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Abstract. The paper deals with asymptotic behavior of intermediate points in certain mean value
theorems: the Cauchy–Taylor mean value theorem, a generalization due to I. Pawlikowska of
Flett’s mean value theorem, and a Cauchy version of Pawlikowska’s mean value theorem.

1. Introduction

Let I be an open interval in R , let a be an arbitrary point in I , let n ∈ N , and let
f : I → R be a function whose derivative f (n) exists on I . Then for any other point x
in I one can expand f (x) about the point a up to n th power by the Lagrange–Taylor
formula to obtain

f (x) = Tn−1(f ; a)(x) +
f (n)(ξ)

n!
(x − a)n, (1)

where

Tn−1(f ; a)(x) := f (a) + f ′(a)(x − a) + · · · + f (n−1)(a)
(n − 1)!

(x − a)n−1

denotes the Taylor polynomial of degree n − 1 associated to f at a . In (1) the
intermediate point (or points) ξ lies (lie) strictly between a and x . In the special case
when n = 1 , formula (1) becomes the classical (Lagrange) mean value theorem

f (x) − f (a) = f ′(ξ)(x − a). (2)

In the last three decades there was some interest in the asymptotic behavior of the
intermediate point ξ = ξ(x) in (1), (2) and other mean value theorems, when x → a .
Thus, A. G. Azpeitia [4] proved that given p ∈ N one has

ξ = ξ(x) = a +
(

n + p
n

)−1/p

(x − a) + o(|x − a|) (x → a) (3)
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if f (n+p) exists on I and is continuous at a with f (n+j)(a) = 0 (1 � j < p) and
f (n+p)(a) �= 0 . This result was generalized by U. Abel [1]. He derived for ξ a complete
asymptotic expansion of the form

ξ = ξ(x) = a +
∞∑
k=1

ck

k!
(x − a)k (x → a),

provided that f possesses derivatives of sufficiently high order at a .
A well-known generalization of (2) is the Cauchy mean value theorem: consider

two functions f , g : I → R such that the derivatives f ′ and g′ exist both on I . If g′

does not vanish in I , then for every x �= a in I one has

g′(ξ)[f (x) − f (a)] = f ′(ξ)[g(x) − g(a)], (4)

with intermediate point (or points) ξ strictly between a and x . In a recent paper, D.
I. Duca and O. Pop [6] proved that given p ∈ N , the point ξ in (4) satisfies

ξ = ξ(x) = a +
1

p
√

p + 1
(x − a) + o(|x − a|) (x → a)

whenever the derivatives f (p+1) and g(p+1) exist on I and are both continuous at a ,
f (j)(a)g′(a) = f ′(a)g(j)(a) (2 � j � p) , and f (p+1)(a)g′(a) �= f ′(a)g(p+1)(a) .

In the present paper we are concerned with the asymptotic behavior of the inter-
mediate points in other mean value theorems: the Cauchy–Taylor mean value theorem
(which is a common generalization of (1), (2) and (4)), a generalization due to I.
Pawlikowska [8] of Flett’s mean value theorem (see T. M. Flett [7] or P. K. Sahoo and
T. Riedel [10]), and a Cauchy version of Pawlikowska’s mean value theorem.

2. Asymptotic behavior of the intermediate point in the
Cauchy–Taylor mean value theorem

Let I be an open interval in R , let a be an arbitrary point in I , and let n ∈ N .
Further, let f , g : I → R be functions whose derivatives f (n) and g(n) exist both on
I . According to the Cauchy–Taylor mean value theorem, if g(n) does not vanish in I ,
then for every x �= a in I one has

g(n)(ξ) [f (x) − Tn−1(f ; a)(x)] = f (n)(ξ) [g(x) − Tn−1(g; a)(x)] , (5)

with intermediate point (or points) ξ strictly between a and x .
The following theorem, pointing out the asymptotic behavior of ξ in (5), is a

common generalization of the aforementioned results by A. G. Azpeitia on one hand
and by D. I. Duca and O. Pop on the other hand.

