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DYNAMIC DOUBLE INTEGRAL INEQUALITIES IN
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Abstract. First, we establish some new nonlinear dynamic inequalities in two independent vari-
ables of Pachpatte type, that might be useful tools in the study of qualitative properties of solutions
of certain classes of dynamic equations on time scales. These results extend recent inequalities
for difference equations to the general time-scale setting. Then, after establishing a nabla Jensen’s
inequality, we relate several inequalities of Hilbert-Pachpatte type that extend and unify recent
continuous and discrete inequalities of this type.

1. Introduction

The unification and extension of differential equations, difference equations, q -
difference equations, and so on to the encompassing theory of dynamic equations on time
scales was first accomplished by Hilger in his Ph. D. thesis [10]. Since then, time-scale
calculus has made steady inroads in explaining the interconnections that exist among the
various differential and difference theories, and in extending our understanding to a new,
more general, robust, and overarching theory. The purpose of this note is to illustrate
this new understanding by extending some discrete inequalities by Ma and Cheung [12],
and continuous and discrete inequalities of Pachpatte [15], to arbitrary time scales; see
also some related time-scale inequalities in Agarwal, Bohner, and Peterson [1], and
Akin-Bohner, Bohner, and Akin [2]. In particular, in the first part of the paper we
establish some general nonlinear dynamic inequalities on general time scales involving
functions of two independent variables; these inequalities may be of use in the analysis
of certain classes of partial dynamic equations on time scales, introduced by Jackson
[11]. Next, we extend double sum and integral inequalities of Hilbert-Pachpatte type to
general dynamic double integral inequalities on time scales.

Throughout this work a knowledge and understandingof time scales and time-scale
notation is assumed; for an excellent introduction to the calculus on time scales, see
Bohner and Peterson [7, 8] and the paper introducing nabla derivatives by Atici and
Guseinov [4].
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2. Nonlinear inequalities on time scales

Let T be an arbitrary, unbounded time scale, and let t0 ∈ T . Before we arrive at
the main results in this section, we need the following lemmas. Note that if T = Z , then
Lemma 2.1 (I) below is a discrete inequality from Bainov and Simeonov [5, p. 161],
and Lemma 2.1 (II) below is a discrete inequality from Pachpatte [17]. Furthermore
if again T = Z , then Lemma 2.2 reduces to [12, Lemma 2.2]. Proceeding from the
foundational lemmas, all of the resulting theorems and corresponding proofs in this
section are modelled after those given in the special case of T = Z recently presented
by Ma and Cheung [12].

LEMMA 2.1. Let T be an unbounded time scale with t, t0 ∈ T .
(I) Suppose u, a, b, p, q ∈ Crd and b, p � 0 . If

u(t) � a(t) + p(t)
∫ t

t0

[b(τ)u(τ) + q(τ)]Δτ (2.1)

for all t ∈ [t0,∞)T , then

u(t) � a(t) + p(t)
∫ t

t0

[a(τ)b(τ) + q(τ)]ebp(t,σ(τ))Δτ (2.2)

for all t ∈ [t0,∞)T .
(II) Suppose u, a, b, p, q ∈ Cld and b, p � 0 . If

u(t) � a(t) + p(t)
∫ t0

t
[b(τ)u(τ) + q(τ)]∇τ (2.3)

for all t ∈ (−∞, t0]T , then

u(t) � a(t) + p(t)
∫ t0

t
[a(τ)b(τ) + q(τ)]ê−bp(t, ρ(τ))∇τ (2.4)

for all t ∈ (−∞, t0]T , where ê is the nabla exponential function [3, Def 9 ].

Proof. The statement and proof of (I) are from [2, Theorem 3.1], so we focus on
(II) . Define

w(t) := −
∫ t0

t
[b(τ)u(τ) + q(τ)]∇τ.

Then w∇(t) = b(t)u(t) + q(t) implies from assumption (2.3) that

w∇(t) � b(t)a(t) − b(t)p(t)w(t) + q(t).

Since by assumption b, p � 0 we have that −bp ∈ R+
ν and ê−bp(t, t0) > 0 for all

t ∈ T by [8, Thm 3.22 (i)]. Employing the nabla quotient rule, we have

[w/ê−bp(·, t0)]∇ (t) =
[
w∇(t) + b(t)p(t)w(t)

]
/ê−bp(ρ(t), t0);
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integrating both sides from t to t0 and using w(t0) = 0 , we obtain

−w(t)/ê−bp(t, t0) =
∫ t0

t

[
w∇(τ) + b(τ)p(τ)w(τ)

]
/ê−bp(ρ(τ), t0)∇τ

�
∫ t0

t
[b(τ)a(τ) + q(τ)] /ê−bp(ρ(τ), t0)∇τ.

