the framework for a natural extension of (1) to such functions. For
the reader’s convenience, we briefly present here this extension. Let E be a real locally
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convexHausdorff space, let K be a compact convex subset of E , and let μ be a positive
Borel measure on K . Then there exists a unique point xμ ∈ K , satisfying

f (xμ) =
1

μ(K)

∫
K

f (x)dμ(x)

for every continuous linear functional f : E → R (see [16, Lemma 4.1.8]). The unique
point in K with this property is called the μ -barycenter of K . Given another positive
Borel measure λ on K , one says that μ is majorized by λ (abbreviated μ ≺ λ ) if

1
μ(K)

∫
K

f (x)dμ(x) � 1
λ (K)

∫
K

f (x)dλ (x)

holds for every continuous convex function f : K → R .

THE CHOQUET THEOREM. Let E be a real locally convex Hausdorff space, let K
be a compact convex subset of E , and let μ be a positive Borel measure on K . Then
there exists a probability Borel measure λ on K satisfying the following conditions:

(i) μ ≺ λ and μ and λ have the same barycenter;
(ii) λ is concentrated on ExtK , the set of all extreme points of K (i.e., λ (K \

ExtK) = 0 ).

It should be remarked that, according to a well known result, Ext K is a Gδ -subset
of K , hence a Borel set. Under the hypotheses of the above theorem, it holds that

f (xμ) � 1
μ(K)

∫
K

f (x)dμ(x) �
∫

Ext K
f (x)dλ (x) (2)

for every continuous convex function f : K → R . Inequality (2) is the natural
generalization of (1) for functions of a vector variable.

When E = Rn , the Euclidean n -dimensional space, then we have

xμ =
1

μ(K)

∫
K

xdμ(x),

i.e., the barycenter coincides with the first order moment of μ . If, moreover, K =
[a0, a1, . . . , an] is an arbitrary n -dimensional simplex in Rn , then (2) becomes

f (xμ) � 1
μ(K)

∫
K

f (x)dμ(x) (3)

� 1
m(K)

n∑
k=0

m([a0, . . . , âk, . . . , an])f (ak)

for every continuous convex function f : K → R . Here [a0, . . . , âk, . . . , an] represents
the simplex obtained by replacing ak by xμ (the subsimplex of K opposite to ak when
adding xμ as a new vertex), while m denotes the Lebesgue measure in Rn .

The inequality (3) can be further specialized by choosing E = R and K = [a, b] .
In this case (3) becomes

f (xμ) � 1
μ([a, b])

∫ b

a
f (x)dμ(x) � b − xμ

b − a
f (a) +

xμ − a

b − a
f (b) (4)
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for every continuous convex function f : [a, b] → R , which is also a generalization of
(1).

We note that the left-hand side inequality in (2), (3) and (4), respectively, works
not only for positive Borel measures, but also for some signed Borel measures satisfying
an additional condition – the so-called Steffensen-Popoviciumeasures (see [14] and [16,
Chapter 4]). Likewise, the right-hand side inequality in (4) works also for some signed
Borel measures (see A. M. Fink [6]). Finally, we mention that an extension of (1) for
functions f which are not convex on the whole interval [a, b] was recently obtained by
P. Czinder [4].

2. Characterizations of convex functions via Hermite-Hadamard’s inequality

It is interesting to note that the Hermite-Hadamard inequality (1) is not merely a
consequence of convexity, but also characterizes it. More precisely, the following result
holds:

THEOREM 1. Given an open interval I ⊆ R and a continuous function f : I → R ,
the following assertions are equivalent:

1◦ f is convex.
2◦ For all elements x < y of I , it holds that

f

(
x + y

2

)
� 1

y − x

∫ y

x
f (t)dt.

3◦ For all elements x < y of I , it holds that

1
y − x

∫ y

x
f (t)dt � f (x) + f (y)

2
.

