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GENERALIZATION OF A BIHARI TYPE INTEGRAL

INEQUALITY FOR ABSTRACT LEBESGUE INTEGRAL

LÁSZLÓ HORVÁTH

(communicated by S. Saitoh)

Abstract. In this paper we study some integral inequalities in measure spaces which are natural
generalizations of special Bihari type integral inequalities. Explicit upper bounds for the solutions
are given. The classical arguments can not be extended to this more general situation, we develop
new methods. The results are applied to establish the existence of a solution to the corresponding
integral equations.

1. Introduction and the main results

Let (X, A ,μ) be a measure space. A represents a σ -algebra in the set X .
The product of (X, A ,μ) with itself is understood as in [4], and it is denoted by
(X2, A 2,μ2) . We say that the function S : X → A satisfies the condititon (C) if S
has the following three properties (see [3])

(C1) x /∈ S(x) , x ∈ X ,
(C2) if x2 ∈ S(x1) , then S(x2) ⊂ S(x1) ,
(C3) {(x1, x2) ∈ X2 | x2 ∈ S(x1)} is μ2 -measurable.
Examples of such functions can be found in [5]. For the moment we consider only

two special situations.

EXAMPLE 1.1. Let X := [0,∞[ , and let A be the Lebesgue-measurable subsets
of X . Suppose p , q : X → X are increasing functions such that 0 � p(x) � x and
x � q(x) , x ∈ X . If the functions S1 and S2 are defined on X by

S1(x) := [0, p(x)[ and S2(x) :=]q(x),∞[, (1.1)

then they satisfy the condition (C). See [5] for the proof, which is not difficult. Further,
it is shown in [5] that the previous examples also make sense in R

n .

Let (X, A ,μ) be a measure space, and let S : X → A satisfy the condition (C).
In this paper we study integral inequalities of the form

y(x) � f (x) + g(x)
∫

S(x)

yαdμ, x ∈ X, (1.2)
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and the corresponding integral equations

y(x) = f (x) + g(x)
∫

S(x)

yαdμ, x ∈ X, (1.3)

where α > 1 , y : Dy(⊂ X) → R and f , g : X → R . As the examples just considered
show the inequalities (1.2) are related to Bihari type integral inequalities (see [1] and
[8]), which have many significant applications, for example, to differential equations,
integral equations and difference equations. The equations (1.3) correspond to Volterra
type integral equations, which play an important role in practical applications (see [2]).

Before turning to the principal problem of this paper we need some definitions. If
v is a function and A is a subset of the domain of v , we denote by v|A the restriction
of v to A .

DEFINITION 1.1. Let (X, A ,μ) be a measure space, let S : X → A satisfy the
condition (C), and let α � 1 .

(a) Let A be a nonempty set from A .

L α(A) :=
{

v : A → R | v is μ-almost measurable on A,

and |v|α is μ-integrable over A
}

(b) Let A be a nonempty subset of X such that S(x) ⊂ A for every x ∈ A .

L α
loc(A) :=

{
v : A → R | v|S(x) ∈ L α(S(x)) for every

x ∈ A with S(x) �= ∅
}

(c) In case v : Dv(⊂ X) → R the notation v ∈ L α(A) , or v ∈ L α
loc(A) mean

that v|A ∈ L α(A) , or v|A ∈ L α
loc(A) .

We are now in a position to define the concept of the solutions of (1.2) and (1.3).

DEFINITION 1.2. We say that a function y : Dy → R is a solution of (1.2) or (1.3)
if

(i) Dy is a nonempty subset of X such that S(x) ⊂ Dy for every x ∈ Dy ,
(ii) y is nonnegative and y ∈ L α

loc(Dy) ,
(iii) y satisfies (1.2) or (1.3) for every x ∈ Dy .

The main goal of this paper is to investigate whether and how one can give a
function b : Db(⊂ X) → R such that for every solution y of (1.2)

y(x) � b(x), x ∈ Dy ∩ Db. (1.4)

Further, we would like to choose the domain of b as large a subset of X as possible.
We stress that there may be no such function with domain X . To illustrate this,

consider the integral inequality

y(x) � 1 +

x∫
0

y2, x ∈ [0,∞[, (1.5)
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where classical Lebesgue-integral is used. Taking p(x) := x , x ∈ [0,∞[ in (1.1), we
can see that (1.5) is a special case of (1.2). It is easily verified that the functions

yn : [0,∞[→ R, yn(x) :=
{ 1

1−x , if 0 � x � 1 − 1
n

n, if 1 − 1
n < x

, n ∈ N
+

are solutions of (1.5), thus the domain of every function b satisfying (1.4) must be a
subset of [0, 1[ .

