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MEANS AND HERMITE INTERPOLATION

ALAN HORWITZ

(communicated by J. Matkowski)

Abstract. Let m2 < m1 be two given nonnegative integers with n = m1 + m2 + 1 . For
suitably differentiable f , we let P,Q ∈ πn be the Hermite polynomial interpolants to f which
satisfy P(j)(a) = f (j)(a), j = 0, 1, ..., m1 and P(j)(b) = f (j)(b), j = 0, 1, ..., m2, Q(j)(a) =
f (j)(a), j = 0, 1, ..., m2 and Q(j)(b) = f (j)(b), j = 0, 1, ..., m1 . Suppose that f ∈ Cn+2(I) with
f (n+1)(x) �= 0 for x ∈ (a, b) . If m1 − m2 is even, then there is a unique x0, a < x0 < b,
such that P(x0) = Q(x0) . If m1 − m2 is odd, then there is a unique x0, a < x0 < b, such
that f (x0) = 1

2 (P(x0) + Q(x0)) . x0 defines a strict, symmetric mean, which we denote by
Mf ,m1 ,m2

(a, b) . We prove various properties of these means. In particular, we show that

f (x) = xm1+m2+2 yields the arithmetic mean, f (x) = x−1 yields the harmonic mean, and

f (x) = x(m1+m2+1)/2 yields the geometric mean.

1. Introduction

DEFINITION 1. A mean m(a, b) in two variables is a continuous function on
�+

2 = {(a, b) : a, b > 0} with min(a, b) � m(a, b) � max(a, b) . m is called
(1) Strict if m(a, b) = min(a, b) or m(a, b) = max(a, b) if and only if a = b for

all (a, b) ∈ �+
2 .

(2) Symmetric if m(b, a) = m(a, b) for all (a, b) ∈ �+
2 .

(3) Homogeneous if m(ka, kb) = km(a, b) for any k > 0 and for all (a, b) ∈ �+
2 .

Of course, in some cases a mean can be extended to all real numbers, such as with
the arithmeticmean m(a, b) = a+b

2 . In this paperwe definemeans in two variables using
intersections of Hermite polynomial interpolants to a given function, f . Throughout
we assume, unless stated otherwise, that m2 < m1 are two given nonnegative integers
with n = m1 + m2 + 1 . If f (k)(a) and f (k)(b) each exist for k = 0, 1, ..., m1 , we let
P, Q ∈ πn be the Hermite polynomial interpolants to f which satisfy

P(j)(a) = f (j)(a), j = 0, 1, ..., m1 and P(j)(b) = f (j)(b), j = 0, 1, ..., m2, (1)

Q(j)(a) = f (j)(a), j = 0, 1, ..., m2 and Q(j)(b) = f (j)(b), j = 0, 1, ..., m1.

Of course P and Q depend on m1, m2, and f , but we supress that in our notation.
Under suitable conditions on f (see Theorem 2 below), if m1−m2 is even, then there is
a unique x0, a < x0 < b, such that P(x0) = Q(x0) . If m1 −m2 is odd (see Theorem 4
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below), then there is a unique x0, a < x0 < b, such that f (x0) = 1
2 (P(x0) + Q(x0)) .

In either case, x0 defines a strict, symmetric mean, which we denote by Mf ,m1 ,m2(a, b) .
The means defined in this paper are similar to a class of means defined in [2] and

[3], which were based on intersections of Taylor polynomials, each of order r . More
precisely, for f ∈ Cr+1(I), I = (a, b), let Pc denote the Taylor polynomial to f of
order r at x = c , where r is odd. In [2] it was proved that if f (r+1)(x) �= 0 on [a, b] ,
then there is a unique u, a < u < b, such that Pa(u) = Pb(u) . This defines a mean
m(a, b) ≡ u . These means were extended to the case when r is even in [3] by defining

m(a, b) to be the unique solution in (a, b) of the equation f (x) =
1
2

(P(x) + Q(x)) .

However, many of the proofs in this paper are more complex than those in [2] and [3]
because the means Mf ,m1 ,m2 depend on two nonnegative integers, m1 and m2 , rather
than just on the one nonnegative integer, r . In [2] the author also proved some minimal
results for means involving intersections of Hermite interpolants to a given function, f .
In particular we proved a version of Theorems 2, 6, and 7 below for the special case
when m1 − m2 = 2 . In this paper we prove much more along these lines.

2. Main Results

Our first result allows us to define a mean using intersections of Hermite inter-
polants when m1 − m2 is even.

THEOREM 2. Suppose that m2 < m1 are two given nonnegative integers with
m1 − m2 even. Let n = m1 + m2 + 1 and let I = (a, b), 0 < a < b be a given open
interval. Suppose that f ∈ Cn+2(I) with f (n+1)(x) �= 0 for x ∈ I , and let P and
Q satisfy the Hermite interpolation conditions given by (1). Then there is a unique
x0, a < x0 < b, such that P(x0) = Q(x0) .

Proof. We may assume, without loss of generality, that f (n+1)(x) > 0 on I . Let
EP(x) = f (x) − P(x) and EQ(x) = f (x) − Q(x) denote the respective error functions
for P and Q , and let f [x0, x1, ..., xn] denote the n -th order divided difference of f
for distinct nodes x0, x1, ..., xn . In general, divided differences at distinct points are

defined inductively by f [x0, x1, ..., xj] = f [x0 ,x1,...,xj−1]−f [x1,...,xj ]
x0−xj

with f [x0] = f (x0) . For

sufficiently differentiable f , one can extend the definition of divided difference in a
continuous fashion when the nodes are not all distinct (see, for example, [4]). We let
f [xm0

0 , xm1
1 , ..., xmn

n ] denote the divided difference where xk appears mk times. Using
one well–known form of the error in Hermite interpolation, one has

EP(x) = (x − a)m1+1(x − b)m2+1f [x, am1+1, bm2+1] (2)

and
EQ(x) = (x − a)m2+1(x − b)m1+1f [x, am2+1, bm1+1].

Let
h1(x) = f [x, am1+1, bm2+1], h2(x) = f [x, am2+1, bm1+1].

Now P(x) = Q(x) ⇐⇒ EP(x) = EQ(x) ⇐⇒
(x − a)m1−m2h1(x) = (x − b)m1−m2h2(x). (3)
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By the Mean Value Theorem for divided differences (see [4]), f [x, am1+1, bm2+1] =
f (n+1)(ζ1)
(n+1)! and f [x, am2+1, bm1+1] = f (n+1)(ζ2)

(n+1)! , where ζ1, ζ2 ∈ I if x ∈ I . Thus

f [x, am1+1, bm2+1] > 0 and f [x, am2+1, bm1+1] > 0 . Now h′1(x) = d
dx f [x, am1+1, bm2+1] =

f [x, x, am1+1, bm2+1] (see [4]), which implies that

d
dx

[
(x − a)m1−m2h1(x)

]
= (x − a)m1−m2h′1(x) + (m1 − m2)(x − a)m−1h1(x)

= (x − a)m1−m2−1
[
(x − a)f [x, x, am1+1, bm2+1] + (m1 − m2)f [x, am1+1, bm2+1]

]
.

Now (x − a)m1−m2−1 � 0 for x ∈ I. Simplifying the term in brackets using properties
of divided differences yields

(x − a)f [x, x, bm2+1, am1+1] + (m1 − m2)f [x, bm2+1, am1+1]

= f [x, x, bm2+1, am1 ] − f [x, bm2+1, am1+1] + (m1 − m2)f [x, bm2+1, am1+1]

= f [x, x, bm2+1, am1 ] + (m1 − m2 − 1)f [x, bm2+1, am1+1] > 0

again by the Mean Value Theorem for divided differences. Thus

d
dx

[
(x − a)m1−m2h1(x)

]
> 0 ⇒ (x − a)m1−m2h1(x)

is increasing on I . Similarly,

d
dx

[
(x − b)m1−m2h2(x)

]
= (x − b)m1−m2h′2(x) + (m1 − m2)(x − b)m1−m2−1h2(x)

= (x − b)m1−m2−1
[
(x − b)f [x, x, am2+1, bm1+1] + (m1 − m2)f [x, am2+1, bm1+1]

]
= (x − b)m1−m2−1

(
f [x, x, am2+1, bm1 ] + (m1 − m2 − 1)f [x, am2+1, bm1+1]

)
.

Since m1 − m2 − 1 is odd,
d
dx

[(x − b)m1−m2h2(x)] < 0 on I , which implies that

(x−b)m1−m2h2(x) is decreasing on I . Thus (x−a)m1−m2h1(x) is positive and increasing
on I and vanishes at a , while (x − b)m1−m2h2(x) is positive and decreasing on I and
vanishes at b . Hence the equation in (3) has a unique solution x0 ∈ I . Since
EP(x0) = EQ(x0), P(x0) = Q(x0) , which finishes the proof of Theorem 2. �

REMARK 3. (1) Theorem 1 was proven in [2] using a different approach and only
for the case when m1 − m2 = 2 .