As noted by D. S. Mitrinović and I. B. Lacković [12] “it remains unclear who and
when made the transition from the inequality (1) to the convexity criterion given in
Theorem 1.” For instance, the implication 2◦ ⇒ 1◦ appears in the classical book by
G. H. Hardy, J. E. Littlewood and G. Pólya [8, p. 98], while the implication 3◦ ⇒ 1◦

appears in the book by A. W. Roberts and D. E. Varberg [20, Problem Q, p. 15] (see
also M. Kuczma [11, Exercise 8, p. 205]). A similar characterization of convexity
with respect to a positive regular pair over I was recently obtained by M. Bessenyei
and Zs. Páles [3]. Likewise, an analogue of Theorem 1, giving a characterization of
convex set-valued functions, was obtained by B. Piatek [18] For other generalizations
of Theorem 1 the reader is referred to [19] and [9].

It should be remarked that all the above mentioned characterizations of convexity
by means of the Hermite-Hadamard inequality deal with functions of a single variable.
Similar characterizations for functions of a vector variable are lacking in the literature.
The main purpose of the present paper is to fill this gap by proving a counterpart of
Theorem 1 for functions f defined on an open convex set C ⊆ Rn . More precisely,
we deal with the following question: when the validity of the left-hand side or of the
right-hand side inequality in (2) implies the convexity of f ? First of all, we note that,
in general, the Borel probability measure λ whose existence is ensured by the Choquet
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theorem is not unique, except for the case of simplices (see [17, Chapter 9]). On the
other hand, if one looks for characterizations of convexity by means of inequality (2),
then it is natural to keep at minimum the family of compact convex sets K ⊂ C , as well
as the family of measures μ for which (2) holds. As we will see in the next section,
the validity of (2) for every n -dimensional simplex K ⊂ C (i.e., the validity of (3))
implies the convexity of f .

3. Main result

Throughout this section m will denote the Lebesgue measure on Rn , while Σn

will denote the standard n -dimensional simplex in Rn , i.e.,

Σn = { (u1, . . . , un) | u1, . . . , un ∈ [0,∞), u1 + · · · + un � 1 }.
THEOREM 2. Given a nonempty open convex set C ⊆ Rn and a continuous function

f : C → R , the following assertions are equivalent:
1◦ f is convex.
2◦ For every n -dimensional simplex K = [a0, a1, . . . , an] ⊂ C it holds that

f

(
a0 + a1 + · · · + an

n + 1

)
� 1

m(K)

∫
K

f (x)dm(x). (1)

3◦ For every n -dimensional simplex K = [a0, a1, . . . , an] ⊂ C it holds that

1
m(K)

∫
K

f (x)dm(x) � f (a0) + f (a1) + · · · + f (an)
n + 1

. (2)

Proof. We have to prove only that 2◦ ⇒ 1◦ and 3◦ ⇒ 1◦ .

2◦ ⇒ 1◦ We proceed by reductio ad absurdum. Assuming that f is not convex,
it follows that there exist two points ā0, b̄0 ∈ C , as well as a number α ∈ (0, 1) such
that

f (x̄) > αf (ā0) + (1 − α)f (b̄0),

where x̄ := αā0 + (1 − α)b̄0 . Taking into account that C is open and that f is
continuous, we can select n points ā1, . . . , ān ∈ C , sufficiently close to b̄0 , satisfying
the following conditions:

(i) the vectors {ā1−ā0, ..., ān−ā0} are linear independent, i.e., K̄ := [ā0, ā1, ..., ān]
is an n -dimensional simplex;

(ii) b̄0 =
ā1 + · · · + ān

n
;

(iii) f (x̄) > αf (ā0) + (1 − α)
f (ā1) + · · · + f (ān)

n
.

