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Abstract. We derive bounds on the variance of a random variable in terms of its arithmetic and
harmonic means. Both discrete and continuous cases are considered, and an operator version is
obtained. Some refinements of the Kantorovich inequality are obtained. Bounds for the largest
and smallest eigenvalues of a positive definite matrix are also obtained.

1. Introduction

Let T be a self adjoint linear operator on a Hilbert space X. Suppose m � T � M,
(i.e. for every unit vector u in X, m � 〈Tu|u〉 � M ). The well known Kantorovich
inequality say

1 � 〈Tu|u〉 〈T−1u|u〉 � (M + m)2

4mM
, m > 0. (1.1)

See [1] for details. Improvements, generalizations and inequalities in a similar spirit
have been obtained by several authors. In particular Bhatia and Davis [2] have proved
a bound for the variance of T

〈T2u|u〉 − 〈Tu|u〉 2 � (M − 〈Tu|u〉 ) (〈Tu|u〉 − m) . (1.2)

Note that the inequality (1.1) involves T and T−1 while (1.2) involves T and T2. Our
main result (Theorem-1 below) relates quantities involving T, T−1 and T2 at the same
time. This provides yet another refinement of the Kantorovich inequality (Theorem-2
below). Let x1, x2, . . . , xn be positive numbers, m � xi � M, (i = 1, 2, . . . , n). Let A,
H and S be their arithmetic mean, harmonic mean and standard deviation, respectively.
An interesting relation between A, H and S has been proved by Mercer [3]

A − H � S2

2M
. (1.3)

We obtain a better lower bound for A−H and also give a complementary upper bound
(Corollary-1, 2.24, below). Finally as an application we obtain a lower bound for the
largest eigenvalue and an upper bound for the smallest eigenvalue of a positive definite
matrix A in terms of traces of A, A2 and A−1. Our bounds compare favourably with
those obtain by Wolkowicz and Styan [4].
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2. Main Results

THEOREM 1. Let T be a self adjoint linear operator on a Hilbert space X such
that 0 < m < T < M. Then for every unit vector u in X

〈T2u|u〉 − 〈Tu|u〉 2 �
M (M − 〈Tu|u〉 )

(〈Tu|u〉 〈T−1u|u〉 − 1
)

M〈T−1u|u〉 − 1
(2.1)

and

〈T2u|u〉 − 〈Tu|u〉 2 �
m (〈Tu|u〉 − m)

(〈Tu|u〉 〈T−1u|u〉 − 1
)

1 − m〈T−1u|u〉 . (2.2)

Proof. For 0 < m � x � M

(x − α)2(x − M) � 0 (2.3)

and
(x − β)2(x − m) � 0, (2.4)

where α and β are real numbers. From inequality (2.3), we get that

f (x) = (2α + M)x − α(α + 2M) + α2 M
x

− x2 � 0. (2.5)

Therefore
〈 f (T)u|u〉 � 0. (2.6)

Inequality (2.6) gives

〈T2u|u〉 � (2α + M) 〈Tu|u〉 − α (α + 2M) + α2M〈T−1u|u〉 . (2.7)

Inequality (2.7) is valid for any real number α. It therefore must also hold good for
that value of α for which the right hand side expression in (2.7) is minimum. On using
derivatives we find that the function

g(α) = (2α + M)〈Tu|u〉 − α(α + 2M) + α2M〈T−1u|u〉 (2.8)

has minimum at

α =
M − 〈Tu|u〉

M〈T−1u|u〉 − 1
. (2.9)

Substituting the value of α from (2.9) in (2.7); inequality (2.1) follows immediately.
In a similar way we can deduce inequality (2.2) from inequality (2.4). �

THEOREM 2. Let T be a self adjoint linear operator on a Hilbert space X such
that 0 < m � T � M. Then for every unit vector u in X

1 � (M − s)2

M(M − 2s)
� 〈Tu|u〉 〈T−1u|u〉 � (m + s)2

m(m + 2s)
� (M + m)2

4mM
, (2.10)

where
s =

{〈T2u|u〉 − 〈Tu|u〉 2
} 1

2 . (2.11)
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Inequalities in (2.10) give refinements of Kantorovich inequality.

Proof. We find from inequality (2.2) that

〈Tu|u〉 〈T−1u|u〉 � 1
m

m〈Tu|u〉 2 − m2〈Tu|u〉 + s2〈Tu|u〉
〈Tu|u〉 2 − m〈Tu|u〉 + s2

. (2.12)

On using derivatives we see that the right hand side expression in (2.12) has maximum
when 〈Tu|u〉 = m + s, therefore

〈Tu|u〉 〈T−1u|u〉 � (m + s)2

m(m + 2s)
. (2.13)

Also
(m + s)2

m(m + 2s)
� (M + m)2

4mM
(2.14)

if and only if

s � M − m
2

.