In case of 0 < α � 1 , the analogous problem is quite satisfactorily solved (see
[3] and [6]), and in the results Db = X can be chosen. We can see that in passing from
the case 0 < α � 1 to the case α > 1 the important property of the former that b can
be defined on X is lost.

The main results can be more simply formulated if we introduce some shorthand
terminology. Suppose A ∈ A is a nonempty set such that f and g are nonnegative on
A and f , g ∈ L α(A) . Then

a(A) :=

⎛
⎝∫

A

f αdμ

⎞
⎠

1
α

, b(A) :=

⎛
⎝∫

A

gαdμ

⎞
⎠

1
α

.

If y : Dy → R is a solution of (1.2) , and if A ∈ A is a nonempty subset of Dy such
that y ∈ L α(A) , then

z(A) :=
∫
A

yαdμ.

Lemma 2.1 will show that the equation

z = (a(A) + b(A)z)α , z � −a(A)
b(A)

if b(A) > 0, and z ∈ [0,∞[ otherwise

has at most two solutions which are denoted by z1(A) and z2(A) . They are arranged in
order: z1(A) < z2(A) . If A = S(x) for some x ∈ X , then

a(x) := a(S(x)), b(x) := b(S(x)), z(x) := z(S(x))
z1(x) := z1(S(x)), z2(x) := z2(S(x)).

After these preparations we are in a position to formulate our first result.

THEOREM 1.1. Let y : Dy → R be a solution of (1.2), let f and g be nonnegative
on Dy , let f , g ∈ L α

loc(Dy) , and let

D :=

{
x ∈ Dy | aα−1(x)b(x) <

1
α

(
1 − 1

α

)α−1
}

.

(a) If a(x)b(x) = 0 for every x ∈ Dy , then D = Dy .
(b) If a(x0)b(x0) > 0 for some x0 ∈ Dy , then D contains a measurable set with

positive μ -measure.
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(c) For every x ∈ D

y(x) � f (x) + g(x)z1(x)

� f (x) + g(x)

(
a(x) + b(x)aα(x)

(
1 − 1

α

)−α
)α

. (1.6)

(d) The function defined on D by the right hand side of (1.6) belongs to L α
loc(D) .

The proof of the previous theorem is by no means a trivial task. In the generality
presented here, the standard proofs of similar results, which transform the considered
integral inequalities to differential inequalities, can not be applied. The significance of
our approach lies in the following facts: the classical problem has been formulated and
solved in measure spaces which is an essential generalization; the result can be used in
all cases which was investigated previously (inequalities of type (1.2) in R

n , or discrete
analogues of (1.2)).

We give another form of the previous result.

THEOREM 1.2. Consider the integral inequality (1.2). Let f and g be nonnegative
on X , let f , g ∈ L α

loc(X) , and let

D :=

{
x ∈ X | aα−1(x)b(x) <

1
α

(
1 − 1

α

)α−1
}

.

(a) The function

x → f (x) + g(x)

(
a(x) + b(x)aα(x)

(
1 − 1

α

)−α
)α

, x ∈ D

belongs to L α
loc(D) .

For every solution y : Dy → R of (1.2)
(b) If a(x)b(x) = 0 for every x ∈ Dy , then Dy ⊂ D.
(c) If a(x0)b(x0) > 0 for some x0 ∈ Dy , then D ∩ Dy contains a measurable set

with positive μ -measure.
(d)

y(x) � f (x) + g(x)z1(x)

� f (x) + g(x)

(
a(x) + b(x)aα(x)

(
1 − 1

α

)−α
)α

, x ∈ D ∩ Dy.

Regarding the integral equation (1.3) we assert

THEOREM 1.3. Let A be a nonempty subset of X such that S(x) ⊂ A for every
x ∈ A , let f and g be nonnegative on A , let f , g ∈ L α

loc(A) , and let

D :=

{
x ∈ A | aα−1(x)b(x) <

1
α

(
1 − 1

α

)α−1
}

.