Setting α0 := α , α1 := · · · = αn :=
1 − α

n
, we have α0,α1, . . . ,αn ∈ (0, 1) ,

α0 + α1 + · · · + αn = 1, x̄ = α0ā0 + α1ā1 + · · · + αnān,

and
f (x̄) > α0f (ā0) + α1f (ā1) + · · · + αnf (ān). (3)
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Further, let a ∈ Rn and c ∈ R be chosen such that the function g : C → R , defined by
g(x) := f (x) − 〈 a, x〉 − c , satisfies g(ā0) = g(ā1) = · · · = g(ān) = 0 (the existence
of a and c is ensured by condition (i)). It is immediately seen that g is continuous
and satisfies an inequality similar to (1), namely

g

(
a0 + a1 + · · · + an

n + 1

)
� 1

m(K)

∫
K

g(x)dm(x) (4)

for every n -dimensional simplex K = [a0, a1, . . . , an] ⊂ C . In addition, due to (3) we
have

g(x̄) = f (x̄) − 〈 a, x̄〉 − c

>

n∑
j=0

αjf (āj) −
〈

a,

n∑
j=0

αjāj

〉
− c

=
n∑

j=0

αj[f (āj) − 〈 a, āj〉 − c]

=
n∑

j=0

αjg(āj) = 0.

Let x0 ∈ K̄ be the point at which g attains its maximum on K̄ . Since

g(x̄) > 0 = g(ā0) = g(ā1) = · · · = g(ān),

it follows that g(x0) > 0 and x0 �∈ { ā0, ā1, . . . , ān } . On the other hand, x0 is a convex
combination of r + 1 vertices of K̄ (with r � n ). Without loss of generality, we
may assume that these vertices are ā0, ā1, . . . , ār . Therefore, there exist real numbers
λ0, λ1, . . . , λr ∈ (0, 1) such that

λ0 + λ1 + · · · + λr = 1 and x0 = λ0ā0 + λ1ā1 + · · · + λrār.

Also without losing the generality we may assume that

λ0 = max { λ0, λ1, . . . , λr }.
Then we can select the points a0 := ā0 , a1 ∈ [ā0, ā1], . . . , ar ∈ [ā0, ār] such that

x0 =
a0 + a1 + · · · + ar

r + 1
. Obviously we have

[a0, a1, . . . , ar] ⊆ [ā0, ā1, . . . , ār].

Now we construct for each j ∈ {r + 1, . . . , n} a sequence (ap
j )p�1 of points in Rn

with the following properties:

• lim
p→∞ ap

j = x0 for every j ∈ {r + 1, . . . , n} ;

• Kp := [a0, a1, . . . , ar, a
p
r+1, . . . , a

p
n] is an n -dimensional simplex contained in

K̄ .
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According to (4), we have

g

(
a0 + a1 + · · · + ar + ap

r+1 + · · · + ap
n

n + 1

)
� 1

m(Kp)

∫
Kp

g(x)dm(x) (5)

for every positive integer p .
Given any positive integer p , let Ap be the n × n matrix whose columns are the

vectors a1−a0, . . . , ar−a0, a
p
r+1−a0, . . . , a

p
n−a0 . Then the transform ϕp : Rn → Rn ,

defined by ϕp(u) := a0 + Apu , maps Σn onto Kp . Its Jacobian equals

det Ap = n! m(Kp).

Making the change of variables x = ϕp(u) = a0 +Apu in the integral in (5), we deduce
that

g

(
a0 + a1 + · · · + ar + ap

r+1 + · · · + ap
n

n + 1

)
� n!

∫
Σn

g(a0 + Apu)dm(u)

for every positive integer p . Letting p → ∞ , we get

g(x0) � n!
∫
Σn

g(a0 + Au)dm(u), (6)

where A is the n × n matrix whose columns are the vectors

a1 − a0, . . . , ar − a0, x0 − a0, . . . , x0 − a0︸ ︷︷ ︸
n − r times

.

Consider the function h : Σn → R , defined by h(u) := g(a0 + Au) . Obviously, h
is continuous on Σn . Since the point a0 + Au lies in K̄ for every u ∈ Σn , it follows
that

h(u) = g(a0 + Au) � g(x0) for every u ∈ Σn.

