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GENERALIZATIONS OF BERNOULLI’S

INEQUALITY WITH APPLICATIONS

HUAN-NAN SHI

(communicated by P. Bullen)

Abstract. Byusingmethods on the theory ofmajorization, somenewgeneralizations ofBernoulli’s
inequality are established and some applications of the generalizations are given.

1. Introduction

Let x > −1 and n is a positive integer. Then

(1 + x)n � 1 + nx. (1.1)

(1.1) is known as the Bernoulli’s inequality which play an important role in anal-
ysis and its applications. So, during the past few years, many researchers obtained
various generalizations, extensions of inequality (1.1). For example, the following
generalizations and variants of (1.1) were recorded in [1, pp. 127–128 ]:

THEOREM A. Let x > −1 . If α > 1 or α < 0 , then

(1 + x)α � 1 + αx, (1.2)

if 0 < α < 1 , then
(1 + x)α � 1 + αx. (1.3)

In (1.2) and (1.3), equalities holding if and only if x = 0 .

THEOREM B. Let ai � 0 , xi > −1, i = 1, . . . , n , and
∑n

i=1 ai � 1 . Then

n∏
i=1

(1 + xi)
ai � 1 +

n∑
i=1

aixi, (1.4)

if ai � 1 or ai � 0 , and if xi > 0 , or −1 < xi < 0, i = 1, . . . , n , then
n∏

i=1

(1 + xi)
ai � 1 +

n∑
i=1

aixi. (1.5)
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For more information on the Bernoulli’s inequality, please refer to [4, 6, 7, 8, 9, 10]
and the references therein.

In this paper, some new generalizations of Bernoulli’s inequality are established
by the Schur-concatity of the elementary symmetric functions and the dual form of the
elementary symmetric functions, and some applications of the generalizations are given.
We obtain the following results.

THEOREM 1. Let m, n is a positive integer, k = 1, . . . , n .

(i) If m � n and x > −1 , then

Ck
m

(
1 +

n
m

x
)k

�
k∑

i=0

Ci
nC

k−i
m−n(1 + x)i, (1.6)

and

kCk
m

(
1 +

n
m

x
)Ck

m �
k∏

i=0

(ix + k)Ci
nCk−i

m−n . (1.7)

(ii) If m < n and x > −m
n , then

Ck
m (1 + x)k �

k∑
i=0

Ci
mCk−i

n−m

(
1 +

m
n

x
)i

, (1.8)

and

kCk
m (1 + x)Ck

m �
k∏

i=0

(m
n

ix + k
)Ci

mCk−i
n−m

, (1.9)

where Ck
n = n!

k!(n−k)! is the number of combinations of n elements taken k at a time,

defined C0
n = 1 and Ck

n = 0 for k > n . In (1.6), (1.7), (1.8) and (1.9), equalities
holding if and only if x = 0 .

REMARK 1. When x = 0 , (1.6), (1.7), (1.8) and (1.9) are deduce to Vandermonde
identity.

Ck
m =

k∑
i=0

Ci
nC

k−i
m−n. (1.10)

THEOREM 2. If ai � 1 or ai � 0 , and if xi > 0 or 0 � xi � −1 . Then

Ck
n

(
1
n

n∑
i=1

(1 + xi)
ai

)k

�
∑

1�i1<...<ik�n

k∏
j=1

(
1 + xij

)aij
(1.11)

�
∑

1�i1<...<ik�n

k∏
j=1

(
1 + aijxij

)
� Ck

n−1 + Ck−1
n−1

(
1 +

n∑
i=1

aixi

)
.



GENERALIZATIONS OF BERNOULLI’S INEQUALITY WITH APPLICATIONS 103

(
k
n

n∑
i=1

(1 + xi)
ai

)Ck
n

�
∏

1�i1<...<ik�n

k∑
j=1

(
1 + xij

)aij
(1.12)

�
∏

1�i1<...<ik�n

k∑
j=1

(
1 + aijxij

)
� kCk

n−1

(
k +

n∑
i=1

aixi

)Ck−1
n−1

.

REMARK 2. When k = n , (1.11) is deduce to (1.5), and when k = 1 , (1.12) is
deduce to (1.5) too.

2. Proof of Theorem

For our own convenience, we introduce the following notations. we assume that
the set of n -dimensional row vector on real number field by R

n.

R
n
+ = {x = (x1, . . . , xn) ∈ R

n : xi � 0, i = 1, . . . , n},
R

n
++ = {x = (x1, . . . , xn) ∈ R

n : xi > 0, i = 1, . . . , n}.
Let xxx = (x1, . . . , an) ∈ R

n. Its elementary symmetric functions are

Ek(xxx) = Ek(x1, . . . , xn) =
∑

1�i1<...<ik�n

∏k

j=1
xij , k = 1, . . . , n.

In particular, En(xxx) =
∏n

i=1 xi , E1(xxx) =
∑n

i=1 xi , and defined E0(xxx) = 1 and Ek(xxx) =
0 for k < 0 or k > n .