Thus, using [8, Thm 3.15 (iv) & (v)], we have∫ t0

t
[b(τ)u(τ) + q(τ)]∇τ �

∫ t0

t
[b(τ)a(τ) + q(τ)] ê−bp(t, ρ(τ))∇τ,

and the result follows. �

EXAMPLE 1. If T = R , then ρ(τ) = τ , ê−bp(t, τ) = exp
(
− ∫ t

τ b(γ )p(γ )dγ
)

,

and Lemma 2.1 (II) reads as follows: Suppose u, a, b, p, q ∈C and b, p � 0 . If

u(t) � a(t) + p(t)
∫ t0

t
[b(τ)u(τ) + q(τ)] dτ

for all t ∈ (−∞, t0] , then

u(t) � a(t) + p(t)
∫ t0

t
[a(τ)b(τ) + q(τ)] exp

(∫ τ

t
b(γ )p(γ )dγ

)
dτ

for all t ∈ (−∞, t0] .

EXAMPLE 2. Consider the q -difference equations case. Let q > 1 , and take

T = qZ := {0} ∪ {qn}n∈Z.

Replace t by qt , t0 by qt0 , and τ by qτ . Then ρ(τ) = qτ−1 ,

ê−bp(t, ρ(τ)) =
τ−1∏

m=t+1

[
1 + (q − 1)qm−1b(qm)p(qm)

]
,

and Lemma 2.1 (II) reads as follows: Suppose u, a, b, p, r are functions and b, p � 0 .
If

u(qt) � a(qt) + (q − 1)p(qt)
t0∑

τ=t+1

qτ [b(qτ)u(qτ) + r(qτ)]

for all integers t ∈ {· · · , t0 − 2, t0 − 1, t0} , then

u(qt) � a(qt)+(q−1)p(qt)
t0∑

τ=t+1

qτ[a(qτ)b(qτ)+r(qτ)]
τ−1∏

m=t+1

[
1+(q−1)qm−1b(qm)p(qm)

]

for all integers t ∈ {· · · , t0 − 2, t0 − 1, t0} .
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LEMMA 2.2. Let u(t, s) , a(t, s) , c(t, s) , and d(t, s) be nonnegative continu-
ous functions defined for (t, s) ∈ T × T , and let w : R → R be a nonnegative,
nondecreasing continuous function on [0,∞) , with w(x) > 0 for x > 0 .

(I) Assume that a(t, s) and c(t, s) are nondecreasing in t and nonincreasing in s
for (t, s) ∈ T × T . If for (t, s) ∈ [t0,∞)T × [t0,∞)T we have

u(t, s) � a(t, s) + c(t, s)
∫ t

t0

∫ ∞

s
d(τ,η)w(u(τ,η))∇ηΔτ, (2.5)

then

u(t, s) � G−1

{
G(a(t, s)) + c(t, s)

∫ t

t0

∫ ∞

s
d(τ,η)∇ηΔτ

}
(2.6)

for (t, s) ∈ [t0, t1]T × [s1,∞)T , where t1, s1 ∈ [t0,∞)T , G(x) =
∫ x

x0
dr/w(r) for

x0, x > 0 , G−1 is the inverse of G , and for (t, s) ∈ [t0, t1]T × [s1,∞)T ,

G(a(t, s)) + c(t, s)
∫ t

t0

∫ ∞

s
d(τ,η)∇ηΔτ ∈ Dom (G−1),

where Dom (G−1) is the domain of G−1 .
(II) Assume that a(t, s) and c(t, s) are nonincreasing in t and s for (t, s) ∈ T×T .

If for (t, s) ∈ [t0,∞)T × [t0,∞)T we have

u(t, s) � a(t, s) + c(t, s)
∫ ∞

t

∫ ∞

s
d(τ,η)w(u(τ,η))∇η∇τ, (2.7)

then

u(t, s) � G−1

{
G(a(t, s)) + c(t, s)

∫ ∞

t

∫ ∞

s
d(τ,η)∇η∇τ

}
(2.8)

for (t, s) ∈ [t2,∞)T × [s2,∞)T , where t2, s2 ∈ [t0,∞)T such that

G(a(t, s)) + c(t, s)
∫ ∞

t

∫ ∞

s
d(τ,η)∇η∇τ ∈ Dom (G−1)

for (t, s) ∈ [t2,∞)T × [s2,∞)T .