(2) Heuristically speaking, we may consider the means defined in [2] as a special
case of the means above, where m1 = r and m2 = −1 . The latter value means that no
values of f or any of its derivatives are matched. However, the formulas we use do not
actually work if m2 = −1 .

The proof of the following theorem is almost identical to the proof of Theorem 2
and we omit it.

THEOREM 4. Suppose that m2 < m1 are two given nonnegative integers with
m1 − m2 odd. Let n = m1 + m2 + 1 and let I = (a, b), 0 < a < b be a given open
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interval. Suppose that f ∈ Cn+2(I) with f (n+1)(x) �= 0 for x ∈ I , and let P and
Q satisfy the Hermite interpolation conditions given by (1). Then there is a unique
x0, a < x0 < b, such that f (x0) = 1

2 (P(x0) + Q(x0)) .

The unique x0 from Theorems 2 and 4 defines a strict, symmetric mean, which
we denote by x0 = Mf ,m1 ,m2(a, b) . It is easy to unify the cases of m1 − m2 even
or odd as follows: Mf ,m1 ,m2(a, b) is the unique solution, in (a, b) , of the equation
EP(x) = (−1)m1−m2EQ(x) . Equivalently, Mf ,m1,m2(a, b) is the unique solution, in
(a, b) , of the equation

(x − a)m1−m2 f [x, am1+1, bm2+1] = (b − x)m1−m2 f [x, am2+1, bm1+1]. (4)

As in [2] and [3], we shall see that some of the familiarmeans, such as the arithmetic,
geometric, and harmonic means arise in certain special cases. For f (x) = xp, we
denote Mf ,m1,m2(a, b) by Mp,m1,m2(a, b) for any real number p with p /∈ {0, 1, ..., n} .
If p = k, k ∈ {0, 1, ..., n} , one can define Mp,m1,m2 using a limiting argument, or by
defining Mp,m1 ,m2 to be Mf ,m1 ,m2 , where f (x) = xk log x . This gives a continuous
extension of Mp,m1,m2 to all real numbers p .

REMARK 5. For any polynomial R ∈ πn, Mf −R,m1,m2(a, b) = Mf ,m1,m2(a, b) .

The following three theorems are the analogs of ([3], Theorems 1.3 and 1.4) and
([2], Theorem 1.8) for Hermite interpolation.

THEOREM 6. If p = m1 + m2 + 2 , then Mp,m1,m2(a, b) = A(a, b) = a+b
2 .

Proof. If f (x) = xm1+m2+2 , then by the Mean Value Theorem for divided dif-
ferences, f [x, am1+1, bm2+1] = f [x, am2+1, bm1+1] = (m1 + m2 + 2)! . Thus the unique
solution, x0 , in I = (a, b) of the equation EP(x) = (−1)m1−m2EQ(x) is the unique
solution of (x − a)m1−m2 = (−1)m1−m2(x − b)m1−m2 , which implies that x0 = a+b

2 .
�

THEOREM 7. If p = −1 , then Mp,m1 ,m2(a, b) = H(a, b) = 2ab
a+b for any m1 and

m2 .

Proof. If f (x) = 1
x , then f [x0, x1, ..., xn] = (−1)n

x0x1···xn
(see [6], page 11, formula (4)].

It then follows easily that f [x, am1+1, bm2+1] = (−1)m1+m2

am1+1bm2+1x and f [x, am2+1, bm1+1] =
(−1)m1+m2

am2+1bm1+1x . Thus the unique solution, x0 , in I = (a, b) , of the equation EP(x) =
(−1)m1−m2EQ(x) is the unique solution of

(x − a)m1−m2 (−1)m1+m2

am1+1bm2+1x = (−1)m1−m2(x − b)m1−m2 (−1)m1+m2

am2+1bm1+1x ,

which is equivalent to (x − a)m1−m2bm1−m2 = (x − b)m1−m2am1−m2 =⇒ x = 2ab
a+b .

�
Theorems 6 and 7 show that the arithmetic and harmonic means arise as the x

coordinates of the intersection point of Hermite interpolants. Our next result shows that
the geometric mean arises as well, but the proof is considerably more difficult.

THEOREM 8. If p = m1+m2+1
2 , where m1 + m2 is even, then Mp,m1,m2(a, b) =

G(a, b) =
√

ab .
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REMARK 9. Theorem 8 does not hold if m1 + m2 is odd. In that case, p is a
positive integer strictly less than m1 + m2 + 1 , which implies that f (m1+m2+2)(x) ≡ 0 .

Before proving Theorem 8, we need three lemmas.

LEMMA 10. Let m1 � 0 be any integer. Then

m1∑
k=0

(−1)k
(m1/2

k

)
(1 − b)k = bm1

m1∑
k=0

(m1/2
k

)
(1 − b)kb−k, b �= 0 (5)

Proof. We use induction in m1 . First, it is trivial that (5) holds when m1 = 0 or

m1 = 1 . Now let Gm1(b) =
m1∑
k=0

(−1)k
(m1/2

k

)
(1 − b)k and Hm1(b) = bm1

m1∑
k=0

(m1/2
k

)
(1 −

b)kb−k denote the left and right hand sides of (5), respectively. Then

Gm1+2(b) =
m1+2∑
k=0

(−1)k
(m1/2+1

k

)
(1 − b)k

= (−1)m1+1
(m1/2+1

m1+1

)
(1 − b)m1+1 + (−1)m1+2

(m1/2+1
m1+2

)
(1 − b)m1+2

+
m1∑
k=0

(−1)k
(m1/2

k

)
(1 − b)k +

m1−1∑
k=0

(−1)k+1
(m1/2

k

)
(1 − b)k+1

= (−1)m1+1
(m1/2+1

m1+1

)
(1 − b)m1+1 + (−1)m1+2

(m1/2+1
m1+2

)
(1 − b)m1+2

+ Gm1(b) − (1 − b)Gm1(b) − (−1)m1+2
(m1/2

m1

)
(1 − b)m1+1

= bGm1(b) + (−1)m1+1
(m1/2+1

m1+1

)
(1 − b)m1+1 + (−1)m1+2

(m1/2+1
m1+2

)
(1 − b)m1+2

− (−1)m1+1
(m1/2

m1

)
(1 − b)m1+1.

It is easy to show that bm1Gm1

(
1
b

)
= Hm1(b) . Thus

Hm1+2(b) = bm1+2Gm1+2
(

1
b

)
= bm1+2(−1)m1+1

(m1/2+1
m1+1

)
(1−1/b)m1+1+bm1+2(−1)m1+2

(m1/2+1
m1+2

)
(1−1/b)m1+2

+ bm1+1Gm1

(
1
b

)− bm1+2(−1)m1+1
(m1/2

m1

)
(1 − 1/b)m1+1

= bHm1(b) + b(−1)m1+1
(m1/2+1

m1+1

)
(b − 1)m1+1 + (−1)m1+2

(m1/2+1
m1+2

)
(b − 1)m1+2

− b(−1)m1+1
(m1/2

m1

)
(b − 1)m1+1.

Assuming that Gm1(b) = Hm1(b) , we have that

Gm1+2(b) = Hm1+2(b) ⇐⇒
(−1)m1+1

(m1/2+1
m1+1

)
(1−b)m1+1+(−1)m1+2

(m1/2+1
m1+2

)
(1−b)m1+2−(−1)m1+1

(m1/2
m1

)
(1−b)m1+1

= b(−1)m1+1
(m1/2+1

m1+1

)
(b−1)m1+1+(−1)m1+2

(m1/2+1
m1+2

)
(b−1)m1+2

−b(−1)m1+1
(m1/2

m1

)
(b−1)m1+1.
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If m1 is even, then the equality holds trivially since all terms involved are 0 . So assume
now that m1 is odd. Then

Gm1+2(b) = Hm1+2(b)

⇐⇒ (m1/2+1
m1+1

)
(1 − b)m1+1 − (m1/2+1

m1+2

)
(1 − b)m1+2 − (m1/2

m1

)
(1 − b)m1+1

= b
(m1/2+1

m1+1

)
(b − 1)m1+1 − (m1/2+1

m1+2

)
(b − 1)m1+2 − b

(m1/2
m1

)
(b − 1)m1+1

⇐⇒ (m1/2+1
m1+1

)
(1 − b)m1+2 − 2

(m1/2+1
m1+2

)
(1 − b)m1+2 − (m1/2

m1

)
(1 − b)m1+2 = 0

⇐⇒ (m1/2+1
m1+1

)− 2
(m1/2+1

m1+2

)− (m1/2
m1

)
= 0

⇐⇒ (m1/2
m1+1

)− 2
(m1/2+1

m1+2

)
= 0

⇐⇒
(m1

2

)(m1
2 −1

)
···
(m1

2 −m1

)
(m1+1)! − 2

(m1
2 +1

)(m1
2 −1

)
···
(m1

2 −m1

)
(m1+2)! = 0

⇐⇒ m1(m1−2)···(m1−2m1)
2m1+1(m1+1)! − (m1+2)(m1−2)···(m1−2m1)

2m1+1(m1+2)! = 0

⇐⇒ (m1 + 2)m1(m1 − 2) · · · (−m1) − (m1 + 2)m1(m1 − 2) · · · (−m1) = 0.