THEOREM 1. Under the above assumptions let p and q be positive integers and
suppose that f and g fulfil the following conditions:

(i) the derivatives f (n+p+q) and g(n+p+q) exist on I and they are both continuous
at a ,

(ii) f (n+j)(a)g(n)(a) = f (n)(a)g(n+j)(a) for 1 � j < p ,
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(iii) f (n+p)(a)g(n)(a) �= f (n)(a)g(n+p)(a) .
Then the point ξ in (5) satisfies (3).

Proof. Note first that, since g(n)(a) �= 0 , by (ii) it follows immediately that

f (n+k)(a)g(n+j)(a) = f (n+j)(a)g(n+k)(a) for all 0 � j, k < p. (6)

On the other hand, under the given assumptions, we may apply the Lagrange–Taylor
formula to expand f (x)−Tn−1(f ; a)(x) and g(x)−Tn−1(g; a)(x) up to the (n+p+q) th
power and then, once more, to expand f (n)(ξ) and g(n)(ξ) in (5) up to the (p + q) th
power. We get

f (x) − Tn−1(f ; a)(x) =
p+q−1∑

k=0

f (n+k)(a)
(n + k)!

(x − a)n+k +
f (n+p+q)(ξ1)
(n + p + q)!

(x − a)n+p+q,

g(x) − Tn−1(g; a)(x) =
p+q−1∑

k=0

g(n+k)(a)
(n + k)!

(x − a)n+k +
g(n+p+q)(ξ2)
(n + p + q)!

(x − a)n+p+q,

with ξ1 and ξ2 strictly between a and x , and

f (n)(ξ) =
p+q−1∑

j=0

f (n+j)(a)
j!

(ξ − a)j +
f (n+p+q)(ξ3)

(p + q)!
(ξ − a)p+q,

g(n)(ξ) =
p+q−1∑

j=0

g(n+j)(a)
j!

(ξ − a)j +
g(n+p+q)(ξ4)

(p + q)!
(ξ − a)p+q,

with ξ3 and ξ4 strictly between a and ξ , respectively. Replacing all these into (5) we
obtain

0 =
p+q−1∑

j=0

p+q−1∑
k=0

f (n+k)(a)g(n+j)(a) − f (n+j)(a)g(n+k)(a)
j! (n + k)!

(ξ − a)j(x − a)n+k

+
(x − a)n+p+q

(n + p + q)!

p+q−1∑
j=0

f (n+p+q)(ξ1)g(n+j)(a) − f (n+j)(a)g(n+p+q)(ξ2)
j!

(ξ − a)j

+
(x − a)n(ξ − a)p+q

(p + q)!

p+q−1∑
k=0

f (n+k)(a)g(n+p+q)(ξ4) − f (n+p+q)(ξ3)g(n+k)(a)
(n + k)!

× (x − a)k

+
f (n+p+q)(ξ1)g(n+p+q)(ξ4) − f (n+p+q)(ξ3)g(n+p+q)(ξ2)

(p + q)! (n + p + q)!
× (x − a)n+p+q(ξ − a)p+q.

Taking into account that |ξ − a| < |x − a| , from (i), (6) and the above equality we
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deduce that

0 =
f (n)(a)g(n+p)(a) − f (n+p)(a)g(n)(a)

p! n!
(ξ − a)p(x − a)n

+
f (n+p)(a)g(n)(a) − f (n)(a)g(n+p)(a)

(n + p)!
(x − a)n+p

+o
(|x − a|n+p

)
(x → a).

Multiplying both sides by
p! n!

(x − a)n+p
and taking (iii) into account, it follows that

(
ξ − a
x − a

)p

=
(

n + p
n

)−1

+ o(1) (x → a),

whence (3) holds. �

3. Asymptotic behavior of the intermediate point in
Pawlikowska’s mean value theorem

T. M. Flett [7] established a mean value theorem which is similar to the classical
(Lagrange) mean value theorem: if f : [a, b] → R is differentiable on [a, b] and
f ′(a) = f ′(b) , then there exists a point η ∈ (a, b) such that

f (η) − f (a) = f ′(η)(η − a).