Proof. First we consider (I). Fix any time-scale points t∗ ∈ [t0, t1]T and s∗ ∈
[s1,∞)T . From (2.5) and the assumptions on a(t, s) and c(t, s) in (I) we have

u(t, s) � a(t∗, s∗) + c(t∗, s∗)
∫ t

t0

∫ ∞

s
d(τ,η)w(u(τ,η))∇ηΔτ (2.9)

for (t, s) ∈ [t0, t∗]T × [s∗,∞)T . Let us define x1(t, s) to be the right-hand side of
inequality (2.9) above; then

u(t, s) � x1(t, s), with x1(t0, s) = a(t∗, s∗) = x1(t,∞).

By the definition of x1(t, s) , we get

xΔt
1 (t, s) = c(t∗, s∗)

∫ ∞

s
d(t,η)w(u(t,η))∇η � c(t∗, s∗)w(x1(t, s))

∫ ∞

s
d(t,η)∇η,
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since w is nondecreasing and u(t,η) � x1(t,η) � x1(t, s) for all η ∈ [s,∞)T . Now
x1 > 0 implies w(x1(t, s)) > 0 , yielding

xΔt
1 (t, s)

w(x1(t, s))
� c(t∗, s∗)

∫ ∞

s
d(t,η)∇η. (2.10)

Take G(x) :=
∫ x

x0
dr/w(r) for x0, x > 0 , and let G−1 denote the inverse of G . Then

GΔt(x1(t, s)) =

(∫ x1(t,s)

x0

dγ /w(γ )

)Δt

= lim
θ→t

1
σ(t) − θ

∫ x1(σ(t),s)

x1(θ,s)
dγ /w(γ )

� lim
θ→t

1
σ(t) − θ

∫ x1(σ(t),s)

x1(θ,s)
dγ · 1

w(x1(θ, s))
=

xΔt
1 (t, s)

w(x1(t, s))

as w is nondecreasing. By (2.10),

GΔt(x1(t, s)) � c(t∗, s∗)
∫ ∞

s
d(t,η)∇η. (2.11)

For fixed s , delta integrate (2.11) from t0 to t , and use the fact that x1(t0, s) = a(t∗, s∗)
to obtain

G(x1(t, s)) � G(a(t∗, s∗)) + c(t∗, s∗)
∫ t

t0

∫ ∞

s
d(τ,η)∇ηΔτ.

Setting t = t∗ and s = s∗ in (2.9) and the last inequality shows that u(t∗, s∗) �
x1(t∗, s∗) , and

G(x1(t∗, s∗)) � G(a(t∗, s∗)) + c(t∗, s∗)
∫ t∗

t0

∫ ∞

s∗
d(τ,η)∇ηΔτ.

By the arbitrary nature of t∗ and s∗ , we have

u(t, s) � x1(t, s), G(x1(t, s)) � G(a(t, s)) + c(t, s)
∫ t

t0

∫ ∞

s
d(τ,η)∇ηΔτ (2.12)

for (t, s) ∈ [t0, t1]T × [s1,∞)T . The desired inequality (2.6) then follows from (2.12).
Next we consider (II). Fix any time-scale points t∗ ∈ [t2,∞)T and s∗ ∈ [s2,∞)T .

From (2.7) and the assumptions on a(t, s) and c(t, s) in (II) we have

u(t, s) � a(t∗, s∗) + c(t∗, s∗)
∫ ∞

t

∫ ∞

s
d(τ,η)w(u(τ,η))∇η∇τ (2.13)

for (t, s) ∈ [t∗,∞)T × [s∗,∞)T . Let us define x2(t, s) to be the right-hand side of
inequality (2.13) above; then

u(t, s) � x2(t, s), with x2(t,∞) = a(t∗, s∗) = x2(∞, s).

By the definition of x2(t, s) , we get

x∇t
2 (t, s) = −c(t∗, s∗)

∫ ∞

s
d(t,η)w(u(t,η))∇η � −c(t∗, s∗)w(x2(t, s))

∫ ∞

s
d(t,η)∇η,
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since w is nondecreasing and u(t,η) � x2(t,η) � x2(t, s) for all η ∈ [s,∞)T . Now
x2 > 0 implies w(x2(t, s)) > 0 , yielding

x∇t
2 (t, s)

w(x2(t, s))
� −c(t∗, s∗)

∫ ∞

s
d(t,η)∇η. (2.14)

Consider

G∇t (x2(t, s)) =

(∫ x2(t,s)

x0

dγ /w(γ )

)∇t

;

as in the derivation of (2.11) we have

G∇t (x2(t, s)) � −c(t∗, s∗)
∫ ∞

s
d(t,η)∇η. (2.15)

For fixed s , nabla integrate (2.15) from t to ∞ , and use the fact that x2(∞, s) =
a(t∗, s∗) to obtain

G(x2(t, s)) � G(a(t∗, s∗)) + c(t∗, s∗)
∫ ∞

t

∫ ∞

s
d(τ,η)∇η∇τ.