Then the integral equation (1.3) has a solution on D .
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This assertion contains the result of Theorem 23 in [7], but it gives a new treatment
of the problem employing Theorem 1.1 and successive approximations. In addition, we
show that there exists a solution of (1.3) on D , while Theorem 23 in [7] implies only
the existence of a solution.

2. Preliminary results

We collect here some results that will be used in the proofs of the main theorems.
The first lemma is fundamental to our treatment.

LEMMA 2.1. Let a , b � 0 , and let α > 1 .
(a) Consider the algebraical equation

z = (a + bz)α , (2.1)

where z � − a
b if b > 0 , and z ∈ [0,∞[ otherwise.

(a1) (2.1) has at most two solutions which are denoted by z1 = z1(a, b) � z2 =
z2(a, b) .

(a2) There are exactly two solutions of (2.1) if and only if

b > 0 and aα−1b <
1
α

(
1 − 1

α

)α−1

. (2.2)

In case a > 0 , 0 < z1 < z2 . When a = 0 , then 0 = z1 < z2 = b−
α

α−1 .
(a3) There is exactly one solution of (2.1) if and only if

b = 0 or aα−1b =
1
α

(
1 − 1

α

)α−1

. (2.3)

In the first case, 0 � z1 = aα , and in the other case, 0 < z1 .
(a4) (2.1) has no solution if and only if

aα−1b >
1
α

(
1 − 1

α

)α−1

. (2.4)

(b) Consider the algebraical inequality

z � (a + bz)α , (2.5)

where z � − a
b if b > 0 , and z ∈ [0,∞[ otherwise.

(b1) Suppose that the condition (2.2) is fulfilled. Then (2.5) holds if and only if
z ∈ [− a

b , z1] ∪ [z2,∞[ .
(b2) In case b = 0 , (2.5) holds if and only if z ∈ [0, z1] .
(b3) Suppose that the conditions (2.4), or the second part in (2.3) are fulfilled.

Then (2.5) holds if and only if z ∈ [− a
b ,∞[ .

(c) If there is a solution of (2.1), then

(a + baα)α � z1 �
(

a + baα
(

1 − 1
α

)−α
)α

.
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If there are two solutions of (2.1), then(
a + baα

(
1 − 1

α

)−α
)α

< z2.

(d) Let 0 � c � a , and 0 � d � b . Consider the algebraical equation

z = (c + dz)α , (2.6)

where z � − c
d if d > 0 , and z ∈ [0,∞[ otherwise.

(d1) If there is a solution of (2.1), then (2.6) also has a solution and z1(c, d) �
z1(a, b) .

(d2) If there are two solutions of (2.1) and (2.6), respectively, then z2(a, b) �
z2(c, d) .

Proof. (a) If a = 0 or b = 0 , then the roots of (2.1) are easily determined.
Suppose a , b > 0 , and let

f : [−a
b
,∞[→ R, f (z) := (a + bz)α − z.

The function f is continuous, it has derivatives of all orders on ] − a
b ,∞[ , and

f ′(z) = αb (a + bz)α−1 − 1, f ′′(z) = α(α − 1)b2 (a + bz)α−2
, z > −a

b
.

The equation f ′(z) = 0 has exactly one solution, namely

z0 =
1
b

((
1
αb

) 1
α−1

− a

)
.

Since f ′′(z) > 0 for all z ∈] − a
b ,∞[ , it follows that f is strictly decreasing on

[− a
b , z0] , strictly increasing on [z0,∞[ , and z0 is a strict local minimum of f . This

implies that if a , b > 0 , then there are at most two solutions of (2.1) and
i. there are exactly two solutions of (2.1) if and only if

f (z0) =
(

1
αb

) α
α−1

− 1
b

((
1
αb

) 1
α−1

− a

)
< 0,

that is

aα−1b <
1
α

(
1 − 1

α

)α−1

,

ii. there is exactly one solution of (2.1) if and only if f (z0) = 0 , that is

aα−1b =
1
α

(
1 − 1

α

)α−1

,

iii. (2.1) has no solution if and only if f (z0) > 0 , that is

aα−1b >
1
α

(
1 − 1

α

)α−1

.
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In cases i. or ii., f (z0) = (a + bz0)α − z0 � 0 . Hence z0 > 0 , and therefore, by
f (0) = aα > 0 , z1 > 0 .