That completes the proof of Lemma 10. �

LEMMA 11. Let m1 and m2 be any integers. Then if y > 0,

m1∑
k=0

(m2+m1−k
m2

)((m2+m1)/2
k

)
(−1)k(1 − y)k = ym1

m1∑
k=0

(m2+m1−k
m2

)((m2+m1)/2
k

)
(1 − y)ky−k

Proof. It is not hard to show, using, for example, the methods in [8], that
1(m1+m2

m2

) m1∑
k=0

(m2+m1−k
m2

)((m2+m1)/2
k

)
xk = 2F1

(− 1
2m1 − 1

2m2,−m1; − m1 − m2; − x
)
,

where 2F1 ([a, b], [c], z) is the hypergeometric function
∑
k�0

(a)k(b)k
(c)k

zk

k! . Thus it suffices

to prove that

2F1
(− 1

2m1 − 1
2m2,−m1; − m1 − m2;1 − y

)
= ym1

2F1

(
− 1

2m1 − 1
2m2,−m1; − m1 − m2;

y−1
y

)
.

The latter equality follows from the identity (1−x)b
2F1 (a, b; c; x) = 2F1 (c − a, b; c;

x
x−1

)
, x /∈ (1,∞) with a = − 1

2m1 − 1
2m2, b = −m1, c = −m1 −m2 , and x = 1− y .

That proves Lemma 11. �
We now use Lemmas 10 and 11 to prove the following identity.

LEMMA 12. If m1 � 0 and m2 are any integers, if p = m1+m2+1
2 , and if b �= −1

and b �= 0 , then

m1∑
k=0

m1−k∑
l=0

(m2+l
m2

)
(−1)k

(p
k

)
(1−b)k(1+b)−l = bm1

m1∑
k=0

m1−k∑
l=0

(m2+l
m2

)(p
k

)
(1−b)k(1+b)−lbl−k.

REMARK 13. The lemma actually holds if m1 is a negative integer if one interprets
both sides of the equality to be 0 in that case.
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Proof. We denote the left and right hand sides in Lemma 12 by

Lm1,m2(b) =
m1∑
k=0

m1−k∑
l=0

(m2+l
l

)(p
k

)
(−1)k(1 − b)k(1 + b)−l,

Rm1,m2(b) = bm1
m1∑
k=0

m1−k∑
l=0

(m2+l
l

)(p
k

)
(1 − b)k(1 + b)−lbl−k,

respectively. Here we used the identity
(m2+l

m2

)
=
(m2+l

l

)
. Thus, to prove Lemma 12, it

suffices to prove
Lm1,m2(b) = Rm1,m2(b). (6)

We shall first prove the recursion

Lm1+1,m2−1(b) (7)

= b
b+1Lm1,m2(b) +

m1+1∑
k=0

(m2+m1+1−k
m2

)(p
k

)
(−1)k(1 − b)k(1 + b)−m1−1+k

Throughout we use the identities
(n+1

k

)
=
(n

k

)
+
( n

k−1

)
, which, in particular, implies

that
(m2+l−1

l

)
=
(m2+l

l

)− (m2+l−1
l−1

)
. In addition we use the fact that

( n
−1

)
= 0 for any

whole number, n . Now

Lm1+1,m2−1(b)

=
m1+1∑
k=0

m1+1−k∑
l=0

(m2+l−1
l

)(p
k

)
(−1)k(1 − b)k(1 + b)−l

=
( p

m1+1

)
(−1)m1+1(1 − b)m1+1 +

m1∑
k=0

m1+1−k∑
l=0

(m2+l−1
l

)(p
k

)
(−1)k(1 − b)k(1 + b)−l

=
( p

m1+1

)
(−1)m1+1(1 − b)m1+1 +

m1∑
k=0

m1+1−k∑
l=0

(m2+l
l

)(p
k

)
(−1)k(1 − b)k(1 + b)−l

−
m1∑
k=0

m1+1−k∑
l=0

(m2+l−1
l−1

)(p
k

)
(−1)k(1 − b)k(1 + b)−l

=
( p

m1+1

)
(−1)m1+1(1−b)m1+1+

m1∑
k=0

(m2+m1+1−k
m2

)(p
k

)
(−1)k(1−b)k(1+b)−m1−1+k

+
m1∑
k=0

m1−k∑
l=0

(m2+l
l

)(p
k

)
(−1)k(1 − b)k(1 + b)−l

−
m1∑
k=0

(m2+m1−k
m2

)(p
k

)
(−1)k(1 − b)k(1 + b)−m1−1+k

−
m1∑
k=0

m1−k∑
l=0

(m2+l−1
l−1

)(p
k

)
(−1)k(1 − b)k(1 + b)−l

=
m1+1∑
k=0

(m2+m1−k
m2−1

)(p
k

)
(−1)k(1 − b)k(1 + b)−m1−1+k

+
m1∑
k=0

m1−k∑
l=0

(m2+l
l

)(p
k

)
(−1)k(1 − b)k(1 + b)−l
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−
m1∑
k=0

m1−k∑
l=−1

(m2+l
l

)(p
k

)
(−1)k(1 − b)k(1 + b)−l−1

=
m1+1∑
k=0

(m2+m1−k
m2−1

)(p
k

)
(−1)k(1 − b)k(1 + b)−m1−1+k

+
m1∑
k=0

m1−k∑
l=0

(m2+l
l

)(p
k

)
(−1)k(1 − b)k(1 + b)−l

− (1 + b)−1
m1∑
k=0

m1−k∑
l=0

(m2+l
l

)(p
k

)
(−1)k(1 − b)k(1 + b)−l

=
m1+1∑
k=0

(m2+m1−k
m2−1

)(p
k

)
(−1)k(1−b)k(1+b)−m1−1+k+Lm1,m2(b)−(1+b)−1Lm1,m2(b)

= b
b+1Lm1,m2(b) +

m1+1∑
k=0

(m2+m1+1−k
m2

)(p
k

)
(−1)k(1 − b)k(1 + b)−m1−1+k.

That proves (7). It is easy to show that

bm1Lm1,m2

(
1
b

)
= Rm1,m2(b). (8)

Thus by (8) and (7),

Rm1+1,m2−1(b) = bm1+1Lm1+1,m2−1
(

1
b

)
= bm1+1

(
1

b+1Lm1,m2

(
1
b

)
+

m1+1∑
k=0

(m2+m1+1−k
m2

)(p
k

)
(−1)k(1−1/b)k(1+1/b)−m1−1+k

)

= bm1+1

(
1

b+1Lm1,m2

(
1
b

)
+

m1+1∑
k=0

(m2+m1+1−k
m2

)(p
k

)
(1 − b)k(1 + b)−m1−1+kbm1+1−2k

)

=
(

bm1+1

b+1 Lm1,m2

(
1
b

)
+

m1+1∑
k=0

(m2+m1+1−k
m2

)(p
k

)
(1 − b)k(1 + b)−m1−1+kb2m1+2−2k

)

= b
b+1Rm1,m2(b) +

m1+1∑
k=0

(m2+m1+1−k
m2

)(p
k

)
(1 − b)k(1 + b)−m1−1+kb2m1+2−2k.

That yields the recursion

Rm1+1,m2−1(b) (9)

= b
b+1Rm1,m2(b) +

m1+1∑
k=0

(m2+m1+1−k
m2

)(p
k

)
(1 − b)k(1 + b)−m1−1+kb2m1+2−2k.

