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AN EXTENSION OF THE HILBERT-TYPE
INEQUALITY AND ITS REVERSE

BICHENG YANG

(communicated by J. Pecaric)

Abstract. By introducing some parameters and the weight coefficient, one proves a new extension
of the Hilbert-type inequality with a best constant factor. The reverse, some equivalent forms
and a number of new particular cases are considered.

1. Introduction

If ay,b, > 0,0 <> a><ooand 0 <Y > b>< oo, then one has two
inequalities as follows (cf. [1]):
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where the constant factors 7 and 7> are the best possible. Inequality (1) is the well
known Hilbert’s inequality and (2) is named of Hilbert-type inequality. Both of them are
important in Mathematical Analysis and its applications (see [2]). In 1925, Hardy and
Riesz gave a best extension of (1) by introducinga (p, ¢) -parameter (p > 1, I%Jré =1)
as (see [3]):
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Similarly, one still had a best extension of (2) as (see [1])
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In 1997, by estimating the weight coefficient, Yang et al. [4] gave a strengthened version
of (3) as
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where 1 —y = 0.42278" is the best value (y is Euler constant). Recently, some
best extensions of (1) and (3) have been proved by a number of mathematicians (cf.
[5, 6,7, 8]). In 2003, Yang et al. [9] analyzed some ways of using weight coefficient
to do research for Hilbert-type inequalities. In 2005, by introducing some parameters
Aoa>0,0<¢,<1 (r=p,q), ¢ + ¢, = Act, Yang [10] gave an extension of (3)
as
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where the constant factor ky o = 1B(‘D” “:;’) is the best possible, and B(u, v) is the Beta

function. Yang [11, 12] also considered the reverse of (3) and the integral analogue.
The reverse of (6) was still obtained by [10] as: If 0 < p < 1, L+ 1 =1 and

0< 6y(n) = O(n%p) < 1, then
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where the constant factor k; o = ZB(Z, %) is still the best possible.

ForA=a=1,¢,=1,¢,=1 (r>1,1+1=1)in(6)and (7), one has
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and the reverse of (8) as: For 0 <p <1, -+ - =1, 0< O( l/A) <1,
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In this paper, by introducing some parameters and the weight coefficient as [10],
we prove a new extension of (2). The reverse, some equivalent forms and a number of
new particular cases are considered.
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2. Some lemmas
LEMMA L. If0 < ¢, v < 1, ¢ + W = A, define the weight coefficient (9, V)
and w,(y,¢) (m,n € N) by
= in(2) = n(z) (w0
wm¢ II/ n=1 m* —n* <l’ll (l))’ W(p :Zln/1 m* <m1‘I/>.
(10
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Setting Oy (9, W) = [T] IN ILM du, then it follows 0 < O,(¢,y) =
0(lnm) <1 (m— o0), and
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Proof. Since the function f (x) = i:/{ %) s decreasingin (0, 00) (see [13], Lemma
22),and 1 — ¢ > 0, setting u = (£)*, in view of the face that [~ 1%~ !dy =

2
|:singm):| (0 <a< 1) (See [1]), we find
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By the same way, it follows @, (y, ¢) < [WTD/M} , and one obtains (11).
It is obvious that 0 < 6,,(¢, y) < 1. Since we find
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then it follows 6,,(¢, v) = (1:1;")(m — 00). The lemma is proved. O

LEMMA2. Ifp>0 (p#1), 2+ L2=1,0<¢,y <1, ¢ +y = A, then for
0<8<’%and
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one has
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Proof. By the same idea of Lemma 1, setting u = (x/n)" , one has
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Hence one obtains (13). The lemma is proved.
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3. Main results
THEOREM 1. If p > 1, Il,+ =1,0< ¢,y <1, 0+y =24, a,b, >0,

such that 0 < 0% nP1=971ah < 00 and 0 < 3°°° nd1=V)=1pl < oo, then the
following equivalent mequallties hold
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Proof. By Holder’s inequality with weight (see [14]), in view of (10), one obtains
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Hence by (11), inequality (14) follows.
For 0 < & < &, setting a,, by oas: Gy =n®"F, b, =nY" 1_g(n € N), and

2
making the assumption that the positive constant ky < { ] is the best value of

(14), one finds

o 1 ~m"’
- ZZ—f;i;"i”B,i 2

n=1 m=1

m=1 n=1

o
A sin( T

and by (13), one has
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Therefore {W} < ko(e — 07). It follows that the constant factor ky =

{Wr in (14) is the best possible.