P. K. Sahoo and T. Riedel [10] removed the boundary hypothesis on the derivative.
They proved that if f : [a, b] → R is differentiable on [a, b] , then there exists a point
η ∈ (a, b) such that

f (η) − f (a) = f ′(η)(η − a) − 1
2

f ′(b) − f ′(a)
b − a

(η− a)2.

A nice generalization of these results was obtained by I. Pawlikowska [8] (see also [3]).
Namely, she proved that if f : [a, b] → R possesses a derivative of order n on [a, b] ,
then there exists a point η ∈ (a, b) such that (compare with (1))

f (a) = Tn(f ;η)(a) +
1

(n + 1)!
f (n)(b) − f (n)(a)

b − a
(a − η)n+1.

Now let I be an open interval in R , let a be a fixed point in I , let n ∈ N , and let
f : I → R be a functionwhose derivative f (n) exists on I . According to Pawlikowska’s
result, for any other point x in I one has

f (a) = Tn(f ;η)(a) +
1

(n + 1)!
f (n)(x) − f (n)(a)

x − a
(a − η)n+1, (7)

with intermediate point (or points) η strictly between a and x . The main purpose
of this section is to derive for η a complete asymptotic expansion similar to that
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obtained by U. Abel for the intermediate point ξ in the Taylor–Lagrange formula. This
asymptotic expansion is contained in the following theorem.

THEOREM 2. Let I be an open interval in R , let a be an arbitrary point in I , let
n , p � 2 and q be positive integers, and let f : I → R be a function fulfilling the
following conditions:

(i) the derivative f (n+p+q) exists on I and it is continuous at a ,
(ii) f (n+j)(a) = 0 for 2 � j < p ,
(iii) f (n+p)(a) �= 0 .
Then the intermediate point η = η(x) in (7) admits the asymptotic expansion

η(x) = a +
q−1∑
k=1

ck

k!
(x − a)k + O (|x − a|q) (x → a).

The coefficients ck are given by the recurrence formula

c1 =
(

n + p
p(n + 1)

)1/(p−1)

, ck+1 = Rk(c1, . . . , ck) (k = 1, . . . , q − 1), (8)

with

Rk(c1, . . . , ck) = (k + 1)c1

k∑
i=1

( 1
p−1

i

)
i! Bk,i[f ν] (9)

−
k∑

j=1

(j + 1) Bk+1,j+1(c1, . . . , ck−j+1)
j∑

i=1

( 1
p−1

i

)
i! Bj,i[f̃ ν],

where Bk,j[xν] = Bk,j(x1, . . . , xk−j+1) denote the exponential partial Bell polynomials
in the variables x1, x2, . . . , and

f j =
(

p + j
j

)−1 f (n+p+j)(a)
f (n+p)(a)

,

f̃ j =
n + p

n + p + j

(
p + j − 1

j

)−1 f (n+p+j)(a)
f (n+p)(a)

, j = 1, . . . , q − 1.

Before passing to the proof, let us recall that the exponential partial Bell polyno-
mials are the polynomials Bn,k[xν] = Bn,k(x1, x2, . . .) in an infinite number of variables
x1, x2, . . . , defined by the formal series expansion

1
k!

⎛
⎝∑

m�1

xm
tm

m!

⎞
⎠

k

=
∞∑
n=k

Bn,k[xν]
tn

n!
.

In fact, the polynomial Bn,k[xν] depends only on x1, . . . , xn−k+1 and it has integral
coefficients. Its exact expression is

Bn,k(x1, . . . , xn−k+1) =
∑ n!

i1! i2! · · · (1!)i1(2!)i2 · · · xi1
1 xi2

2 · · · ,
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where the summation extends over all nonnegative integers i1, i2, . . . satisfying

i1 + i2 + i3 + · · · = k, i1 + 2i2 + 3i3 + · · · = n.