In a similar fashion, one can also prove the recursions

Lm1−1,m2+1(b) = b+1
b Lm1,m2(b) − b+1

b (−1)m1
( p

m1

)
(1 − b)m1 (10)

− b+1
b

m1−1∑
k=0

(−1)k
(m1+m2−k+1

m2+1

)(p
k

)
(1 − b)k(1 + b)−(m1−k)

and

Rm1−1,m2+1(b) = b+1
b Rm1,m2(b) − b+1

b (−1)m1
( p

m1

)
(b − 1)m1 (11)

− b+1
b

m1−1∑
k=0

(−1)k
(m1+m2−k+1

m2+1

)(p
k

)
(b − 1)k(1 + b)−m1+kb2m1−2k
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We now use induction to prove (6). We start the induction with m2 = −1 and m1

any fixed non–negative integer. In that case the only nonzero term on both sides of (6)

occurs when l = 0 , which yields
m1∑
k=0

(−1)k
(m1/2

k

)
(1− b)k = bm1

m1∑
k=0

(m1/2
k

)
(1− b)kb−k ,

which is precisely Lemma 10. Proceeding with the induction, we assume now that
Lm1,m2(b) = Rm1,m2(b) . Then, using (7) and (9), it follows that

Lm1+1,m2−1(b) = Rm1+1,m2−1(b) ⇐⇒
m1+1∑
k=0

(m2+m1+1−k
m2

)(p
k

)
(−1)k(1 − b)k(1 + b)−m1−1+k

=
m1+1∑
k=0

(m2+m1+1−k
m2

)(p
k

)
(1 − b)k(1 + b)−m1−1+kb2m1+2−2k ⇐⇒

m1+1∑
k=0

(m2+m1+1−k
m2

)(p
k

)
(−1)k(1−b2)k =

(
b2
)m1+1 m1+1∑

k=0

(m2+m1+1−k
m2

)(p
k

)
(1−b2)k

(
b2
)−k

(12)
(12) now follows from Lemma 11, by replacing m1 + 1 by m1 and letting y = b2 .
That proves, with the assumption Lm1,m2(b) = Rm1,m2(b) , that

Lm1+1,m2−1(b) = Rm1+1,m2−1(b). (13)

Also, using (10) and (11), it follows that

Lm1−1,m2+1(b) = Rm1−1,m2+1(b) ⇐⇒

(−1)m1
( p

m1

)
(1 − b)m1 +

m1−1∑
k=0

(−1)k
(m1+m2−k+1

m2+1

)(p
k

)
(1 − b)k(1 + b)−(m1−k)

= (−1)m1
( p

m1

)
(b − 1)m1 +

m1−1∑
k=0

(−1)k
(m1+m2−k+1

m2+1

)(p
k

)
(b − 1)k(1 + b)−m1+kb2m1−2k.

To prove this equality we consider two cases.

Case 1: m1 is even
We must show that

m1−1∑
k=0

(−1)k
(m1+m2−k+1

m2+1

)(p
k

)
(1 − b2)k = b2m1

m1−1∑
k=0

(m1+m2−k+1
m2+1

)(p
k

) (
1−b2

b2

)k
,

which is equivalent to
m1−1∑
k=0

(−1)k
(m1+m2−k

m2

)((m2+m1)/2
k

)
(1 − y)k = ym1

m1−1∑
k=0

(m1+m2−k
m2

)((m2+m1)/2
k

) ( 1−y
y

)k

upon replacing m2 by m2 − 1 and letting y = b2 . Hence we must prove that
m1∑
k=0

(−1)k
(m1+m2−k

m2

)((m2+m1)/2
k

)
(1 − y)k − (−1)m1

((m2+m1)/2
m1

)
(1 − y)m1

= ym1
m1∑
k=0

(m1+m2−k
m2

)((m2+m1)/2
k

) ( 1−y
y

)k
− ym1

((m2+m1)/2
m1

) ( 1−y
y

)m1 ⇐⇒
m1∑
k=0

(−1)k
(m1+m2−k

m2

)((m2+m1)/2
k

)
(1 − y)k = ym1

m1∑
k=0

(m1+m2−k
m2

)((m2+m1)/2
k

) ( 1−y
y

)k
,
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which follows from Lemma 11.

Case 2: m1 is odd
We must show that

− ( p
m1

)
(1 − b)m1 + (1 + b)−m1

m1−1∑
k=0

(−1)k
(m1+m2−k+1

m2+1

)(p
k

)
(1 − b2)k

=
( p

m1

)
(1 − b)m1 + (1 + b)−m1b2m1

m1−1∑
k=0

(m1+m2−k+1
m2+1

)(p
k

) (
1−b2

b2

)k
⇐⇒

− ( p
m1

)
(1 − b2)m1 +

m1−1∑
k=0

(−1)k
(m1+m2−k+1

m2+1

)(p
k

)
(1 − b2)k

=
( p

m1

)
(1 − b2)m1 + b2m1

m1−1∑
k=0

(m1+m2−k+1
m2+1

)(p
k

) (
1−b2

b2

)k
.

Replace m2 by m2 − 1 and let y = b2 to get

((m2+m1)/2
m1

)
(1 − y)m1 +

m1−1∑
k=0

(−1)k
(m1+m2−k

m2

)((m2+m1)/2
k

)
(1 − y)k

=
((m2+m1)/2

m1

)
(1 − y)m1 + ym1

m1−1∑
k=0

(m1+m2−k
m2

)((m2+m1)/2
k

) ( 1−y
y

)k
⇐⇒

−((m2+m1)/2
m1

)
(1−y)m1+

m1∑
k=0

(−1)k
(m1+m2−k

m2

)((m2+m1)/2
k

)
(1−y)k+

((m2+m1)/2
m1

)
(1−y)m1

=
((m2+m1)/2

m1

)
(1−y)m1+ym1

m1∑
k=0

(m1+m2−k
m2

)((m2+m1)/2
k

)( 1−y
y

)k
−ym1

((m2+m1)/2
m1

)
( 1−y

y )m1

⇐⇒
m1∑
k=0

(−1)k
(m1+m2−k

m2

)((m2+m1)/2
k

)
(1 − y)k = ym1

m1∑
k=0

(m1+m2−k
m2

)((m2+m1)/2
k

) ( 1−y
y

)k
,

which is again Lemma 11. That proves, with the assumption Lm1,m2(b) = Rm1,m2(b) ,
that

Lm1−1,m2+1(b) = Rm1−1,m2+1(b). (14)

The case m2 = −1 and (14) shows that (6) holds when m1 = m2 and m1 is any
non–negative integer, or when m1 = m2 + 1 and m1 is any non–negative integer. (13)
now shows that (6) holds when m1 � 0 and m2 are any integers. That finishes the
proof of Lemma 12. �

We are now ready to prove Theorem 8.

Proof. Wenowuse a formula due to Spitzbart (see [9], Theorem2), which expresses
divided differences of the form f [xr0+1

0 , xr1+1
1 , ..., xrn+1

n ] with confluent arguments as
a linear combination of the values of f and its derivatives at x0, x1, ..., xn . Using
f (x) = xp, x0 = x, x1 = a, x2 = b, r0 = 0, r1 = m1, and r2 = m2 , one can write

f [x, am1+1, bm2+1] = A1 + B1 + C1, (15)
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where

A1 =
m1∑
k=0

m1−k∑
l=0

(−m2−1
l

)( −1
m1−k−l

)(p
k

)
(a − b)−m2−1−l(a − x)−m1−1+k+lap−k,

B1 =
m2∑
k=0

m2−k∑
l=0

(−m1−1
l

)( −1
m2−k−l

)(p
k

)
(b − a)−m1−1−l(b − x)−m2−1+k+lbp−k,

and
C1 = (x − a)−m1−1(x − b)−m2−1xp. (16)

Using the identities
( −1

mj−k−l

)
= (−1)mj(−1)k+l and

(−mj−1
l

)
= (−1)l

(mj+l
mj

)
, j = 1, 2

to simplify the expressions for A1 and B1 yields

A1 = ap
m1∑
k=0

m1−k∑
l=0

(m2+l
m2

)(p
k

)
(−1)m1+k(a − b)−m2−1−l(a − x)−m1−1+k+la−k, (17)

B1 = bp
m2∑
k=0

m2−k∑
l=0

(m1+l
m1

)(p
k

)
(−1)m2+k(b − a)−m1−1−l(b − x)−m2−1+k+lb−k

By switching m1 and m2 we obtain

f [x, am2+1, bm1+1] = A2 + B2 + C2, (18)

where

A2 = ap
m2∑
k=0

m2−k∑
l=0

(m1+l
m1

)(p
k

)
(−1)m2+k(a − b)−m1−1−l(a − x)−m2−1+k+la−k, (19)

B2 = bp
m1∑
k=0

m1−k∑
l=0

(m2+l
m2

)(p
k

)
(−1)m1+k(b − a)−m2−1−l(b − x)−m1−1+k+lb−k,

C2 = (x − a)−m2−1(x − b)−m1−1xp.