Setting t = t∗ and s = s∗ in (2.13) and the last inequality shows that u(t∗, s∗) �
x2(t∗, s∗) , and

G(x2(t∗, s∗)) � G(a(t∗, s∗)) + c(t∗, s∗)
∫ ∞

t∗

∫ ∞

s∗
d(τ,η)∇η∇τ.

By the arbitrary nature of t∗ and s∗ , we have

u(t, s) � x2(t, s), G(x2(t, s)) � G(a(t, s)) + c(t, s)
∫ ∞

t

∫ ∞

s
d(τ,η)∇η∇τ (2.16)

for (t, s) ∈ [t0, t1]T × [s1,∞)T . The desired inequality (2.8) then follows from (2.16).
�

THEOREM 2.3. Let u(t, s) , a(t, s) , c(t, s) , d(t, s) , and w(u) be as in Lemma 2.2
(I) , and let b(t, s) be a nonnegative continuous function for (t, s) ∈ [t0,∞)T×[t0,∞)T .
Let ϕ ∈ C1(R+, R+) with ϕ′(u) > 0 for u > 0 , where the prime indicates the
traditional derivative. If for (t, s) ∈ [t0,∞)T × [t0,∞)T we have

ϕ(u(t, s)) � a(t, s) + c(t, s)
∫ t

t0

∫ ∞

s
ϕ′(u(τ,η)) [d(τ,η)w(u(τ,η)) + b(τ,η)]∇ηΔτ,

(2.17)
then

u(t, s) � G−1

{
G
(
ϕ−1(a(t, s)) + B(t, s)

)
+ c(t, s)

∫ t

t0

∫ ∞

s
d(τ,η)∇ηΔτ

}
(2.18)

for B(t, s) := c(t, s)
∫ t

t0

∫∞
s b(τ,η)∇ηΔτ and for (t, s) ∈ [t0, t3]T × [s3,∞)T , where

t3, s3 ∈ [t0,∞)T such that

G
(
ϕ−1(a(t, s)) + B(t, s)

)
+ c(t, s)

∫ t

t0

∫ ∞

s
d(τ,η)∇ηΔτ ∈ Dom (G−1)

for all (t, s) ∈ [t0, t3]T × [s3,∞)T . Here G is as in Lemma 2.2 .
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Proof. Fix any time-scale points t∗ ∈ [t0, t3]T and s∗ ∈ [s3,∞)T . From (2.17)
and the assumptions on a(t, s) and c(t, s) we have

ϕ(u(t, s)) � a(t∗, s∗)+c(t∗, s∗)
∫ t

t0

∫ ∞

s
ϕ′(u(τ,η)) [d(τ,η)w(u(τ,η))+b(τ,η)]∇ηΔτ

(2.19)
for (t, s) ∈ [t0, t∗]T × [s∗,∞)T . Let us define x3(t, s) to be the right-hand side of
inequality (2.19) above; then

u(t, s) � ϕ−1(x3(t, s)), with x3(t0, s) = a(t∗, s∗) = x3(t,∞). (2.20)

By the definition of x3(t, s) , we get

xΔt
3 (t, s) = c(t∗, s∗)

∫ ∞

s
ϕ′(u(t,η)) [d(t,η)w(u(t,η)) + b(t,η)]∇η

� c(t∗, s∗)ϕ′ (ϕ−1(x3(t, s))
) ∫ ∞

s

[
d(t,η)w(ϕ−1(x3(t,η))) + b(t,η)

]∇η,

since w is nondecreasing and u(t,η) � ϕ−1(x3(t,η)) � ϕ−1(x3(t, s)) for all η ∈
[s,∞)T . This yields

xΔt
3 (t, s)

ϕ′ (ϕ−1(x3(t, s)))
� c(t∗, s∗)

∫ ∞

s

[
d(t,η)w(ϕ−1(x3(t,η))) + b(t,η)

]∇η. (2.21)

Consider
[
ϕ−1(x3(t, s))

]Δt . Then

[
ϕ−1(x3(t, s))

]Δt =
xΔt
3 (t, s)

ϕ′(ϕ−1(θ))
� xΔt

3 (t, s)
ϕ′ (ϕ−1(x3(t, s)))

,

where we have used the differential Mean Value Theorem on ϕ , for some θ ∈ R

between x3(t, s) and x3(σ(t), s) . By (2.21),

[
ϕ−1(x3(t, s))

]Δt � c(t∗, s∗)
∫ ∞

s

[
d(t,η)w(ϕ−1(x3(t,η))) + b(t,η)

]∇η. (2.22)

For fixed s , delta integrate (2.22) from t0 to t , and use the fact that x3(t0, s) = a(t∗, s∗)
to obtain

ϕ−1(x3(t, s)) � ϕ−1(a(t∗, s∗)) + c(t∗, s∗)

×
∫ t

t0

∫ ∞

s

[
d(τ,η)w(ϕ−1(x3(τ,η))) + b(τ,η)

]∇ηΔτ.