The dual form of the elementary symmetric functions are

E∗
k (xxx) = E∗

k (x1, . . . , xn) =
∏

1�i1<...<ik�n

∑k

j=1
xij , k = 1, . . . , n,

and defined E∗
0 (xxx) = 1 , and E∗

k (xxx) = 0 for k < 0 or k > n .
We need the following definitions and lemmas.

DEFINITION 1. ([2, 3]) Let xxx = (x1, . . . , xn) and yyy = (y1, . . . , yn) ∈ R
n .

(i) xxx is said to be majorized by yyy (in symbols xxx ≺ yyy ) if
∑k

i=1 x[i] �
∑k

i=1 y[i]

for k = 1, 2, . . . , n − 1 and
∑n

i=1 xi =
∑n

i=1 yi , where x[1] � · · · � x[n] and
y[1] � · · · � y[n] are rearrangements of xxx and yyy in a descending order, and xxx is
said to strictly majorized by yyy (in symbols xxx ≺≺ yyy ) if xxx is not permutation of
yyy .

(ii) xxx � yyy means xi � yi for all i = 1, 2, . . . , n . let Ω ⊂ R
n , ϕ : Ω → R is said to

be increasing if xxx � yyy implies ϕ(xxx) � ϕ(yyy) . ϕ is said to be decreasing if and
only if −ϕ is increasing.

(iii) Ω ⊂ R
n is called a convex set if (αx1 + βy1, . . . ,αxn + βyn) ∈ Ω for any xxx

and yyy ∈ Ω , where α and β ∈ [0, 1] with α + β = 1 .
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(iv) let Ω ⊂ R
n , ϕ : Ω → R is said to be a Schur-convex function on Ω if xxx ≺ yyy on

Ω implies ϕ (xxx) � ϕ (yyy) . ϕ is said to be a Schur-concave function on Ω if
and only if −ϕ is Schur-convex function. ϕ is said to be a strictly Schur-convex
function on Ω if xxx ≺≺ yyy on Ω implies φ (xxx) < φ(yyy) , ϕ is said to be a strictly
Schur-concave function on Ω if and only −ϕ is strictly Schur-convex on Ω.

LEMMA 1. [2, p. 5] Let xxx ∈ R
n and x̄xx = 1

n

∑n
i=1 xi . Then (x̄xx, . . . , x̄xx) ≺ xxx .

Proof of Theorem 1. From Lemma 1, we have

ppp :=

⎛
⎜⎜⎝1 +

n
m

x, . . . , 1 +
n
m

x︸ ︷︷ ︸
m

⎞
⎟⎟⎠ ≺

⎛
⎝ 1 + x, . . . , 1 + x︸ ︷︷ ︸

n

, 1, . . . , 1︸ ︷︷ ︸
m−n

⎞
⎠ := qqq

and ppp ≺≺ qqq for x �= 0 . If m � n , from x > −1 , we have x + 1 > 0 and
1 + n

mx > 1 − n
m > 0 , i.e. ppp, qqq ∈ R

n
++ . Since Ek(xxx) be increasing and Schur-

concave on R
n
+ and it be increasing and strictly Schur-concave on R

n
++ for k > 1 (see

Proposition 6.7 in [2]), we have Ek(ppp) � Ek(qqq) , i.e. (1.6) holds, and equality holding
if and only if x = 0 .

Since E∗
k (xxx) be increasing and Schur-concave on R

n
+ and it be increasing and

strictly Schur-concave on R
n
++ for k > 1 (see [3, p.86], [5]), we have E∗

k (ppp) � E∗
k (qqq) ,

i.e. (1.7) holds, and equality holding if and only if x = 0 .
If m < n , from Lemma 1, we have

p′p′p′ :=

⎛
⎝1 + x, . . . , 1 + x︸ ︷︷ ︸

n

⎞
⎠ ≺

⎛
⎜⎜⎝1 +

n
m

x, . . . , 1 +
n
m

x︸ ︷︷ ︸
m

, 1, . . . , 1︸ ︷︷ ︸
n−m

⎞
⎟⎟⎠ := q′q′q′

and p′p′p′ ≺≺ q′q′q′ for x �= 0 . From x > −m
n , we have 1 + n

mx > 1 − n
m · n

m > 0 , i.e.
p′p′p′, q′q′q′ ∈ R

n
++ . Thus we have Ek(p′p′p′) � Ek(q′q′q′) and E∗

k (p′p′p′) � E∗
k (q′q′q′) , i.e. (1.8)and

(1.9) hold, and equality holding if and only if x = 0 .
The proof of Theorem 1 is completed. �

Proof of Theorem 2. Set y = 1
n

∑n
i=1 (1 + xi)

ai , from (1.2), we have (1 + xi)
ai �

1 + aixi , i = 1, . . . , n , and by lemma 1 , it follows that

(y, . . . , y︸ ︷︷ ︸
n

) ≺ ((1 + x1)a1 , . . . , (1 + xn)an)