Now letting x = 1 and a = 1
b in (15) and (18) yields

bm2 (A1 + B1 + C1) = bm2 f [1, (1/b)m1+1, bm2+1] (20)

bm1 (A2 + B2 + C2) = bm1 f [1, (1/b)m2+1, bm1+1],

After some simplification, we have

bm2A1 = (−1)m1bm1+2m2+2−p(1 − b)−m1−m2−2(1 + b)−m2−1

·
m1∑
k=0

m1−k∑
l=0

(m2+l
m2

)
(−1)k

(p
k

)
(1 − b)k(1 + b)−l,

bm2B1 = (−1)m1bm1+m2+p+1(1 − b)−m1−m2−2(1 + b)−m1−1

·
m2∑
k=0

m2−k∑
l=0

(m1+l
m1

)(p
k

)
(1 − b)k(1 + b)−lbl−k,

bm2C1 = (−1)m1+1(1 − b)−m1−m2−2bm1+m2+1,

bm1A2 = (−1)m2bm2+2m1+2−p(1 − b)−m1−m2−2(1 + b)−m1−1

·
m2∑
k=0

m2−k∑
l=0

(m1+l
m1

)
(−1)k

(p
k

)
(1 − b)k(1 + b)−l,
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bm1B2 = (−1)m2bm1+m2+p+1(1 − b)−m1−m2−2(1 + b)−m2−1

·
m1∑
k=0

m1−k∑
l=0

(m2+l
m2

)(p
k

)
(1 − b)k(1 + b)−lbl−k,

and bm1C2 = (−1)m2+1(1 − b)−m1−m2−2bm1+m2+1 . We claim:

bm2A1 = bm1B2, bm1A2 = bm2B1, bm2C1 = bm1C2, b �= ±1. (21)

It is trivial that bm2C1 = bm1C2 . Now

bm2A1 = bm1B2 ⇐⇒

(−1)m1bm1+2m2+2−p(1−b)−m1−m2−2(1+b)−m2−1
m1∑
k=0

m1−k∑
l=0

(m2+l
m2

)
(−1)k

(p
k

)
(1−b)k(1 + b)−l

= (−1)m2bm1+m2+p+1(1−b)−m1−m2−2(1+b)−m2−1
m1∑
k=0

m1−k∑
l=0

(m2+l
m2

)(p
k

)
(1−b)k(1+b)−lbl−k

⇐⇒
m1∑
k=0

m1−k∑
l=0

(m2+l
m2

)
(−1)k

(p
k

)
(1−b)k(1+b)−l = bm1

m1∑
k=0

m1−k∑
l=0

(m2+l
m2

)(p
k

)
(1−b)k(1+b)−lbl−k,

(22)
and

bm1A2 = bm2B1 ⇐⇒

(−1)m2bm2+2m1+2−p(1−b)−m1−m2−2(1+b)−m1−1
m2∑
k=0

m2−k∑
l=0

(m1+l
m1

)
(−1)k

(p
k

)
(1−b)k(1+b)−l

= (−1)m1bm1+m2+p+1(1−b)−m1−m2−2(1+b)−m1−1
m2∑
k=0

m2−k∑
l=0

(m1+l
m1

)(p
k

)
(1−b)k(1+b)−lbl−k

⇐⇒
m2∑
k=0

m2−k∑
l=0

(−1)k
(m1+l

m1

)(p
k

)
(1−b)k(1+b)−l = bm2

m2∑
k=0

m2−k∑
l=0

(m1+l
m1

)(p
k

)
(1−b)k(1+b)−lbl−k.

(23)
(22) is precisely Lemma 12, and the proof of (23) is very similar to the proof of Lemma
12. More simply, one can just interchange m1 and m2 in Lemma 12, since Lemma 12
actually holds for all integers m1 and m2 (see the remark following Lemma 12). That
proves (21), which immediately gives

bm2 (A1 + B1 + C1) = bm1 (A2 + B2 + C2) . (24)

Now, if f (x) = x(m1+m2+1)/2 , then Mp,m1 ,m2 is a homogeneous mean. Thus it suffices
to prove that Mp,m1,m2

(
1
b , b
)

= 1, b �= 1, b � 0 , which is equivalent to

(
1 − 1

b

)m
f [1, (1/b)m1+1, bm2+1] = (1 − b)m f [1, (1/b)m2+1, bm1+1]
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by (3)with a =
1
b

and x = 1 . A little simplification yields bm2 f [1, (1/b)m1+1, bm2+1] =

bm1 f [1, (1/b)m2+1, bm1+1] , which follows directly from (24) using (20). �

REMARK 14. There are various well known integral representations for divided
differences which might be used to give a shorter proof of Theorem 8. This author,
however, was not able to make such a proof work.

Before proving our next result, we need a theorem about Cauchy Mean Values,
which have been discussed by many authors. In particular, we use results from the paper
by Leach and Sholander [5]. Let I be an open interval of real numbers and consider
two given functions f , g ∈ Cn (I) . Suppose that g(n)(x) �= 0 for x ∈ I and that φ is

monotone on I , where φ(x) = f (n)(x)
g(n)(x) . Given n+ 1 numbers {x0, x1, ..., xn} ⊆ I , there

is a unique c, min {x0, x1, ..., xn} � c � max {x0, x1, ..., xn} , such that f [x0 ,x1,...,xn ]
g[x0,x1,...,xn ] =

f (n)(c)
g(n)(c) . Of course, if the x0, x1, ..., xn are not distinct, we use the extended definition

of the divided difference f [x0, x1, ..., xn] for confluent nodes. This defines a mean
c = Mf ,g(x0, x1, ..., xn) . We state the following result of Leach and Sholander from ([5],
Theorem 3) with the notation altered slightly for our purposes.

THEOREM 15. If φ ′(x) is never 0 on I , then ∂
∂xk

Mf ,g(x0, x1, ..., xn) > 0 for
k = 0, 1, ..., n .

Now we prove the following lemma.

LEMMA 16. Let I = (a, b), 0 < a < b be a given open interval, let m2 < m1 be
two given nonnegative integers, with n = m1 +m2 +1 , and suppose that f , g ∈ Cn+2(I)
with f (n+1) and g(n+1) nonzero on I . Assume also that g(n+1)(x) and φ ′(x) are never

0 on I , where φ(x) = f (n+1)(x)
g(n+1)(x) . Let ζP, ζQ ∈ I be the unique values satisfying

f [x,am1+1,bm2+1]
g[x,am1+1 ,bm2+1] = f (n+1)(ζP)

g(n+1)(ζP) and f [x,am2+1,bm1+1]
g[x,am2+1,bm1+1] = f (n+1)(ζQ)

g(n+1)(ζQ) . Then ζP < ζQ .

Proof. f [x,am1+1,bm2+1]
g[x,am1+1 ,bm2+1] = f [x0 ,x1,...,xn]

g[x0,x1,...,xn ] where x0 = x, x1 = · · · = xm1+1 = a, and

xm1+2 = · · · = xm1+m2+2 = b , while f [x,am2+1,bm1+1]
g[x,am2+1,bm1+1] = f [x0,x1,...,xn ]

g[x0,x1,...,xn] where x0 = x, x1 =
· · · = xm2+1 = a, and xm2+2 = · · · = xm1+m2+2 = b . Then ζP = Mf ,g

(
x, am1+1, bm2+1

)
and ζQ = Mf ,g

(
x, am2+1, bm1+1

)
, where Mf ,g denotes the mean defined above. Since

m2 < m1 and a < b , by Theorem 15, ζP < ζQ . �
Recall that the means discussed in this paper are denoted by Mf ,m1 ,m2(a, b) ,

where Mf ,m1,m2(a, b) is the unique solution, in (a, b) , of the equation EP(x) =
(−1)m1−m2EQ(x) , EP(x) and EQ(x) given by (2). We now prove a result about when
Mf ,m1,m2 and Mg,m1 ,m2 are comparable. For any sufficiently smooth f , we let Pf and
Qf denote the Hermite interpolants satisfying (1). We also let EP,f = f − Pf and so
on.

THEOREM 17. Suppose that φ = f (n+1)

g(n+1) is strictly monotonic on (0,∞) , where

f , g ∈ Cn+1(0,∞) . Then the means Mf ,m1,m2 and Mg,m1,m2 are strictly comparable.
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That is, either Mf ,m1 ,m2(a, b) < Mg,m1,m2(a, b) or Mf ,m1,m2(a, b) > Mg,m1 ,m2(a, b) for
all (a, b) ∈ �+

2 .