(b) This is an immediate consequence of (a).
(c) If a = 0 or b = 0 , then, by (a1) and (a2)

(a + baα)α = z1 =

(
a + baα

(
1 − 1

α

)−α
)α

< z2

whenever z2 exists.
Suppose a , b > 0 , and suppose that there are two solutions of (2.1). By the proof

of (a), it is enough to show that

f
(
(a + baα)α

)
> 0 and f

((
a + baα

(
1 − 1

α

)−α
)α)

< 0. (2.7)

The first inequality in (2.7) is equivalent to the inequality(
a + b (a + baα)α

)α
> (a + baα)α

which is obvious. The other inequality in (2.7) is equivalent to the inequality

baα−1 <
1

α − 1

(
1 − 1

α

)α

which follows from (2.2).
Suppose a , b > 0 , and suppose that there is only one solution of (2.1). Then

z1 = z0 , by the proof of (a). By applying the second condition in (2.3), we can verify
easily that

z0 =

(
a + baα

(
1 − 1

α

)−α
)α

.

(d) Since cα−1d � aα−1b , it therefore follows from (a4) that, if there exists a
solution of (2.1), then there exists a solution of (2.6) too. The remaining results come
from (a) and the inequality

(a + bz)α − z � (c + dz)α − z, z ∈ [0,∞[.

�
We introduce now some notations. Let (X, A ,μ) be a measure space, and let

S : X → A satisfy the condition (C). Suppose A is a nonempty element of A .
(A, AA,μA) means the following measure space: AA is the trace of A in A , and μA

is the restriction of μ to AA . The function SA is defined on A by SA(x) := A ∩ S(x) .
If A = S(x0) for some x0 ∈ X , then Ax0 := AS(x0) , μx0 := μS(x0) , and Sx0 := SS(x0) .

LEMMA 2.2. Let (X, A ,μ) be a measure space, and let S : X → A satisfy the
condition (C). If A is a nonempty element of A , then SA satisfies the condition (C).
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Proof. It is easy to check, and we omit the details. �
The following theorem is taken from [[7], Theorem 5].

THEOREM 2.3. Let (Y, B, ν) be a measure space, and let S : Y → B satisfy
the condition (C). Suppose ν(Y) > 0 , and ν(B) = 0 for every measurable subset B
of N := {x ∈ Y | ν(S(x)) = 0} . If p : Y → R is nonnegative and ν -integrable over
S(x) for every x ∈ Y , then for each ε > 0 there is xε ∈ Y such that ν(S(xε)) > 0
and

∫
S(xε )

pdν < ε .

The next result has been given in [[6], Lemma 5 (b)].

LEMMA 2.4. Let (X, A ,μ) be a measure space, let S : X → A satisfy (C3), and
let A ∈ A such that S(x) ⊂ A for every x ∈ A . Suppose p : A → R is μ -integrable
over A , q : A → R is μ -almost measurable on A , and there exists a measurable
subset C of A such that μ(C) is σ -finite and q(x) = 0 for all x ∈ A \ C . Then the
function

x → q(x)
∫

S(x)

pdμ, x ∈ A

is μ -almost measurable on A .

3. The proofs of the main results

The proof of Theorem 1.1.

Proof. (a) It follows from the definition of D .
(b) The hypothesis implies that a(x0) > 0 , so that μ(S(x0)) > 0 . Let

N := {x ∈ S(x0) | μ(S(x)) = 0} .

It is obvious that N ⊂ D . Hence if N contains a measurable set with positive μ -
measure, then D also has this property, as required. Suppose now that μ(B) = 0 for
every measurable subset B of N . This condition and Lemma 2.2 ensure that Theorem
2.3 can be applied with the measure space (S(x0), Ax0 ,μx0) and with the function Sx0 :
S(x0) → Ax0 , and hence there is x1 ∈ S(x0) such that μ(S(x1)) = μx0(Sx0(x1)) > 0
and

b(x1) < a1−α(x0)
1
α

(
1 − 1

α

)α−1

.