We note that B0,0[xν] = 1 , Bn,0[xν] = 0 , Bn,1[xν] = xn , Bn,n[xν] = xn
1 for every

positive integer n (see the book by L. Comtet [5, pp. 133–137]).

Proof of Theorem 2. Remark first that if f is a polynomial of degree at most n+1 ,
then every point η in I satisfies

f (n)(x) − f (n)(a)
x − a

= f (n+1)(η),

so (7) may be rewritten in the equivalent form f (a) = Tn+1(f ;η)(a) . But this equality
is nothing else but Taylor’s formula and it holds for every point η in I . Thus, if f is
a polynomial of degree at most n + 1 , then every point η in I satisfies (7). By an
eventual substraction from f of a polynomial of degree n+ 1 , we may assume without
losing the generality that, in addition to (ii), f fulfils the condition

(ii’) f (j)(a) = 0 for 0 � j � n + 1 .
Consequently, we may put (7) in the equivalent form

(−1)n(n + 1)!
(η− a)n+1

n∑
k=0

(−1)k

k!
f (k)(η)(η − a)k =

f (n)(x)
x − a

. (10)

By virtue of the Lagrange–Taylor formula, we have

f (n)(x) =
q−1∑
j=0

f (n+p+j)(a)
(p + j)!

(x − a)p+j +
f (n+p+q)(ξ∗

n )
(p + q)!

(x − a)p+q, (11)

with ξ∗
n strictly between a and x . Using again the Lagrange–Taylor formula, for each

k ∈ { 0, 1, . . . , n } we have

f (k)(η) =
q−1∑
j=0

f (n+p+j)(a)
(n + p + j − k)!

(η− a)n+p+j−k +
f (n+p+q)(ξk)

(n + p + q − k)!
(η − a)n+p+q−k,

(12)

with ξk strictly between a and η . Letting S :=
∑n

k=0
(−1)kf (n+p+q) (ξk)

k! (n+p+q−k)! , from (12) we
deduce that

n∑
k=0

(−1)k

k!
f (k)(η)(η − a)k =

q−1∑
j=0

f (n+p+j)(a)(η− a)n+p+j

(n + p + j)!
Sn+p+j,n + (η− a)n+p+qS,

where

Sr,s :=
s∑

k=0

(−1)k

(
r
k

)
= (−1)s

(
r − 1

s

)
.

Therefore, it holds

n∑
k=0

(−1)k

k!
f (k)(η)(η − a)k =

(−1)n

n!

q−1∑
j=0

f (n+p+j)(a)(η− a)n+p+j

(n + p + j)(p + j − 1)!
+ (η − a)n+p+qS.
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Replacing (11) and the left hand side of the last equality into (10) we obtain

(n + 1)
q−1∑
j=0

f (n+p+j)(a)
(n + p + j)(p + j − 1)!

(η − a)p+j−1 + (η− a)p+q−1S

=
q−1∑
j=0

f (n+p+j)(a)
(p + j)!

(x − a)p+j−1 +
f (n+p+q)(ξ∗

n )
(p + q)!

(x − a)p+q−1.

Using f j and f̃ j and taking into account that |η− a| < |x− a| , by (i) we conclude that

1 +
q−1∑
j=0

f j
(x − a)j

j!
=

(
η− a
x − a

)p−1 p(n + 1)
n + p

⎡
⎣1 +

q−1∑
j=0

f̃ j
(η − a)j

j!

⎤
⎦

+O (|x − a|q) (x → a).

By proceeding like U. Abel [1] in his proof of Theorem 1, from this equality one can
deduce that

m−1∑
k=0

(x − a)k+1

k!

k∑
i=0

( 1
p−1

i

)
i! Bk,i[f ν] (13)

=
(

p(n + 1)
n + p

) 1
p−1

m−1∑
j=0

(η − a)j+1

j!

j∑
i=0

( 1
p−1

i

)
i! Bj,i[f̃ ν]

+O
(|x − a|m+1

)
as x → a . The rest of the proof coincides with that of Theorem 1 in [1] (see also the
proof of Theorem 1 in [2]) and we omit it. �

If the function f is analytic at a , then η(x) can be expanded in a power series
around a .