Proof. Suppose that Mf ,m1,m2(a, b) = Mg,m1 ,m2(a, b) = x0 for some (a, b) ∈
O = {(x, y) : 0 < x < y} . Note that g(x0) − Pg(x0) �= 0 and g(x0) − Qg(x0) �= 0
since g(n+1) is nonzero on I . Then EP,f (x0) = (−1)m1−m2EQ,f (x0) and EP,g(x0) =
(−1)m1−m2EQ,g(x0) , which implies that

EP,f (x0)
EP,g(x0)

= EQ,f (x0)
EQ,g(x0)

. By (2), we then have
f [x0,a

m1+1 ,bm2+1]
g[x0,am1+1,bm2+1 ] = f [x0,a

m2+1,bm1+1]
g[x0,am2+1,bm1+1] . Let

ζP = φ−1
(

f [x0,a
m1+1,bm2+1 ]

g[x0,am1+1,bm2+1]

)
and ζQ = φ−1

(
f [x0 ,a

m2+1,bm1+1]
g[x0 ,am2+1,bm1+1]

)
.

ByLemma16, ζP < ζQ , which contradicts the fact that f [x0,a
m1+1,bm2+1]

g[x0,am1+1,bm2+1 ] = f [x0,a
m2+1 ,bm1+1]

g[x0,am2+1,bm1+1 ] .
Thus Mf ,m1,m2(a, b) and Mg,m1,m2(a, b) are never equal on O . Since Mf ,m1 ,m2 and
Mg,m1,m2 are each continuous on O and O is connected, that proves that either
Mf ,m1,m2(a, b) < Mg,m1,m2(a, b) or Mf ,m1 ,m2(a, b) > Mg,m1,m2(a, b) for all (a, b) ∈ O by
the intermediate value theorem. Since the means Mf ,m1 ,m2 are symmetric, that proves
Theorem 17. �

THEOREM 18. Let m2 < m1 be two given nonnegative integers, with n =
m1+m2+1 , and suppose that f , g ∈ Cn+2(0,∞) . Then Mf ,m1 ,m2(a, b) = Mg,m1,m2(a, b)
for all (a, b) ∈ �+

2 if and only if g(x) = cf (x) + p(x) for some constant c and some
polynomial p ∈ πn .

Proof. (⇐= Suppose that g(x) = cf (x) + p(x) for some constant c and some
polynomial p ∈ πn . Then it is trivial that Pf = Pg and Qf = Qg , which implies that
Mf ,m1,m2(a, b) = Mg,m1,m2(a, b) for all (a, b) ∈ �+

2 .
(=⇒ Suppose that Mf ,m1,m2(a, b) = Mg,m1,m2(a, b) for all (a, b) ∈ �+

2 , and

assume that φ(x) = f (n+1)(x)
g(n+1)(x) is not a constant function on (0,∞) . Then φ is

strictly monotone on some open interval I since φ ′ is continuous. Arguing exactly
as in the proof of Theorem 17, with I replacing (0,∞) , we conclude that either
Mf ,m1,m2(a, b) < Mg,m1,m2(a, b) or Mf ,m1,m2(a, b) > Mg,m1 ,m2(a, b) for all a, b ∈ I ,

which is a contradiction. Thus f (n+1)(x)
g(n+1)(x) must be a constant function on (0,∞) , which

then implies that g(x) = cf (x) + p(x) for some constant c and some polynomial
p ∈ πn . �

The proof of the following theorem is very similar to the proofs of ([2], Lemma
1.2) and ([2], Theorem 1.4 and its Corollary), and we omit them.

THEOREM 19. Suppose that f ∈ Cn+2(0,∞) and that Mf ,m1 ,m2 is a homogeneous
mean. Then f (n+1)(x) = cxp for some real numbers c and p .

Theorem 19 implies that the means Mp,m1,m2 are the only homogeneous means
among the general class of means Mf ,m1 ,m2 .

THEOREM 20. Mp,m1,m2(a, b) is increasing in p for each fixed m1, m2, a, and b .
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Proof. Let f (x) = xp1 , g(x) = xp2 , where p1 < p2 . Then φ(x) = f (n+1)(x)
g(n+1)(x) =

xp1−p2 is strictly monotonic on (0,∞) . Let 0 < a < b be fixed and let O =
{(p1, p2) ∈ �2 : p1 < p2} . By Theorem 17, Mp1 ,m1,m2(a, b) �= Mp2,m1,m2(a, b) for all
(p1, p2) ∈ O . Since O is connected and Mp,m1,m2(a, b) is a continuous function of
p , either Mp1,m1,m2(a, b) < Mp2,m1,m2(a, b) or Mp1,m1,m2(a, b) > Mp2,m1,m2(a, b) for all
(p1, p2) ∈ O by the intermediate value theorem. By Theorems 6 and 7, we must
have Mp1,m1,m2(a, b) < Mp2,m1,m2(a, b) for all (p1, p2) ∈ O since it is well known that
H(a, b) � A(a, b) . Since a < b was arbitrary and Mp1,m1,m2 is symmetric, that proves
Theorem 20. �

The following theorem discusses the asymptotic behavior of Mp,m1,m2 as p ap-
proaches ∞ or −∞ .

THEOREM 21. lim
p→∞Mp,m1,m2(a, b) = max{a, b} and lim

p→−∞Mp,m1,m2(a, b) =

min{a, b} .

Proof. Since Mp,m1,m2(a, b) is symmetric, we may assume that a < b . We
prove that lim

p→∞Mp,m1 ,m2(a, b) = b , the proof of the other case being similar. By

(4), (15), and (18), Mp,m1,m2(a, b) is the unique solution, in (a, b) , of the equation
(x − a)m1−m2 (A1 + B1 + C1) = (b − x)m1−m2 (A2 + B2 + C2) , where f (x) = xp and
Aj, Bj, Cj, j = 1, 2 are given by (17), (19), and (16). For a � x � b , it follows
easily that A1

( p
m1

)bp , B1

( p
m1

)bp , C1

( p
m1

)bp , A2

( p
m1

)bp , and C2

( p
m1

)bp each approach 0 as p → ∞ .

In the double summation for B2 , take k = m1 , which implies that l = 0 and thus
B2

( p
m1

)bp → (b−a)−m2−1(b−x)−1b−m1 as p → ∞ . Thus (x−a)m1−m2 (A1 + B1 + C1)−
(b−x)m1−m2 (A2 + B2 + C2) → −(x−b)m1−m2−1(b−a)−m2−1b−m1 as p → ∞ , which
easily implies that Mp,m1,m2(a, b) must be approaching b if m1 − m2 > 1 . We now
consider the case m1 = 1 , m2 = 0 separately. Then Mp,m1 ,m2(a, b) is the unique
solution, in (a, b) , of the equation (x− a)f [x, a, a, b] + (x− b)f [x, a, b, b] = 0, f (x) =

xp . Using f [x, a, a, b] =
f (x)−f (a)−(x−a)f ′(a)

(x−a)2 − f (b)−f (a)−(b−a)f ′(a)
(b−a)2

x−b and f [x, a, b, b] =
f (x)−f (b)−(x−b)f ′(b)

(x−b)2 − f (a)−f (b)−(a−b)f ′(b)
(b−a)2

x−a , some simplification yields the equation Lp(x) =
0 , where Lp(x) = 2 (xp − ap) (b − a) − 2 (bp − ap) (x − a) − p

(
bp−1 − ap−1

)
(x −

b)(x− a) . For a � x � b , Lp(x)
p(bp−ap) → 1

b (x− b)(x− a) as p → ∞ . Since Mp,m1,m2 is
increasing in p by Theorem 20, Mp,m1,m2(a, b) must be approaching b as p → ∞ .
�

3. Special Cases

We now investigate the special case when m1−m2 = 2, where m1+m2 is even. In
this case, the mean Mf ,m1 ,m2 can be obtained by solving a linear equation. In particular,
if f (x) = xp where p is an integer, then Mp,m1,m2 is a rational mean. Since P(j)(a) =
Q(j)(a) and P(j)(b) = Q(j)(b), j = 0, 1, ..., m2 , P−Q has zeros of multiplicity m2 +1
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at x = a and at x = b . Thus P(x)−Q(x) = (x−a)m2+1(x−b)m2+1R(x) , where R is a
polynomial of degree m1−m2−1 . Using the formulas in [1] for Hermite interpolation,
one can directly compute the polynomials P and Q which satisfy (1).

P(x) =
(

x−b
a−b

)m2+1 m1∑
j=0

m1−j∑
k=0

(x−a)j

j!

(m2+k
k

) (
x−a
b−a

)k
f (j)(a) (25)

+
(

x−a
b−a

)m1+1 m2∑
j=0

m2−j∑
k=0

(x−b)j

j!

(m1+k
k

) (
x−b
a−b

)k
f (j)(b)

and

Q(x) =
(

x−b
a−b

)m1+1 m2∑
j=0

m2−j∑
k=0

(x−a)j

j!

(m1+k
k

) (
x−a
b−a

)k
f (j)(a) (26)

+
(

x−a
b−a

)m2+1 m1∑
j=0

m1−j∑
k=0

(x−b)j

j!