For a large enough integer k, which makes Z;:l mP1=9)=1gh > 0, if one sets
by(k) = nP¥—! [2221 lnrfl’f/_”r)l;l’"r_l > 0, for n < k (assuming that for n > k,
bu(k) = a, = 0), and uses (14) to obtain
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then 0 < >°°° n?1=¥)=1pl(00) < o0, and for k — oo, both (20) and (21) still
preserve their strict sign-inequalities by (14). Thus (15) follows.
Assuming that (15) is valid, by Holder’s inequality (see [14]), one has
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Then by (15), inequality (14) holds. Hence inequalities (14) and (15) are equivalent.
One conforms that the constant factor in (15) is the best possible. Otherwise, one can
cause up with a contradiction by (22) that the constant factor in (14) is not the best
possible. Hence the theorem is proved. ]

THEOREM 2. IfO<p<1 —+——1 0<ow<l, 0+y=4, a, >0,

by, > 0, such that 0 < Y ° p(1=0)- dy < 00 and 0 < 3" nd1=¥)=1pl < oo,
then the following equivalent mequalltzes hold
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and 0 < 0,(¢,y) = (ln’”) < 1(m — o0).
In particular,
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(ii) for 0 < ¢ =y =% < 1, one obtains 0 < 6,,(4) := 6,,(4.%) = O( on) <1,
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Proof. Inview of Lemma 1, it follows that 0 < 6,,(¢, v) = 0(%
Applying the reverse Holder’s inequality with weight (see [1
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Hence by (11), in view of 0 < p < 1 and ¢ < 0, inequality (23) follows.
For 0 < & < ZF, setting a,, by as: Gy = n¢ =5 b, =n¥"'"4 (n € N), and
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Therefore [ T /l)} > ko(e — 0T). It follows that the constant factor ko
2

{W} in (23) is the best possible
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One conforms that L, > 0. If L, = oo, then (24) is valid; if 0 < L; < o0
setting b, = nP¥~! [ZOO
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Hence one has (24). Assuming that (24) is valid, by the reverse Holder’s inequality
(see [14]), one has
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Then by (24), inequality (23) holds. Hence (23) and (24) are equivalent. If the constant
in (24) is not the best possible, one can causes up with a contradiction by (34) that the
constant factor in (23) is not the best possible
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then 0 < >°° mP(1=9=14) (c0) < o0, for k — oo, both (35) and (36) still preserve
their strict sign- mequahtles by (23). Thus (25) follows.
Assuming that (25) is valid, by the reverse Holder’s inequality (see [14]), one has
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Then by (25), inequality (23) follows. Applying the same idea as above, one may prove
that (23) and (25) are equivalent and the constant factor in (15) is the best possible
by using (37). Hence inequalities (23), (24) and (25) are equivalent. This proves the
theorem. 0

REMARKS. (a) For ¢ = i, ¥ = 2 in (14), one obtains 0 < A < 2 and

1
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which is a best extension of (4).
(b) For ¢ = %, Y = % (0 < A < 2) in (14), one implies inequality (3.1) in
[15]. In particular, for A = 1, the dual form of (4) is reduced as follows:

Zzln(n:n/;i)zmbn < lsm . ] {an 2, } {Zlnq—ﬁyZ} , (39)
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which is still a best extension of (2).
(¢)For A =2 (0 < 6,(2) < 1) in (18) and (19), one obtains a new Hilbert-type
inequality and its reverse as follows:
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