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CHARACTERIZATIONS OF CONVEX FUNCTIONS OF A VECTOR
VARIABLE VIA HERMITE-HADAMARD’S INEQUALITY

TIBERIU TRIF

(communicated by J. Pecaric)

Abstract. The classical Hermite-Hadamard inequality characterizes the continuous convex func-
tions of one real variable. The aim of the present paper is to give an analogous characterization
for functions of a vector variable.

1. The Hermite-Hadamard inequality

In a letter sent on November 22, 1881, to the journal Mathesis (and published there
two years later), Ch. Hermite [10] noted that every convex function f : [a,b] — R
satisfies the inequalities

(),

The left-hand side inequality was rediscovered ten years later by J. Hadamard [7].
Nowadays, the double inequality (1) is called the Hermite-Hadamard inequality. The
interested reader can find its complete story in the historical note by D. S. Mitrinovié
and L. B. Lackovié [12].

The Hermite-Hadamard inequality has evoked the interest of many mathematicians.
Especially in the last three decades it has been intensively investigated and generalized
in several directions. For instance, a dual Hermite-Hadamard inequality was discussed
by C. P. Niculescu [13], while a complete extension of (1) to the class of n-convex
functions was obtained by M. Bessenyei and Zs. Pdles [1]. Likewise, M. Bessenyei and
Zs. Pdles [2] proved a generalization of (1) for real-valued functions defined on an open
interval I C R, which are convex with respect to a so-called positive regular pair over
I. For an account on various results dealing with the Hermite-Hadamard inequality, the
reader is referred to the monograph by S. S. Dragomir and C. E. M. Pearce [3].

In what follows, we are concerned with Hermite-Hadamard-type inequalities for
functions of a vector variable. As pointed outby C. P. Niculescu [15], the Choquet theory
(see [17]) provides the framework for a natural extension of (1) to such functions. For
the reader’s convenience, we briefly present here this extension. Let E be a real locally
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convex Hausdorff space, let K be a compact convex subset of £, and let u be a positive
Borel measure on K. Then there exists a unique point x, € K, satisfying

1
£ = s / £ (X)du(x)

for every continuous linear functional f : E — R (see [16, Lemma 4.1.8]). The unique
point in K with this property is called the u-barycenter of K. Given another positive
Borel measure A on K, one says that u is majorized by A (abbreviated u < A ) if

1 1
T / FW0du(s) < 375 / £ (¥)d2 ()

holds for every continuous convex function f : K — R.

THE CHOQUET THEOREM. Let E be a real locally convex Hausdorff space, let K
be a compact convex subset of E, and let |l be a positive Borel measure on K. Then
there exists a probability Borel measure A on K satisfying the following conditions:

(i) 4 < A and pu and A have the same barycenter;

(ii) A is concentrated on ExtK, the set of all extreme points of K (i.e., A(K \
ExtK) =0).

It should be remarked that, according to a well known result, Ext K isa Gs -subset
of K, hence a Borel set. Under the hypotheses of the above theorem, it holds that

1
£ < g [ S < [ i @)
w(K) Jg ExtK
for every continuous convex function f : K — R. Inequality (2) is the natural
generalization of (1) for functions of a vector variable.
When E = R", the Euclidean n-dimensional space, then we have

xﬂl = ﬁ‘/KXd“’(‘x)a

i.e., the barycenter coincides with the first order moment of u. If, moreover, K =
[ao, a1, ..., a,] is an arbitrary n-dimensional simplex in R”, then (2) becomes

Fl) < ﬁ / £ ()du(x) (3)
1 n

< m;m([ao,...,@,...7an])f(ak)

for every continuous convex function f : K — R. Here [ay,...,dy,...,a,] represents
the simplex obtained by replacing ax by x,, (the subsimplex of K opposite to a; when
adding x, as a new vertex), while m denotes the Lebesgue measure in R”.

The inequality (3) can be further specialized by choosing E = R and K = [a, b].
In this case (3) becomes
b Xy —a

@+l @

1 b
£ < 2 g / f ()du@) <
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for every continuous convex function f : [a,b] — R, which is also a generalization of
(1).

We note that the left-hand side inequality in (2), (3) and (4), respectively, works
not only for positive Borel measures, but also for some signed Borel measures satisfying
an additional condition — the so-called Steffensen-Popoviciu measures (see [14] and [16,
Chapter 4]). Likewise, the right-hand side inequality in (4) works also for some signed
Borel measures (see A. M. Fink [6]). Finally, we mention that an extension of (1) for
functions f which are not convex on the whole interval [a, b] was recently obtained by
P. Czinder [4].

2. Characterizations of convex functions via Hermite-Hadamard’s inequality

It is interesting to note that the Hermite-Hadamard inequality (1) is not merely a
consequence of convexity, but also characterizes it. More precisely, the following result
holds:

THEOREM 1. Given an openinterval I C R and a continuous function f : I — R,
the following assertions are equivalent:

1° f is convex.