(m2+k
k

) (
x−b
a−b

)k
f (j)(b)

Since m1 − m2 = 2 , R is a linear polynomial, which implies that P(x) − Q(x) =
(x − a)m2+1(x − b)m2+1(cx + d) . We now determine c and d . First,

d = P(0)−Q(0)
am2+1bm2+1 = EQ(0)−EP(0)

am2+1bm2+1 = am2+1bm1+1f [0,am2+1 ,bm1+1]−am1+1bm2+1f [0,am1+1,bm2+1 ]
am2+1bm2+1

= bm1−m2 f [0, am2+1, bm1+1] − am1−m2 f [0, am1+1, bm2+1] =⇒
d = b2f [0, am2+1, bm2+3] − a2f [0, am2+3, bm2+1] (27)
Again, using the formula discussed earlier due to Spitzbart (see [9], Theorem 2),

f [0, am1+1, bm2+1] =
m1∑
k=0

m1−k∑
l=0

1
k!(−1)m1+k

(m2+l
m2

)
(a − b)−m2−1−la−m1−1+k+lf (k)(a)

+
m2∑
k=0

m2−k∑
l=0

1
k!(−1)m2+k

(m1+l
m1

)
(b − a)−m1−1−lb−m2−1+k+lf (k)(b)

+ a−m1−1b−m2−1f (0),

and

f [0, am2+1, bm1+1] =
m2∑
k=0

m2−k∑
l=0

1
k!(−1)m2+k

(m1+l
m1

)
(a − b)−m1−1−la−m2−1+k+lf (k)(a)

+
m1∑
k=0

m1−k∑
l=0

1
k!(−1)m1+k

(m2+l
m2

)
(b − a)−m2−1−lb−m1−1+k+lf (k)(b)

+ a−m2−1b−m1−1f (0).

Letting m1 = m2 + 2 gives

f [0, am2+1, bm2+3] =
m2∑
k=0

m2−k∑
l=0

1
k!(−1)m2+k

(m2+l+2
m2+2

)
(a − b)−m2−3−la−m2−1+k+lf (k)(a)

+
m2+2∑
k=0

m2+2−k∑
l=0

1
k!(−1)m2+k

(m2+l
m2

)
(b − a)−m2−1−lb−m2−3+k+lf (k)(b)

+ a−m2−1b−m2−3f (0),
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and

f [0, am2+3, bm2+1] =
m2+2∑
k=0

m2+2−k∑
l=0

1
k!(−1)m2+k

(m2+l
m2

)
(a − b)−m2−1−la−m2−3+k+lf (k)(a)

+
m2∑
k=0

m2−k∑
l=0

1
k!(−1)m2+k

(m2+2+l
m2+2

)
(b − a)−m2−3−lb−m2−1+k+lf (k)(b)

+ a−m2−3b−m2−1f (0).

Hence, by (27),

d = b2f [0, am2+1, bm2+3] − a2f [0, am2+3, bm2+1]

=
m2∑
k=0

m2−k∑
l=0

(−1)m2+k

k!

(m2+l+2
m2+2

)
b2(a − b)−m2−3−la−m2−1+k+lf (k)(a)

+
m2+2∑
k=0

m2+2−k∑
l=0

(−1)m2+k

k!

(m2+l
m2

)
(b − a)−m2−1−lb−m2−1+k+lf (k)(b)

+ a−m2−1b−m2−1f (0) −
m2+2∑
k=0

m2+2−k∑
l=0

(−1)m2+k

k!

(m2+l
m2

)
(a − b)−m2−1−la−m2−1+k+lf (k)(a)

−
m2∑
k=0

m2−k∑
l=0

(−1)m2+k

k!

(m2+2+l
m2+2

)
a2(b−a)−m2−3−lb−m2−1+k+lf (k)(b)−a−m2−1b−m2−1f (0)

=
m2∑
k=0

m2−k∑
l=0

(−1)m2+k

k!

(m2+l+2
m2+2

)
(a − b)−m2−3−l

· (b2a−m2−1+k+lf (k)(a) + (−1)m2+la2b−m2−1+k+lf (k)(b)
)

+
m2+2∑
k=0

m2+2−k∑
l=0

(−1)m2+k

k!

(m2+l
m2

)
(b − a)−m2−1−l

· (b−m2−1+k+lf (k)(b) + (−1)m2+la−m2−1+k+lf (k)(a)
)
.

Now we find c . It is not hard to show, using (1), that the coefficient, cP,m1,m2, of the
highest power in P , which is xm1+m2+1 , is given by

m1∑
j=0

(m2+m1−j
m2

)f (j)(a)

j!(a−b)m2+1(b−a)m1−j +
m2∑
j=0

(m2+m1−j
m1

)f (j)(b)

j!(b−a)m1+1(a−b)m2−j

or

cP,m1,m2 = (−1)m2

(b−a)m1+m2+1

(
m2∑
j=0

(−1)j(m2+m1−j
m1

)(b−a)jf (j)(b)
j! −

m1∑
j=0

(m2+m1−j
m2

)(b−a)jf (j)(a)
j!

)
(28)

Similarly, the coefficient, cQ,m1,m2, of the highest power in Q , which is xm1+m2+1 , is
given by

m2∑
j=0

(m2+m1−j
m1

)f (j)(a)

j!(a−b)m1+1(b−a)m2−j +
m1∑
j=0

(m2+m1−j
m2

)f (j)(b)

j!(b−a)m2+1(a−b)m1−j

or

cQ,m1,m2 = (−1)m1

(b−a)m1+m2+1

(
m1∑
j=0

(−1)j(m2+m1−j
m2

)(b−a)jf (j)(b)
j! −

m2∑
j=0

(m2+m1−j
m1

)(b−a)jf (j)(a)
j!

)
(29)
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Hence

c = (−1)m2+1

(b−a)m1+m2+1

(
m1∑
j=0

(m2+m1−j
m2

)(b−a)jf (j)(a)
j! −

m2∑
j=0

(−1)j(m2+m1−j
m1

)(b−a)jf (j)(b)
j!

)

− (−1)m1+1

(b−a)m1+m2+1

(
m2∑
j=0

(m2+m1−j
m1

)(b−a)jf (j)(a)
j! −

m1∑
j=0

(−1)j(m2+m1−j
m2

)(b−a)jf (j)(b)
j!

)
=⇒

c = 1
(b−a)m1+m2+1

m1∑
j=0

(m2+m1−j
m2

)(b−a)j((−1)m2+1f (j)(a)−(−1)m1+j f (j)(b))
j! (30)

+ 1
(b−a)m1+m2+1

m2∑
j=0

(m2+m1−j
m1

)(b−a)j((−1)m1 f (j)(a)+(−1)m2+jf (j)(b))
j! .

Using m1 = m2 + 2 gives

Mf ,m1 ,m2(a, b) = − d
c ,

where

d =
m2∑
k=0

m2−k∑
l=0

1
k!(−1)m2+k

(m2+l+2
m2+2

)
(a − b)−m2−3−l

·
(
b2a−m2−1+k+lf (k)(a) + (−1)m2+la2b−m2−1+k+lf (k)(b)

)
+

m2+2∑
k=0

m2+2−k∑
l=0

1
k!(−1)m2+k

(m2+l
m2

)
(b − a)−m2−1−l (31)

·
(
b−m2−1+k+lf (k)(b) + (−1)m2+la−m2−1+k+lf (k)(a)

)
and

c = (−1)m2

(b−a)2m2+3

m2+2∑
j=0

(2m2+2−j
m2

)(b−a)j((−1)j+1f (j)(b)−f (j)(a))
j! (32)

+ (−1)m2

(b−a)2m2+3

m2∑
j=0

(2m2+2−j
m2+2 )(b−a)j((−1)jf (j)(b)+f (j)(a))

j!