Applying Lemma 2.2 (I) to this inequality we obtain

ϕ−1(x3(t, s)) � G−1

{
G

[
ϕ−1(a(t∗, s∗)) + c(t∗, s∗)

∫ t

t0

∫ ∞

s
b(τ,η)∇ηΔτ

]

+c(t∗, s∗)
∫ t

t0

∫ ∞

s
d(τ,η)∇ηΔτ

}
(2.23)
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for all (t, s) ∈ [t0, t∗]T × [s∗,∞)T . In particular, (2.23) holds for (t, s) = (t∗, s∗) . By
the arbitrary nature of t∗ and s∗ , we have from (2.20) that (2.18) follows. �

THEOREM 2.4. Let u(t, s) , a(t, s) , c(t, s) , d(t, s) , and w(u) be as in Lemma 2.2
(II) , and let ϕ(u) and b(t, s) be as in Theorem 2.3 . If for (t, s) ∈ [t0,∞)T × [t0,∞)T

we have

ϕ(u(t, s)) � a(t, s)+ c(t, s)
∫ ∞

t

∫ ∞

s
ϕ′(u(τ,η)) [d(τ,η)w(u(τ,η)) + b(τ,η)]∇η∇τ,

(2.24)
then

u(t, s) � G−1

{
G
(
ϕ−1(a(t, s)) + B(t, s)

)
+ c(t, s)

∫ ∞

t

∫ ∞

s
d(τ,η)∇η∇τ

}
(2.25)

for B(t, s) := c(t, s)
∫∞

t

∫∞
s b(τ,η)∇η∇τ and for (t, s) ∈ [t4,∞)T × [s4,∞)T , where

t4, s4 ∈ [t0,∞)T such that

G
(
ϕ−1(a(t, s)) + B(t, s)

)
+ c(t, s)

∫ ∞

t

∫ ∞

s
d(τ,η)∇η∇τ ∈ Dom (G−1)

for all (t, s) ∈ [t4,∞)T × [s4,∞)T . Here G is as in Lemma 2.2 .

Proof. The proof of Theorem 2.4 using Lemma 2.2 (II) is similar to the proof
given above of Theorem 2.3 using Lemma 2.2 (I) , and thus is omitted. �

THEOREM 2.5. Let u(t, s) , a(t, s) , b(t, s) , c(t, s) , w(u) , and ϕ(u) be as in
Theorem 2.3 . Let d(t, s) , f (t, s) , and g(t, s) be nonnegative continuous functions
defined for (t, s) ∈ [t0,∞)T × [t0,∞)T , with d(t, s) and g(t, s) nondecreasing in t
and nonincreasing in s . If for (t, s) ∈ [t0,∞)T × [t0,∞)T we have

ϕ(u(t, s)) � a(t, s) + g(t, s)
∫ t

t0

c(τ, s)ϕ(u(τ, s))Δτ

+d(t, s)
∫ t

t0

∫ ∞

s
ϕ′(u(τ,η)) [f (τ,η)w(u(τ,η))+b(τ,η)]∇ηΔτ, (2.26)

then

u(t, s) � G−1

{
G
(
ϕ−1(a(t, s)p(t, s)) + p(t, s)B1(t, s)

)
+p(t, s)d(t, s)

∫ t

t0

∫ ∞

s
f (τ,η)∇ηΔτ

}
(2.27)

for

B1(t, s) := d(t, s)
∫ t

t0

∫ ∞

s
b(τ,η)∇ηΔτ, (2.28)

p(t, s) := 1 + g(t, s)
∫ t

t0

c(τ, s)ecg(t,σ(τ))Δτ, (2.29)
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and for (t, s) ∈ [t0, t5]T × [s5,∞)T , where t5, s5 ∈ [t0,∞)T such that

G
(
ϕ−1(a(t, s)p(t, s)) + p(t, s)B1(t, s)

)
+ p(t, s)d(t, s)

∫ t

t0

∫ ∞

s
f (τ,η)∇ηΔτ

∈ Dom (G−1)

for all (t, s) ∈ [t0, t5]T × [s5,∞)T . Here G is as in Lemma 2.2 .