2° For all elements x <y of I, it holds that

r(52) <55 [

3° For all elements x <y of 1, it holds that

/f )+f()

As noted by D. S. Mitrinovi¢ and 1. B. Lackovié [12] “it remains unclear who and
when made the transition from the inequality (1) to the convexity criterion given in
Theorem 1.” For instance, the implication 2° = 1° appears in the classical book by
G. H. Hardy, J. E. Littlewood and G. Pélya [8, p. 98], while the implication 3° = 1°
appears in the book by A. W. Roberts and D. E. Varberg [20, Problem Q, p. 15] (see
also M. Kuczma [11, Exercise 8, p. 205]). A similar characterization of convexity
with respect to a positive regular pair over / was recently obtained by M. Bessenyei
and Zs. Pdles [3]. Likewise, an analogue of Theorem 1, giving a characterization of
convex set-valued functions, was obtained by B. Piatek [18] For other generalizations
of Theorem 1 the reader is referred to [19] and [9].

It should be remarked that all the above mentioned characterizations of convexity
by means of the Hermite-Hadamard inequality deal with functions of a single variable.
Similar characterizations for functions of a vector variable are lacking in the literature.
The main purpose of the present paper is to fill this gap by proving a counterpart of
Theorem 1 for functions f defined on an open convex set C C R". More precisely,
we deal with the following question: when the validity of the left-hand side or of the
right-hand side inequality in (2) implies the convexity of f ? First of all, we note that,
in general, the Borel probability measure A whose existence is ensured by the Choquet

y—Xx
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theorem is not unique, except for the case of simplices (see [17, Chapter 9]). On the
other hand, if one looks for characterizations of convexity by means of inequality (2),
then it is natural to keep at minimum the family of compact convex sets K C C, as well
as the family of measures u for which (2) holds. As we will see in the next section,
the validity of (2) for every n-dimensional simplex K C C (i.e., the validity of (3))
implies the convexity of f .

3. Main result

Throughout this section m will denote the Lebesgue measure on R”, while X,
will denote the standard » -dimensional simplex in R”, i.e.,

Zn:{(u17~-~aun)|u1a'~'7un€[0700)7 M1++Mn<1}

THEOREM 2. Given a nonempty open convex set C C R" and a continuous function
f : C — R, the following assertions are equivalent:

1° f is convex.

2° For every n-dimensional simplex K = |ag, ay, . . . ,a,) C C it holds that

p(erntete) < [ rwan, M

3° For every n-dimensional simplex K = |ag, ay, . . . ,a,) C C it holds that
1 . n
m(K) Jx n+1

Proof. We have to prove only that 2° = 1° and 3° = 1°.

2° = 1° We proceed by reductio ad absurdum. Assuming that f is not convex,
it follows that there exist two points @y, by € C, as well as a number o € (0, 1) such
that
(&) > af (ao) + (1 — a)f (bo),
where ¥ := adp + (1 — a)by. Taking into account that C is open and that f is
continuous, we can select n points ai,...,a, € C, sufficiently close to by, satisfying
the following conditions:
(i) the vectors {a;—ay, ...,a,—ap} are linear independent, i.e., K := [ay, ay, ..., @]
is an n_-dimensiorlal simplex;
(ii) bo = a1+~-~+an;

n

(iii) f(x) > of (a@o) + (1 — o)

f(dl)+"'+f(dtl)
. .
. l1—o
Setting o := ¢, oy :=--- = := —— , we have o, iy, ..., 0, € (0,1),
n

o +tog+-tom =1, X=oa +oud + -+ Odn,

and

[ (%) > ouf (@) + onf (@) + - - + ouf (an). 3)
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Further, let @ € R” and ¢ € R be chosen such that the function g : C — R, defined by
g(x) :=f(x) — (a,x) — c, satisfies g(ap) = g(a1) = --- = g(a,) = 0 (the existence
of a and c is ensured by condition (i)). It is immediately seen that g is continuous
and satisfies an inequality similar to (1), namely

e(Bratte) o [ i) @

n+1

for every n-dimensional simplex K = [ag, ay, . ..,a,] C C. In addition, due to (3) we
have

8() = f(®) —(a,x) —c

j=0
Let xo € K be the point at which g attains its maximum on K . Since
8(¥) >0 =glao) = gla) = --- = glan),

it follows that g(xo) > 0 and xo & { do, a1, ..., a, } . On the other hand, x, is a convex
combination of r 4 1 vertices of K (with r < n). Without loss of generality, we
may assume that these vertices are ay,ay, ..., a,. Therefore, there exist real numbers
Ao, A1y ..o, A € (0, 1) such that

M+ +---+14=1 and  xo = Aoao + Aay + - - + Aa,.
Also without losing the generality we may assume that

Ao = max{ Ag, A1, ..., A}

Then we can select the points ag := @y, a; € [do,ai], ..., ar € [do,a,| such that
dotai+---+a .
xg = — 1 ~ . Obviously we have
r+1
[aﬂaala v 7Clr} - [607[117 s 7dr]'
Now we construct foreach j € {r+1,...,n} asequence (af)p% of points in R”
with the following properties:
o lim of =x forevery j € {r+1,...,n};
p—00
o K, = [ag,ai,..., ap,d,, ..., dp) is an n-dimensional simplex contained in

K.
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According to (4), we have

ao+a1+~-~+a,+a’r’+l+-~-+aﬁ> 1/
<
g( o < gy J, EWamE )

for every positive integer p.