It therefore follows from the definition of a(x) and b(x) that

b(x)aα−1(x) � b(x1)aα−1(x1) � b(x1)aα−1(x0) <
1
α

(
1 − 1

α

)α−1

, x ∈ S(x1).

This gives that S(x1) ⊂ D , thus S(x1) is a required set.
(c) We separate the proof into four steps.
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1. If A ∈ A such that A ⊂ Dy and S(x) ⊂ A for every x ∈ Dy , and if f , g ,
y ∈ L α(A) , then

z(A) � (a(A) + b(A)z(A))α . (3.1)

z(A) = 0 obviously implies (3.1). We assume now that z(A) > 0 . Then by (1.2),

yα(x) � yα−1(x)f (x) + yα−1(x)g(x)
∫
A

yαdμ, x ∈ A. (3.2)

Since

yα−1 ∈ L
α

α−1 (A) and
1
α

+
1
α

α−1

= 1,

then yα−1f , yα−1g ∈ L 1(A) . From (3.2) we therefore deduce that∫
A

yαdμ �
∫
A

yα−1f dμ +
∫
A

yα−1gdμ
∫
A

yαdμ,

and hence, by the Hölder’s inequality,

∫
A

yαdμ �

⎛
⎝∫

A

yαdμ

⎞
⎠

α−1
α
⎛
⎝∫

A

f αdμ

⎞
⎠

1
α

+

⎛
⎝∫

A

yαdμ

⎞
⎠

α−1
α
⎛
⎝∫

A

gαdμ

⎞
⎠

1
α ∫

A

yαdμ.

Dividing both sides by z
α−1
α (A) , we have

z
1
α (A) � a(A) + b(A)z(A),

and this is equivalent to (3.1).

2. Let A ∈ A such that A ⊂ Dy , S(x) ⊂ A for every x ∈ A , f , g , y ∈ L α(A) ,
and

b(A)aα−1(A) <
1
α

(
1 − 1

α

)α−1

. (3.3)

If
z(x) � z1(x) μ-a.e. on A,

then z(A) � z1(A) .
Since

b(x)aα−1(x) � b(A)aα−1(A), x ∈ A, (3.4)

this, according to (3.3) and Lemma 2.1 (a), shows the existence of z1(A) and z1(x) for
every x ∈ A .

If z(A) = 0 , then the assertion is true, since, by Lemma 2.1 (a), z1(A) � 0 .
Now suppose z(A) > 0 . Then (1.2) and Lemma 2.1 (d1) imply that

yα(x) � yα−1(x)f (x) + yα−1(x)g(x)z1(x)

� yα−1(x)f (x) + yα−1(x)g(x)z1(A) μ-a.e. on A.
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Hence an argument closely similar to that of the first part (the proof (3.2)=⇒ (3.1))
gives that

z(A) � (a(A) + b(A)z1(A))α . (3.5)

By using the upper bound for z1(A) established in Lemma 2.1 (c), and the inequality
(3.3), we obtain that

z1(A) �
(

a(A) + b(A)aα(A)
(

1 − 1
α

)−α
)α

�
(

a(A) + a(A)
1
α

(
1 − 1

α

)−1
)α

= aα(A)
(

1 − 1
α

)−α

.

It therefore follows from (3.5) that

z(A) �
(

a(A) + b(A)aα(A)
(

1 − 1
α

)−α
)α

.

The result can now be derived from (3.1), Lemma 2.1 (b), and the second part of Lemma
2.1 (c).

3. Let A ∈ A such that A ⊂ Dy , S(x) ⊂ A for every x ∈ A , f , g , y ∈ L α(A) ,
and

b(A)aα−1(A) <
1
α

(
1 − 1

α

)α−1

. (3.6)

Then
z(x) � z1(x) μ-a.e. on A.

By part 1 applied to the set S(x) (x ∈ A) , we have that

z(x) � (a(x) + b(x)z(x))α , x ∈ A. (3.7)

This, together with (3.4), (3.6), and Lemma 2.1 (b) gives that if x ∈ A such that
z(x) � z1(x) , then z(x) � z2(x) . Let

A1 := {x ∈ A | z(x) � z1(x)} and A2 := {x ∈ A | z(x) � z2(x)} = A \ A1.

If b(A) = 0 , then b(x) = 0 for every x ∈ A , and hence the inequality z(x) �
z1(x) , x ∈ A can be obtained from (3.7), taking into account Lemma 2.1 (b2).