Proof. Define the function

z(t, s) := a(t, s) + d(t, s)
∫ t

t0

∫ ∞

s
ϕ′(u(τ,η)) [f (τ,η)w(u(τ,η)) + b(τ,η)]∇ηΔτ.

Then assumption (2.26) becomes

ϕ(u(t, s)) � z(t, s) + g(t, s)
∫ t

t0

c(τ, s)ϕ(u(τ, s))Δτ. (2.30)

By the conditions on the various functions, z(t, s) is nonnegative for t, s ∈ [t0,∞)T .
For fixed s ∈ [t0,∞)T , an application of Lemma 2.1 (I) yields

ϕ(u(t, s)) � z(t, s) + g(t, s)
∫ t

t0

c(τ, s)z(τ, s)ecg(t,σ(τ))Δτ.

As z(t, s) is nondecreasing in t ∈ [t0,∞)T , we see from the previous inequality that

ϕ(u(t, s)) � z(t, s)p(t, s), (2.31)

where p(t, s) is defined in (2.29). After plugging back in the expression for z(t, s) ,
from (2.31) we have that

ϕ(u(t, s)) � p(t, s)
(

a(t, s) + d(t, s)
∫ t

t0

∫ ∞

s
ϕ′(u(τ,η))[f (τ,η)w(u(τ,η))

+ b(τ,η)]∇ηΔτ
)

. (2.32)

Note that by our assumptions, p(t, s) , a(t, s) , and d(t, s) are all nondecreasing in t and
nonincreasing in s for t, s ∈ [t0,∞)T ; likewise with p(t, s)a(t, s) and p(t, s)d(t, s) .
Applying Theorem 2.3 directly to (2.32), we arrive at the bound for u(t, s) given in
(2.27). �

THEOREM 2.6. Let u(t, s) , b(t, s) , f (t, s) , w(u) , and ϕ(u) be as in Theorem 2.5 .
Let a(t, s) , c(t, s) , d(t, s) , and g(t, s) be nonnegative continuous functions defined for
(t, s) ∈ [t0,∞)T × [t0,∞)T nonincreasing in both t and s . If for t, s, T ∈ [t0,∞)T we
have

ϕ(u(t, s)) � a(t, s)+g(t, s)
∫ T

t
c(τ, s)ϕ(u(τ, s))∇τ

+d(t, s)
∫ ∞

t

∫ ∞

s
ϕ′(u(τ,η)) [f (τ,η)w(u(τ,η))+b(τ,η)]∇η∇τ, (2.33)
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then

u(t, s) � G−1

{
G
(
ϕ−1(a(t, s)p(t, s)) + p(t, s)B1(t, s)

)
+p(t, s)d(t, s)

∫ ∞

t

∫ ∞

s
f (τ,η)∇η∇τ

}
(2.34)

for

B1(t, s) := d(t, s)
∫ ∞

t

∫ ∞

s
b(τ,η)∇η∇τ, (2.35)

p(t, s) := 1 + g(t, s)
∫ T

t
c(τ, s)ê−cg(t, ρ(τ))∇τ, (2.36)

and for (t, s) ∈ [t6, T]T × [s6,∞)T , where t6, s6 ∈ [t0,∞)T such that

G
(
ϕ−1(a(t, s)p(t, s)) + p(t, s)B1(t, s)

)
+ p(t, s)d(t, s)

∫ ∞

t

∫ ∞

s
f (τ,η)∇η∇τ

∈ Dom (G−1)

for all (t, s) ∈ [t6,∞)T × [s6,∞)T . Here G is as in Lemma 2.2 .

Proof. The proof of Theorem 2.6 using Lemma 2.1 (II) and Theorem 2.4 is
similar to the proof given above of Theorem 2.5 using Lemma 2.1 (I) and Theorem
2.3, and thus is omitted. �

REMARK 1. By choosing suitable functions for ϕ , new dynamic inequalities in
two variables of Gronwall-Ou-Iang [14] and other types can be obtained from Theorems
2.5 and 2.6. The following corollaries illustrate two possibilites.