This is true. Also, from (2.1)

〈Tu|u〉 〈T−1u|u〉 � 1
M

M2〈Tu|u〉 − M〈Tu|u〉 2 − s2〈Tu|u〉
M〈Tu|u〉 − 〈Tu|u〉 2 − s2

. (2.15)

The right hand side expression in (2.15) has minimumwhen 〈Tu|u〉 = M−s, therefore

〈Tu|u〉 〈T−1u|u〉 � (M − s)2

M(M − 2s)
. (2.16)

The extreme left hand side inequality in (2.10) is true as s2 � 0. �
THEOREM 3. Let T be a self adjoint linear operator on a Hilbert space X such

that 0 < m � T � M. Then for every unit vector u in X

〈Tu|u〉 − 〈T−1u|u〉−1 � (M − m)s2

M(M − m) − s2
(2.17)

and

〈Tu|u〉 − 〈T−1u|u〉−1 � (M − m)s2

m(M − m) + s2
. (2.18)

Proof. From inequalities (2.1) and (2.2) we respectively find that

〈Tu|u〉 − 〈T−1u|u〉−1 � 〈Tu|u〉 − M
(
M〈Tu|u〉 − 〈Tu|u〉 2 − s2

)
M2 − M〈Tu|u〉 − s2

(2.19)

and

〈Tu|u〉 − 〈T−1u|u〉−1 � 〈Tu|u〉 − m
(〈Tu|u〉 2 − m〈Tu|u〉 + s2

)
m〈Tu|u〉 − m2 + s2

. (2.20)

The right hand expression in (2.19) is an increasing function of 〈Tu|u〉 for 0 < m �
T � M and assumes its minimum when 〈Tu|u〉 = m. Substituting 〈Tu|u〉 = m in
(2.19), we get inequality (2.17). Inequality (2.18) follows from (2.20) on using similar
arguments. �
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COROLLARY 1. Let A, H and S respectively denote the arithmetic mean, harmonic
mean and standard deviation of a random variable which is discrete or continuous and
takes values in the interval [m, M] , m > 0. Then

S2 � M(A − H)(M − A)
M − H

, (2.21)

S2 � m(A − m)(A − H)
H − m

, (2.22)

(M − S)2

M(M − 2S)
� A

H
� (m + S)2

m(m + 2S)
(2.23)

and
(M − m)S2

M(M − m) − S2
� A − H � (M − m)S2

m(M − m) + S2
. (2.24)

The left hand side inequality in (2.24) affects an improvement in inequality (1.3) and
the right hand side inequality gives a complementary upper bound.

Proof. The inequalities in this corollary can be proved in the similarways as the cor-
responding inequalities for operators are proved in Theorem1-Theorem3. Alternatively,
we can deduce these inequalities from the corresponding operator inequalities. For in-

stance, consider the Euclidean Hilbert space Rn with inner product 〈 u|v 〉 =
n∑

i=1
xiyi,

where u = (x1, x2, . . . , xn) and v = (y1, y2, . . . , yn). Let xi =
√

pi(i = 1, 2, . . . , n),

where pi are positive real numbers such that
n∑

i=1
pi = 1. Then u is a unit vector. Let

T be a linear operator on Rn defined by Tu =
(√

p1x1,
√

p2x2, . . . ,
√

pnxn
)
. For 0 <

m � T � M, we have 〈Tu|u〉 = A, 〈T−1u|u〉−1 = H and 〈T2u|u〉 − 〈Tu|u〉 2 = S2.
On substituting these values in inequalities in Theorem 1-Theorem 3; inequalities given
in this corollary follow immediately. �

COROLLARY 2. If a random variable is discrete or continuous and takes values in
the interval [m, M] , m > 0, then

M � A2 − AH + S2 +
√

(A2 − AH + S2)2 − 4HS2(A − H)
2(A − H)

(2.25)

and

m � A2 − AH + S2 − √
(A2 − AH + S2)2 − 4HS2(A − H)

2(A − H)
. (2.26)

Proof. From inequality (2.21) we find that

(A − H)M2 − (A2 − AH + S2)M + HS2 � 0. (2.27)

Inequality (2.25) now follows from inequality (2.27). Similarly we can deduce inequal-
ity (2.26) from inequality (2.22).
�
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COROLLARY 3. Let C be a complex n × n matrix with eigenvalues 0 < λ1 �
λ2 � . . . � λn. Then

λn � tr C2 tr C−1−n trC+
√

(tr C2 tr C−1−n trC)2−4(trC tr C−1−n2)(n trC2−(tr C)2)
2 (trC tr C−1−n2)

(2.28)
and

λ1 � tr C2 tr C−1−n trC−√
(tr C2 tr C−1−n trC)2−4(trC tr C−1−n2)(n trC2−(tr C)2)

2 (trC tr C−1−n2)
,

(2.29)
where tr Ck = trace of Ck (k = −1, 1 and 2).

Proof. Corollary 3 can be deduced from Corollary 2. We note that A =
tr C
n

,

H =
n

tr C−1
and S2 =

tr C2

n
−

(
tr C
n

)2

. �

EXAMPLE 1. Let

C =

⎡
⎢⎢⎣

4 0 2 3
0 5 0 1
2 0 6 0
3 1 0 7

⎤
⎥⎥⎦ .

We have, tr C = 22, trC2 = 154 and tr C−1 = 481
410 . From inequalities (2.28) and

(2.29) we respectively have λ4 � 7.6987 and λ1 � 1.7478, whereas Wolkowicz and
Styan [4] have shown that λ4 � 7.158 and λ1 � 3.842.

EXAMPLE 2. Let

C =

⎡
⎢⎢⎢⎢⎣

4 1 1 2 2
1 5 1 1 1
1 1 6 1 1
2 1 1 7 1
2 1 1 1 8

⎤
⎥⎥⎥⎥⎦ .

We have, tr C = 30, trC2 = 222 and trC−1 = 4589
4377 . From inequalities (2.28) and

(2.29) we respectively have λ5 � 9.3393 and λ1 � 3.4845, whereas Wolkowicz and
Styan [4] have shown that λ5 � 7.449 and λ1 � 4.551.
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