We now assume that b(A) > 0 . Then (3.6) and Lemma 2.1 (a2) show that
z2(A) > z1(A) , and therefore from Lemma 2.1 (d) we have

A1 = {x ∈ A | z(x) � z1(A)} and A2 = {x ∈ A | z(x) � z2(A)} . (3.8)

Case 3.1. Suppose μ(A) is σ -finite.
By Lemma 2.4, the function z is μ -almost measurable on A , and thus there exists

a subset B of A such that B ∈ A , μ(A \ B) = 0 and z is measurable on B . Let

B1 := B ∩ A1 and B2 := B ∩ A2.
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(3.8) implies that B1 , B2 ∈ A . It is enough to show that B2 = ∅ . Suppose on
the contrary that B2 �= ∅ holds. Consider the measure space (B2, AB2 ,μB2) and the
function SB2 : B2 → AB2 . First, we obviously have∫

SB2 (x)

yαdμ =
∫

S(x)

yαdμ −
∫

S(x)∩B1

yαdμ −
∫

S(x)∩(A\B)

yαdμ

=
∫

S(x)

yαdμ −
∫

S(x)∩B1

yαdμ � z2(A) −
∫

S(x)∩B1

yαdμ, x ∈ B2. (3.9)

If S(x) ∩ B1 = ∅ for some x ∈ B2 , then (3.9) gives that∫
SB2 (x)

yαdμ � z2(A) � z2(A) − z1(A) > 0. (3.10)

Let x ∈ B2 such that S(x) ∩ B1 �= ∅ . If u ∈ S(x) ∩ B1 , then S(u) ⊂ S(x) ∩ B1 , since
S(u) ⊂ A1 because of the definition of z(u) and (3.8). This and the definition of A1

yield that part 2 can be applied to the set S(x) ∩ B1 , and thus we obtain∫
S(x)∩B1

yαdμ � z1(S(x) ∩ B1) � z1(A).

It follows from this and (3.9) that∫
SB2 (x)

yαdμ � z2(A) − z1(A) > 0. (3.11)

We have shown that (3.11) holds for every x ∈ B2 , hence μ(SB2(x)) > 0 , x ∈ B2 . But
then we have from Theorem 2.3 that there is x0 ∈ B2 such that∫

SB2 (x0)

yαdμ < z2(A) − z1(A).

We can see that the assumption b(A) > 0 leads to a contradiction.
Case 3.2. Suppose μ(A) is not σ -finite.
Since f , g , y ∈ L α(A) , there is a subset B of A such that B ∈ A , μ(B) is

σ -finite, and f (x) = g(x) = y(x) = 0 for every x ∈ A \ B . Considering the measure
space (B, AB,μB) , the function SB : B → AB , and the set B , the hypotheses of part 3
are satisfied. Since∫

SB(x)

f dμB =
∫

S(x)

f dμ,

∫
SB(x)

gdμB =
∫

S(x)

gdμ,

∫
SB(x)

ydμB =
∫

S(x)

gdμ, x ∈ B,

it follows from the case 3.1 that z(x) � z1(x) μ -a.e. on B .
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If x ∈ A \ B such that S(x) ∩ B = ∅ , then z(x) = 0 � z1(x) . Suppose x ∈ A \ B
such that S(x) ∩ B �= ∅ . Clearly

SB(u) = S(u) ∩ B ⊂ S(x) ∩ B, u ∈ S(x) ∩ B,

thus considering the measure space (B, AB,μB) , the function SB : B → AB , and the
set S(x) ∩ B , the hypotheses of part 2 are satisfied, and therefore it implies that

z(x) � z(S(x) ∩ B) � z1(S(x) ∩ B) � z1(x).

4. Proof of the inequality (1.6).
Let x ∈ D . By part 3 and part 2 with the set S(x) , the inequality z(x) � z1(x)

holds, hence the first inequality in (1.6) follows from (1.2), while the second inequality
in (1.6) can be obtained by Lemma 2.1 (c).