COROLLARY 2.7. Let a(t, s) , b(t, s) , c(t, s) , d(t, s) , f (t, s) , g(t, s) , u(t, s) , and
w(u) all be as defined in Theorem 2.5 , with ϕ(u) := uk for any real number k � 1 .
If for (t, s) ∈ [t0,∞)T × [t0,∞)T we have

uk(t, s) � a(t, s) + g(t, s)
∫ t

t0

c(τ, s)uk(τ, s)Δτ

+d(t, s)
∫ t

t0

∫ ∞

s
uk−1(τ,η) [f (τ,η)w(u(τ,η)) + b(τ,η)]∇ηΔτ, (2.37)

then for (t, s) ∈ [t0, t7]T × [s7,∞)T we have

u(t, s) � G−1

{
G

(
a1/k(t, s)p1/k(t, s) +

1
k
p(t, s)B1(t, s)

)

+
1
k
p(t, s)d(t, s)

∫ t

t0

∫ ∞

s
f (τ,η)∇ηΔτ

}
(2.38)
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for B1(t, s) given in (2.28) and p(t, s) given in (2.29), where t7, s7 ∈ [t0,∞)T such
that

G

(
a1/k(t, s)p1/k(t, s) +

1
k
p(t, s)B1(t, s)

)
+

1
k
p(t, s)d(t, s)

∫ t

t0

∫ ∞

s
f (τ,η)∇ηΔτ

∈ Dom (G−1)

for all (t, s) ∈ [t0, t7]T × [s7,∞)T . Here G is as in Lemma 2.2 .

COROLLARY 2.8. Let b(t, s) , c(t, s) , d(t, s) , f (t, s) , g(t, s) , and w(u) all be as
defined in Theorem 2.5 , with ϕ(v) := exp(kv) for any real number k > 0 . Suppose
a(t, s), u(t, s) : [t0,∞)2

T
→ [1,∞)R . If for (t, s) ∈ [t0,∞)T × [t0,∞)T we have

uk(t, s) � a(t, s) + g(t, s)
∫ t

t0

c(τ, s)uk(τ, s)Δτ

+d(t, s)
∫ t

t0

∫ ∞

s
uk(τ,η) [f (τ,η)w(log u(τ,η)) + b(τ,η)]∇ηΔτ, (2.39)

then for (t, s) ∈ [t0, t8]T × [s8,∞)T we have

u(t, s) � exp

[
G−1

{
G

(
1
k

log(a(t, s)p(t, s)) +
1
k
p(t, s)B1(t, s)

)

+
1
k
p(t, s)d(t, s)

∫ t

t0

∫ ∞

s
f (τ,η)∇ηΔτ

}]
(2.40)

for B1(t, s) given in (2.28) and p(t, s) given in (2.29), where t8, s8 ∈ [t0,∞)T such
that

G

(
1
k

log(a(t, s)p(t, s)) +
1
k
p(t, s)B1(t, s)

)
+

1
k
p(t, s)d(t, s)

∫ t

t0

∫ ∞

s
f (τ,η)∇ηΔτ

∈ Dom (G−1)

for all (t, s) ∈ [t0, t8]T × [s8,∞)T . Here G is as in Lemma 2.2 .

Proof. Using the change of variables v(t, s) = log u(t, s) , inequality (2.39)
becomes

exp(kv(t, s)) � a(t, s) + g(t, s)
∫ t

t0

c(τ, s) exp(kv(τ, s))Δτ

+d(t, s)
∫ t

t0

∫ ∞

s
exp(kv(τ,η)) [f (τ,η)w(v(τ,η)) + b(τ,η)]∇ηΔτ,

which is a special case of (2.26). By Theorem 2.5, inequality (2.40) follows. �

REMARK 2. Corollaries 2.7 and 2.8 above extend [12, Corollaries 2.7 & 2.8] to
arbitrary time scales. Those corollaries themselves were generalizations of theorems
due to Pachpatte [16, Theorems 1 & 2].
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THEOREM 2.9. Let u(t, s) , a(t, s) , b(t, s) , c(t, s) , d(t, s) , f (t, s) , g(t, s) , and
ϕ(u) be as in Theorem 2.5 . Suppose L, M : [t0,∞)2

T
× R+ → R+ are continuous

functions that for t, s ∈ [t0,∞)T and v, w ∈ R+ satisfy the inequality

0 � L(t, s, v) − L(t, s, w) � M(t, s, w)(v − w), w � v. (2.41)

If for (t, s) ∈ [t0,∞)T × [t0,∞)T we have

ϕ(u(t, s)) � a(t, s) + g(t, s)
∫ t

t0

c(τ, s)ϕ(u(τ, s))Δτ

+ d(t, s)
∫ t

t0

∫ ∞

s
ϕ′(u(τ,η)) [f (τ,η)L(τ,η, u(τ,η))+b(τ,η)]∇ηΔτ, (2.42)

then
u(t, s) � N (t, s) + p(t, s)d(t, s)L (t, s) exp(M (t, s)) (2.43)

for

N (t, s) := ϕ−1(p(t, s)a(t, s)) + p(t, s)B1(t, s),

L (t, s) :=
∫ t

t0

∫ ∞

s
f (τ,η)L (τ,η, N (τ,η))∇ηΔτ,

M (t, s) :=
∫ t

t0

∫ ∞

s
f (τ,η)p(τ,η)d(τ,η)M (τ,η, N (τ,η))∇ηΔτ,

where B1 and p(t, s) are given by (2.28) and (2.29), respectively.