THEOREM 3. Let I be an open interval in R , let a be an arbitrary point in I ,
let n and p � 2 be positive integers, and let f : I → R be a function fulfilling the
following conditions:

(i) f is analytic at a ,
(ii) f (n+j)(a) = 0 for 2 � j < p ,
(iii) f (n+p)(a) �= 0 .
Then there exists a real interval J around a such that the intermediate point

η = η(x) in (7) can be represented as the sum of a power series around a ,

η(x) = a +
∞∑
k=1

ck

k!
(x − a)k.

The coefficients are given by (8) and (9).

Proof. Reasoning as in the proof of Theorem 2, we arrive at
∞∑
j=0

f (n+p+j)(a)
(p + j)!

(x − a)p+j−1 = (n + 1)
∞∑
j=0

f (n+p+j)(a)
(n + p + j)(p + j − 1)!

(η − a)p+j−1.
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Instead of (13) we have now F(x,η) = g(x) − h(η) = 0 , where

g(x) =
∞∑
k=0

(x − a)k+1

k!

k∑
i=0

( 1
p−1

i

)
i! Bk,i[f ν],

h(η) =
(

p(n + 1)
n + p

) 1
p−1

∞∑
j=0

(η − a)j+1

j!

j∑
i=0

( 1
p−1

i

)
i! Bj,i[f̃ ν].

Since F′
η(a, a) = −h′(a) = −

(
p(n+1)
n+p

) 1
p−1

, by applying the implicit function theorem

and following the method used in the proof of Theorem 2 in [1] (see also the proof of
Theorem 5 in [2]) we obtain the conclusion. �

4. A Cauchy version of Pawlikowska’s mean value theorem and
asymptotic behavior of its intermediate point

Pawlikowska’s mean value theorem possesses a Cauchy version.

THEOREM 4. Let n ∈ N and let f , g : [a, b] → R be functions whose derivatives
f (n) and g(n) exist both on [a, b] . If g(n)(a) �= g(n)(b) , then there exists a point
η ∈ (a, b) such that

f (a) − Tn(f ;η)(a) =
f (n)(b) − f (n)(a)
g(n)(b) − g(n)(a)

[g(a) − Tn(g;η)(a)] .

Proof. Let λ := f (n)(b)−f (n)(a)
g(n)(b)−g(n)(a) and let h : [a, b] → R be the function defined by

h(x) := f (x) − λg(x) . Since h(n)(a) = h(n)(b) , by virtue of a result established by I.
Pawlikowska [8, Lemma 2.2] it follows that there exists a point η ∈ (a, b) such that
h(a) − Tn(h;η)(a) = 0 , whence the conclusion. �

Now let I be an open interval in R , let a be an arbitrary point in I , and let n ∈ N .
Further, let f , g : I → R be functions whose derivatives f (n) and g(n+1) exist both
on I . If, in addition, g(n+1) does not vanish in I , then for every x �= a in I one has
g(n)(a) �= g(n)(x) , whence

[
g(n)(x) − g(n)(a)

]
[f (a) − Tn(f ;η)(a)] (14)

=
[
f (n)(x) − f (n)(a)

]
[g(a) − Tn(g;η)(a)] ,

with intermediate point (or points) η strictly between a and x . The following theorem
is similar to Theorem 1 and it provides the asymptotic behavior of η in (14) when the
interval whose endpoints are a and x shrinks to zero.
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THEOREM 5. Under the above assumptions let p and q be positive integers and
suppose that f and g fulfil the following conditions:

(i) the derivatives f (n+p+q) and g(n+p+q) exist on I and they are both continuous
at a ,

(ii) f (n+j)(a)g(n+1)(a) = f (n+1)(a)g(n+j)(a) for 2 � j < p ,
(iii) f (n+p)(a)g(n+1)(a) �= f (n+1)(a)g(n+p)(a) .
Then the point η in (14) satisfies