(d) The definition of D implies that S(x) ⊂ D for every x ∈ D . We must show
that for all x ∈ D with S(x) �= ∅ , the α -th power of the function

u → f (u)+g(u)

(( ∫
S(u)

f αdμ

) 1
α

+

( ∫
S(u)

gαdμ

) 1
α
( ∫

S(u)

f αdμ

)1− 1
α (

1− 1
α

)−α
)α

= f (u) + h(u), u ∈ D (3.12)

is μ -integrable over S(x) .
Let x ∈ D with S(x) �= ∅ be fixed. We prove first that the function (3.12) is

μ -almost measurable on S(x) . It suffices to show that the functions

u → gα(u)
∫

S(u)

f αdμ, u ∈ S(x) (3.13)

and

u → gα(u)
∫

S(u)

gαdμ

⎛
⎜⎝∫

S(u)

f αdμ

⎞
⎟⎠

α−1

, u ∈ S(x) (3.14)

are μ -almost measurable on S(x) . This is an immediate consequence of Lemma 2.4
for the function (3.13). Since the function g

α
α−1 is μ -almost measurable on S(x) and

it vanishes on S(x) except on a set of σ -finite μ -measure, the function

u →

⎛
⎜⎝g

α
α−1 (u)

∫
S(u)

f αdμ

⎞
⎟⎠

α−1

, u ∈ S(x)

is μ -almost measurable on S(x) , again by Lemma 2.4. Clearly this function also
vanishes on S(x) except on a set of σ -finite μ -measure, hence Lemma 2.4 implies
that the function (3.14) is μ -almost measurable on S(x) .
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We observe next that h ∈ L α(S(x)) . By using [[6], Lemma 1 (b)], we obtain that

hα(x) �
(

2α−1

(
g(u)

∫
S(u)

f αdμ + g(u)
∫

S(u)

gαdμ

( ∫
S(u)

f αdμ

)α−1(
1 − 1

α

)−α2 ))α

� 2(α−1)α2α−1

(
gα(u)

( ∫
S(x)

f αdμ

)α

+ gα(u)

( ∫
S(x)

gαdμ

)α( ∫
S(x)

f αdμ

)α(α−1)(
1 − 1

α

)−α3 )
, u ∈ S(x),

and this implies the statement.
The proof of the theorem is now complete. �
The proof of Theorem 1.2.

Proof. (a) This can be confirmed exactly as Theorem 1.1 (d).
(b) It is obvious.
(c) and (d) follow from Theorem 1.1 (b) and (c). �
The proof of Theorem (1.3).

Proof. Define the following successive approximations:

y0(x) := 0, x ∈ D (3.15)

yn+1(x) := f (x) + g(x)
∫

S(x)

yαn dμ, x ∈ D.

We show first that the sequence (yn)∞n=0 is well defined, which means that yn ∈
L α

loc(D) , n ∈ N . Here the case n = 0 is immediate. Suppose then that n ∈ N for
which the result holds, and let x ∈ D with S(x) �= ∅ . It is enough to prove that the
function

u → g(u)
∫

S(u)

yαn dμ, u ∈ S(x) (3.16)

belongs to L α(S(x)) . By Lemma (2.4), the function (3.16) is μ -almost measurable
on S(x) , and therefore the inequality⎛

⎜⎝g(u)
∫

S(u)

yαn dμ

⎞
⎟⎠

α

� gα(u)

⎛
⎜⎝∫

S(x)

yαn dμ

⎞
⎟⎠

α

, u ∈ S(x)

yields that the function lies in L α(S(x)) .
We observe next that (yn)∞n=0 is increasing. The inequality y0 � y1 is simple.

Suppose n ∈ N such that yn � yn+1 . Then

yn+1(x) = f (x) + g(x)
∫

S(x)

yαn dμ � f (x) + g(x)
∫

S(x)

yαn+1dμ = yn+2(x), x ∈ D.
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Since

yn(x) � yn+1(x) = f (x) + g(x)
∫

S(x)

yαn dμ, x ∈ D,

yn is a solution of (1.2), and by Theorem 1.1 (c), this gives

yn(x) � f (x) + g(x)

(
a(x) + b(x)aα(x)

(
1 − 1

α

)−α
)α

, x ∈ D, n ∈ N.

It follows from Theorem 1.1 (d) that the upper bound for yn belongs to L α
loc(D) . We

can see now that (yn)∞n=0 converges pointwise on D to a function y ∈ L α
loc(D) which

is a solution of (1.3), by (3.15). �
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