We now examine three special cases. For m1 = 4 and m2 = 2 , using (31) and
(32), we have

24 (b − a)6 d = 840(f (b) − f (a)) + 120(3a− 4b)f ′(b) + 120(4a− 3b)f ′(a)
+ 60 (b − a) ((2b − a) f ′′(b) − (b − 2a) f ′′(a))

− 4 (b − a)2 ((b − 4a) f ′′′(a)

+ (4b − a) f ′′′(b)) + (b − a)3 (af ′′′′(a) + bf ′′′′(b)))

and

−24 (b − a)6 c = −120(f ′(b) − f ′(a)) + 60(b − a)(f ′′(b) + f ′′(a))

− 12 (b − a)2 (f ′′′(b) − f ′′′(a)) + (b − a)3 (f ′′′′(b) + f ′′′′(a)).
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Thus

Mf ,4,2(a, b)

= 840(f (b)−f (a))+120(3a−4b)f ′(b)+120(4a−3b)f ′(a)+60(b−a)((2b−a)f ′′(b)−(b−2a)f ′′(a))
−120(f ′(b)−f ′(a))+60(b−a)(f ′′(b)+f ′′(a))−12(b−a)2(f ′′′(b)−f ′′′(a))+(b−a)3(f ′′′′(b)+f ′′′′(a))

+ −4(b−a)2((b−4a)f ′′′(a)+(4b−a)f ′′′(b))+(b−a)3(af ′′′′(a)+bf ′′′′(b))
−120(f ′(b)−f ′(a))+60(b−a)(f ′′(b)+f ′′(a))−12(b−a)2(f ′′′(b)−f ′′′(a))+(b−a)3(f ′′′′(b)+f ′′′′(a))

For m1 = 3 and m2 = 1 , again using (31) and (32), we have

6 (b − a)−4 d = −60(f (b) − f (a)) + 12(3b − 2a)f ′(b) − 12(3a − 2b)f ′(a)
+ 3 (b − a) ((a − 3b) f ′′(b) + (b − 3a) f ′′(a))

+ (b − a)2 (bf ′′′(b) − af ′′′(a))

and

−6 (b−a)4 c = −12(f ′(b)−f ′(a))+6(b−a)(f ′′(b)+f ′′(a))− (b−a)2 (f ′′′(b)−f ′′′(a)).

Thus

Mf ,3,1(a, b)

= −60(f (b)−f (a))+12(3b−2a)f ′(b)−12(3a−2b)f ′(a)+3(b−a)((a−3b)f ′′(b)+(b−3a)f ′′(a))
12(f ′(b)−f ′(a))−6(b−a)(f ′′(b)+f ′′(a))+(b−a)2(f ′′′(b)−f ′′′(a))

+ (b−a)2(bf ′′′(b)−af ′′′(a))
12(f ′(b)−f ′(a))−6(b−a)(f ′′(b)+f ′′(a))+(b−a)2(f ′′′(b)−f ′′′(a))

For m1 = 2 and m2 = 0 we have

d = (b2−ab)f ′′(b)+(ab−a2)f ′′(a)+(2a−4b)f ′(b)+(4a−2b)f ′(a)+6(f (b)−f (a))
2(b−a)2

and
c = − (b−a)(f ′′(b)+f ′′(a))−2(f ′(b)−f ′(a))

2(b−a)2 .

Thus

Mf ,2,0(a, b) = (b−a)(bf ′′(b)+af ′′(a))+2(a−2b)f ′(b)+2(2a−b)f ′(a)+6(f (b)−f (a))
(b−a)(f ′′(b)+f ′′(a))−2(f ′(b)−f ′(a))

If f (x) = xp , then some simplification yields

Mf ,2,0(a, b) = 1
p

bp−2(p(p−5)b2+p(3−p)ab+6b2)−ap−2(p(p−5)a2+p(3−p)ab+6a2)
bp−2((p−1)(b−a)−2b)+ap−2((p−1)(b−a)+2a) , p /∈ {0, 1, 2, 3}.

The omitted cases for p can be obtained as limiting values, or one can just let f (x) =
xp log x for p ∈ {0, 1, 2, 3} . That yields

Mlog x,2,0(a, b) = 3abb2−a2−2ab(ln b−ln a)
(b−a)3 = 3ab

b2−a2−2ab ln

(
b
a

)
(b−a)3 ,

Mx log x,2,0(a, b) = 2ab
(a+b) ln

(
b
a

)
−2(b−a)

b2−a2−2ab ln

(
b
a

) ,

Mx2 log x,2,0(a, b) = 1
2

b2−a2−2ab ln

(
b
a

)
(a+b) ln

(
b
a

)
−2(b−a)

,
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and
Mx3 log x,2,0(a, b) = 1

3
(b−a)3

b2−a2−2ab ln

(
b
a

) .

Finally, we consider the case m1 = 1 and m2 = 0 , so that m1+m2 is odd. As noted ear-
lier, Mp,m1,m2(a, b) is the unique solution, in (a, b) , of the equation 2 (xp − ap) (b−a)−
2 (bp − ap) (x−a)−p

(
bp−1 − ap−1

)
(x−b)(x−a) = 0 . For p = 4, after dividing thru

by 2 (x − a) (b − a) (b − x) , we have 2 (x − a) (b − a) (b − x)
(
b2 − xb + ab − xa

+a2 − x2
)

= 0 . This can be solved exactly to obtain M4,1,0(a, b) = 1
2

√
5b2 + 6ab + 5a2

− a+b
2 . For p = 5, after dividing thru by (x − a) (b − a) (b − x) , we have 2x3 +

2bx2 + 2ax2 + 2b2x + 2xab + 2xa2 − 3a3 − 3b2a − 3ba2 − 3b3 = 0 . The root in

(a, b) is given by M5,1,0(a, b) = 1
6

3
√

s(a, b) + 6
√

t(a, b) − 2
3

2b2+ab+2a2

3
√

s(a,b)+6
√

t(a,b)
− a+b

3 ,

where s(a, b) = 10 (a + b)
(
19a2 + 2ab + 19b2

)
and t(a, b) = 1017b6 + 2238b5a +

3495b4a2 + 4500b3a3 + 3495b2a4 + 2238a5b + 1017a6 .

4. Comparisons with Taylor polynomial means

As noted earlier, the means defined in this paper are similar to a class of means
defined in [2], which were based on intersections of Taylor polynomials. For f ∈
Cr+1(I), I = (a, b), let Pc denote the Taylor polynomial to f of order r at x = c ,
where r is an odd positive integer. In [2] it was proved that if f (r+1)(x) �= 0 on
[a, b] , then there is a unique u, a < u < b, such that Pa(u) = Pb(u) . This defines
a mean m(a, b) ≡ u , which we denote by Mr

f (a, b) . The arithmetic, geometric, and
harmonic means arise for both classes of means. We now show that there are means
defined in this paper which do not occur as intersections of Taylor polynomials. In

particular, consider the mean Mlog x,2,0(a, b) = 3abb2−a2−2ab(ln b−ln a)
(b−a)3 discussed earlier.

Then h(b) = Mlog x,2,0(1, b) = 3bb2−1−2b ln b
(b−1)3 , lim

b→1
h′(b) = 1

2 , lim
b→1

h′′(b) = − 2
5 ,

lim
b→1

h′′′(b) = 3
5 , and lim

b→1
h′′′′(b) = − 48

35 . Since Mlog x,2,0 is a homogeneous mean, if

Mlog x,2,0 = Mr
f for some f , then we may assume that f (x) = xp for some real number p

by ([2], Theorem 1.4). Let k(b) = Mr
p(1, b) = Mr

f (1, b) , where f (x) = xp . From ([2],
Theorem 4.1), k′′(1) = p−r−1

2(r+2) , k′′′(1) = −3(p−r−1)
4(r+2) , and k′′′′(1) = p−r−1

8(r+2)3(r+4) (12r3 +

8(p + 13)r2 − 4(p2 − 12p − 73)r − 16(2p2 − p − 15) . Setting p−r−1
2(r+2) = − 2

5 and
−3(p−r−1)

4(r+2) = 3
5 implies that r = 5p + 3 . Substituting into k′′′′(1) gives − 12

125
70p+99
5p+7 .

Setting − 12
125

70p+99
5p+7 = − 48

35 implies that p = − 7
10 . Then r = 5

(− 7
10

)
+ 3 = − 1

2 ,
which is not a positive integer. Thus Mlog x,2,0 cannot occur as one of the means Mr

f .

5. Open Questions and Future Research

In [3] it was shown that lim
r→∞Mr

p(a, b) = H(a, b) = 2ab
a+b , where Mr

f are the Taylor

polynomial means defined above. There is strong evidence that a similar result holds
for the means defined in this paper. That is,
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CONJECTURE 22. lim
n→∞Mp,m1,m2(a, b) = H(a, b) , where n = m1 + m2 + 1 .

More generally, analyze the asymptotic behavior of Mf ,m1 ,m2 as n → ∞ . As in
[3], it should follow that the arithmetic mean arises as lim

n→∞Mf ,m1 ,m2 . It is then natural

to ask:

QUESTION. Are the arithmetic and harmonic means the only means which arise as
lim

n→∞Mf ,m1 ,m2 ?

We showed in Theorem 7 that M−1,m1,m2(a, b) = H(a, b) = 2ab
a+b for any m1 and

m2 . Thus for f (x) = 1
x , Mf ,m1 ,m2 is independent of m1 and m2 .

CONJECTURE 23. Show that the only function, f , forwhich Mf ,m1,m2 is independent
of m1 and m2 is f (x) = C

x .
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