η = η(x) = a +
(

n + p
p(n + 1)

) 1
p−1

(x − a) + o(|x − a|) (x → a). (15)

Proof. Since g(n+1)(a) �= 0 , by (ii) it follows that

f (n+k)(a)g(n+j)(a) = f (n+j)(a)g(n+k)(a) for all 1 � j, k < p. (16)

Using (i), by virtue of the Lagrange–Taylor formula we have

f (n)(x) − f (n)(a) =
p+q−1∑

k=1

f (n+k)(a)
k!

(x − a)k + O
(|x − a|p+q

)
, (17)

g(n)(x) − g(n)(a) =
p+q−1∑

k=1

g(n+k)(a)
k!

(x − a)k + O
(|x − a|p+q

)
, (18)

as x → a . On the other hand, we have

f (η) − f (a) =
n+p+q−1∑

j=1

f (j)(a)
j!

(η− a)j + O
(|η− a|n+p+q

)

and

f (k)(η) =
n+p+q−k−1∑

j=0

f (k+j)(a)
j!

(η − a)j + O
(|η − a|n+p+q−k

)
as x → a , for every k ∈ { 1, . . . , n } . From these equalities we deduce that

f (a) − Tn(f ;η)(a) = f (a) − f (η) −
n∑

k=1

(−1)k

k!
f (k)(η)(η − a)k

= −
n+p+q−1∑

j=1

f (j)(a)
j!

(η − a)j −
n∑

k=1

n+p+q−k−1∑
j=0

(−1)kf (k+j)(a)
k! j!

(η− a)k+j

+O
(|η− a|n+p+q

)
= −

n+p+q−1∑
j=1

f (j)(a)
j!

(η − a)j −
n+p+q−1∑

r=1

Sr
f (r)(a)

r!
(η − a)r + O

(|η− a|n+p+q
)
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as x → a , with Sr :=
∑

(−1)k (k+j)!
k! j! , where the summation extends for all integers k

and j satisfying

1 � k � n, 1 � j � n + p + q − k − 1 and j + k = r.

It is easily seen that

Sr =
min{n,r}∑

k=1

(−1)k

(
r
k

)
= Sr,min{n,r} − 1

(see the notation used in the proof of Theorem 2). Therefore

Sr = (−1)min{n,r}
(

r − 1
min{n, r}

)
− 1 =

{ −1 if r � n,

(−1)n
(r−1

n

) − 1 if r � n + 1.

Thus, we conclude that

f (a) − Tn(f ;η)(a) (19)

=
p+q−1∑

j=1

(−1)n+1
(n+j−1

n

)
f (n+j)(a)

(n + j)!
(η − a)n+j + O

(|η − a|n+p+q
)

as x → a . Analogously, one has

g(a) − Tn(g;η)(a) (20)

=
p+q−1∑

j=1

(−1)n+1
(n+j−1

n

)
g(n+j)(a)

(n + j)!
(η − a)n+j + O

(|η− a|n+p+q
)

as x → a . Substituting (17), (18), (19) and (20) into (14) and taking into account (16)
as well as |η− a| < |x − a| , we deduce that

(x − a)n+p(η − a)n+1

p! (n + 1)!

[
f (n+p)(a)g(n+1)(a) − f (n+1)(a)g(n+p)(a)

]

=
(x − a)n+1(η− a)n+p

(n + p)(p − 1)! n!

[
f (n+p)(a)g(n+1)(a) − f (n+1)(a)g(n+p)(a)

]
+o

(|x − a|n+1|η− a|n+p
)

(x → a).

Dividing both sides by

f (n+p)(a)g(n+1)(a) − f (n+1)(a)g(n+p)(a)
p! (n + 1)!

(x − a)n+1(η − a)n+p,

we get (
x − a
η− a

)p−1

=
p(n + 1)
n + p

+ o(1) (x → a),

hence (15) holds. �
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