� (1 + a1x1, . . . , 1 + anxn) ≺
⎛
⎝1 +

n∑
i=1

aixi, 1, . . . , 1︸ ︷︷ ︸
n−1

⎞
⎠ .
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And then, since Ek(xxx) and E∗
k (xxx) are increasing and Schur-concave on R

n
+ and

are increasing and strictly Schur-concave on R
n
++ for k > 1 , we have

Ek(y, . . . , y︸ ︷︷ ︸
n

) � Ek ((1 + x1)a1 , . . . , (1 + xn)an)

� Ek (1 + a1x1, . . . , 1 + anxn) � Ek

⎛
⎝1 +

n∑
i=1

aixi, 1, . . . , 1︸ ︷︷ ︸
n−1

⎞
⎠ ,

i.e. (1.11) is holds. And

E∗
k (y, . . . , y︸ ︷︷ ︸

n

) � Ek ((1 + x1)a1 , . . . , (1 + xn)an)

� E∗
k (1 + a1x1, . . . , 1 + anxn) � E∗

k

⎛
⎝1 +

n∑
i=1

aixi, 1, . . . , 1︸ ︷︷ ︸
n−1

⎞
⎠ ,

i.e. (1.12) is holds.
The proof of Theorem 2 is completed. �

3. Applications

THEOREM 3. Let ai � 1 and xi � 1 , i = 1, · · · , n, n ∈ N, n � 2 . Then for
k = 1, · · · , n , we have

∑
1�i1<...<ik�n

k∏
j=1

(
1 + xij

)aij �
2AkCk−1

n−1

1 + Ak

(
n
k

(1 + Ak) − An +
n∑

i=1

aixi

)
, (3.1)

where Ak = min1�i1<...<ik�n
∑k

i=j aij .

Proof. Firstly, since xi � 1 implies 1+x
2 � 0 , from Theorem 2 we have

∑
1�i1<...<ik�n

k∏
j=1

(
1 +

xij − 1

2

)aij

� Ck
n−1 + Ck−1

n−1

(
1 +

n∑
i=1

ai(xi − 1)
2

)
(3.2)

= Ck−1
n−1

(
n
k

+
n∑

i=1

ai(xi − 1)
2

)
� Ck−1

n−1

(
n
k

+
n∑

i=1

ai(xi − 1)
1 + Ak

)

=
Ck−1

n−1

1 + Ak

(
n
k

(1 + Ak) − An +
n∑

i=1

aixi

)
.
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On the other hand, we have

∑
1�i1<...<ik�n

k∏
j=1

(
1 + xij

)aij
=

∑
1�i1<...<ik�n

2
∑k

j=1
aij

k∏
j=1

(
1 +

xij − 1

2

)aij

(3.3)

� 2Ak
∑

1�i1<...<ik�n

k∏
j=1

(
1 +

xij − 1

2

)aij

.

�
Combining (3.2) with (3.3), we get (3.1). The proof of Theorem 3 is completed.

REMARK 3. When k = n , (3.1) is deduce to (7.5) in [4, p. 69]:
n∏

i=1

(1 + xi)
ai � 2An

1 + An

(
1 +

n∑
i=1

aixi

)
. (3.4)

THEOREM 4. Let ai � 1 or ai � 0 and 0 > xi > −1 or xi > 0 , i =
1, · · · , n, n ∈ N, n � 2 . Then for k = 1, · · · , n , we have

∑
1�i1<...<ik�n

k∏
j=1

(
1 + xij

)−aij �
∑

1�i1<...<ik�n

k∏
j=1

(
1 − aijxij(1 + xij)

−1
)

(3.5)

� Ck
n−1 + Ck−1

n−1

(
1 − aijxij(1 + xij)

−1
)

Proof. Since 0 > xi > −1 or xi > 0 implies −xi (1 + xi)
−1 or 0 > −xi (1 + xi)

−1

> −1 , from Theorem 2 we have

∑
1�i1<...<ik�n

k∏
j=1

(
1 + xij

)−aij
=

∑
1�i1<...<ik�n

k∏
j=1

(
1 − xij

(
1 + xij

)−1
)aij

�
∑

1�i1<...<ik�n

k∏
j=1

(
1 + aijxij(1 + xij)

−1
)

� Ck
n−1 + Ck−1

n−1

(
1 + aijxij(1 + xij)

−1
)

.

�
The proof of Theorem 4 is completed.

REMARK 4. When k = n , from (3.5) we have
n∏

i=1

(1 + xi)
−ai � 1 −

n∑
i=1

aixi

(
1 + xij

)−1
,

i.e.
n∏

i=1

(1 + xi)
ai �

(
1 −

n∑
i=1

aixi

(
1 + xij

)−1
)−1

. (3.6)

(3.6) is (7.3) in [4, p. 69].
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