On the other hand, h(0n) = g(a0) = g(ā0) = 0 < g(x0) . The continuity of h ensures
now that

n!
∫
Σn

g(a0 + Au)dm(u) = n!
∫
Σn

h(u)dm(u)

< n!
∫
Σn

g(x0)dm(u)

= g(x0),

contradicting the inequality (6). This contradiction shows that f is convex.

3◦ ⇒ 1◦ Suppose that f is not convex. Then there exist two points ā0, b̄0 ∈ C
as well as a number α ∈ (0, 1) such that

f (x̄) > αf (ā0) + (1 − α)f (b̄0),

where x̄ := αā0 + (1 − α)b̄0 .
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Choose a ∈ Rn and c ∈ R such that the function g : C → R , defined by
g(x) := f (x) − 〈 a, x〉 − c , satisfies g(ā0) = g(b̄0) = 0 (this is possible because
ā0 �= b̄0 ). It is immediately seen that g is continuous and satisfies an inequality similar
to (2), namely

1
m(K)

∫
K

g(x)dm(x) � g(a0) + g(a1) + · · · + g(an)
n + 1

(7)

for every n -dimensional simplex K = [a0, a1, . . . , an] ⊂ C . Likewise, one has g(x̄) >
0 . Set

S1 := { λ ∈ (α, 1] | g(λ ā0 + (1 − λ )b̄0) = 0 }, λ0 := inf S1,
S2 := { μ ∈ [0,α) | g(μā0 + (1 − μ)b̄0) = 0 }, μ0 := sup S2,
a0 := λ0ā0 + (1 − λ0)b̄0,
b0 := μ0ā0 + (1 − μ0)b̄0.

The continuity of g ensures that

x̄ ∈ (a0, b0) ⊂ [ā0, b̄0],
g(a0) = g(b0) = 0,

g(x) > 0 for every x ∈ (a0, b0).

Here (a0, b0) denotes the open line segment whose endpoints are a0 and b0 .
Now we construct for each j ∈ {1, . . . , n} a sequence (ap

j )p�1 of points in Rn

with the following properties:
• lim

p→∞ ap
j = b0 for every j ∈ {1, . . . , n} ;

• Kp := [a0, a
p
1, . . . , a

p
n] is an n -dimensional simplex contained in C .

According to (7), we have

1
m(Kp)

∫
Kp

g(x)dm(x) � g(ap
1) + · · · + g(ap

n)
n + 1

(8)

for every positive integer p .
Given any positive integer p , let Ap be the n × n matrix whose columns are the

vectors ap
1 − a0, . . . , a

p
n − a0 . Then the transform ϕp : Rn → Rn , defined by ϕp(u) :=

a0 + Apu , maps Σn onto Kp . Making the change of variables x = ϕp(u) = a0 + Apu
in the integral in (8), we deduce that

n!
∫
Σn

g(a0 + Apu)dm(u) � g(ap
1) + · · · + g(ap

n)
n + 1

for every positive integer p . Letting p → ∞ and using the continuity of g , we obtain

n!
∫
Σn

g(a0 + Au)dm(u) � 0, (9)

where A is the n × n matrix whose columns are the vectors

b0 − a0, . . . , b0 − a0︸ ︷︷ ︸
n times

.
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Consider the function h : Σn → R , defined by h(u) := g(a0 + Au) . Clearly, h is
continuous on Σn . Since

a0 + Au = (1 − u1 − · · · − un)a0 + (u1 + · · · + un)b0 ∈ [a0, b0]

for every u = (u1, . . . , un) ∈ Σn , it follows that

h(u) = g(a0 + Au) � 0 for every u ∈ Σn.

Taking into account that g(x) > 0 for x ∈ (a0, b0) , the function h does not vanish on
Σn , hence ∫

Σn

h(u)dm(u) =
∫
Σn

g(a0 + Au)dm(u) > 0,

contradicting (9). This contradiction shows that f is convex. �
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