Given any positive integer p, let A, be the n X n matrix whose columns are the
vectors ay —do, . . ., ar—do, d. | —do, . . . ,a, —do . Then the transform ¢, : R” — R”,
defined by ¢, (u) := ap + Apu, maps %, onto K, . Its Jacobian equals

detA, = n!m(K,).
Making the change of variables x = @, (1) = ag+ Apu in the integral in (5), we deduce

that

a+a+---+a+d  +-+d

g( o+ ai r+1 ) gn!/ glao + Apu)dm(u)
n+1 b

for every positive integer p. Letting p — oo, we get

g(x) < n!/ glao + Au)dm(u), (6)

where A is the n X n matrix whose columns are the vectors

ay —ap,...,dr —dp, X0 —ap, ..., X0 —ap .

n — r times

Consider the function % : %, — R, defined by h(u) := g(ap + Au) . Obviously, i
is continuous on X, . Since the point ag + Au lies in K for every u € X, , it follows
that

h(u) = g(ao + Au) < g(xo) forevery u € Z,.

On the other hand, k(0,) = g(ao) = g(a@) = 0 < g(xo). The continuity of & ensures
now that

n!/Z glap + Au)dm(u) = n![; h(u)dm(u)
< n!L g(xo)dm(u)

= g(xo),
contradicting the inequality (6). This contradiction shows that f is convex.

3° = 1° Suppose that f is not convex. Then there exist two points @y, by € C
as well as a number o € (0, 1) such that

[ (%) > af (@) + (1 — a)f (bo),

where ¥ := aay + (1 — a)by .



CONVEX FUNCTIONS OF A VECTOR VARIABLE VIA HERMITE-HADAMARD’S INEQUALITY 43

Choose a € R" and ¢ € R such that the function g : C — R, defined by
g(x) == f(x) — (a,x) — c, satisfies g(a) = g(by) = 0 (this is possible because
@y # by ). Itis immediately seen that g is continuous and satisfies an inequality similar
to (2), namely

1 8lao) +glar) + -~ + g(an)
— d < 7
757 | st s )
for every n-dimensional simplex K = [ag, aj, . . .,a,] C C. Likewise, one has g(x) >
0. Set
Si:={A¢c(a1] |g(hao+ (1 =A)by) =0}, Ao :=infS$),
Sy:={pnel0,a) |gluao+ (1 —u)bo) =0},  Ho:=sup$,
ap = Apdg + (1 — A,o)b(),

bo := Wodo + (1 — o) bo.
The continuity of g ensures that
X € (ao,bo) C [ﬁo,b_o],
g(ao) = g(bo) =0,
glx)>0 for every x € (ao, bo).

Here (ao, by) denotes the open line segment whose endpoints are ay and by .
Now we construct for each j € {1,...,n} asequence (d}),>1 of points in R”
with the following properties:

o lim df = b forevery j € {1,...,n};

p—00
e K,:=lap,d},...,d,] is an n-dimensional simplex contained in C.
According to (7), we have

for every positive integer p.

Given any positive integer p, let A, be the n X n matrix whose columns are the
vectors @| — ay, . .., d, — ap. Then the transform @, : R" — R", defined by @,(u) :=
ap + Apu, maps X, onto K,. Making the change of variables x = @, (1) = ap + Apu
in the integral in (8), we deduce that

gla)) + -+ glan)
n+1

n!/ glao + Apu)dm(u) <
Zn
for every positive integer p. Letting p — oo and using the continuity of g, we obtain
n!/ glao + Au)dm(u) < 0, 9)
Zn

where A is the n X n matrix whose columns are the vectors

bo*(lo,...,bo*(lo.

n times
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Consider the function 4 : X, — R, defined by h(u) := g(ap + Au) . Clearly, h is
continuous on X, . Since

apo+Au=(1—uy— - —up)ao+ (w1 + -+ + uy)bo € [ao, by
forevery u = (uy,...,u,) € X,, it follows that
h(u) = g(ao + Au) >0 forevery u € Z,.

Taking into account that g(x) > 0 for x € (ao, by) , the function /& does not vanish on
2., , hence

/ n h(u)dm(u) = / ,, g(ao + Au)dm(u) > 0,

contradicting (9). This contradiction shows that f is convex. ]
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