Proof. We proceed with the argument in the manner of the proof of Theorem 2.5.
Applying Lemma 2.1 (I) to (2.42), we get that

ϕ(u(t, s)) � p(t, s)a(t, s) + p(t, s)d(t, s)

×
∫ t

t0

∫ ∞

s
ϕ′(u(τ,η)) [f (τ,η)L(τ,η, u(τ,η))+b(τ,η)]∇ηΔτ, (2.44)

for all t, s ∈ [t0,∞)T . After setting the right-hand side of (2.44) to be the continuous
function z(t, s) , we use a procedure similar to that employed in the proof of Theorem
2.3 to determine that

u(t, s) � ϕ−1(z(t, s)) (2.45)

� N (t, s) + p(t, s)d(t, s)
∫ t

t0

∫ ∞

s
f (τ,η)L

(
τ,η,ϕ−1(z(τ,η))

)∇ηΔτ

for all t, s ∈ [t0,∞)T , where N is given above in the statement of the theorem. If we
set

ξ(t, s) :=
∫ t

t0

∫ ∞

s
f (τ,η)L

(
τ,η,ϕ−1(z(τ,η))

)∇ηΔτ, (2.46)

then the inequality (2.45) may be rewritten as

ϕ−1(z(t, s)) � N (t, s) + p(t, s)d(t, s)ξ(t, s), t, s ∈ [t0,∞)T. (2.47)
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Since L(t, s, v) is nondecreasing in v for fixed t and s , by (2.46) and (2.47) with
condition (2.41) we see that

ξ(t, s) �
∫ t

t0

∫ ∞

s
f (τ,η)L (τ,η, N (τ,η) + p(τ,η)d(τ,η)ξ(τ,η))∇ηΔτ

�
∫ t

t0

∫ ∞

s
f (τ,η)L (τ,η, N (τ,η))∇ηΔτ

+
∫ t

t0

∫ ∞

s
f (τ,η)p(τ,η)d(τ,η)M (τ,η, N (τ,η)) ξ(τ,η)∇ηΔτ.

Applying Lemma 2.2 (I) , the case where w(u) = u and c(t, s) ≡ 1 , to the previous
inequality yields

ξ(t, s) �
(∫ t

t0

∫ ∞

s
f (τ,η)L (τ,η, N (τ,η))∇ηΔτ

)

× exp

(∫ t

t0

∫ ∞

s
f (τ,η)p(τ,η)d(τ,η)M (τ,η, N (τ,η))∇ηΔτ

)
= L (t, s) exp(M (t, s))

where L and M are given above in the statement of the theorem. Using (2.45),
(2.47), and the previous inequality, we arrive at the desired (2.43). �

THEOREM 2.10. Let u(t, s) , a(t, s) , b(t, s) , c(t, s) , d(t, s) , f (t, s) , g(t, s) , and
ϕ(u) be as in Theorem 2.6 , with L(t, s, v) and M(t, s, v) as in Theorem 2.9 . If for
(t, s) ∈ [t0,∞)T × [t0,∞)T we have

ϕ(u(t, s)) � a(t, s) + g(t, s)
∫ t

t0

c(τ, s)ϕ(u(τ, s))Δτ

+d(t, s)
∫ ∞

t

∫ ∞

s
ϕ′(u(τ,η)) [f (τ,η)L(τ,η, u(τ,η))+ b(τ,η)]∇η∇τ,

then
u(t, s) � N (t, s) + p(t, s)d(t, s)L (t, s) exp(M (t, s))

for

N (t, s) := ϕ−1(p(t, s)a(t, s)) + p(t, s)B1(t, s),

L (t, s) :=
∫ ∞

t

∫ ∞

s
f (τ,η)L

(
τ,η, N (τ,η)

)∇η∇τ,

M (t, s) :=
∫ ∞

t

∫ ∞

s
f (τ,η)p(τ,η)d(τ,η)M

(
τ,η, N (τ,η)

)∇η∇τ,

where B1(t, s) and p(t, s) are given by (2.35) and (2.36), respectively.

Proof. The result follows by an argument similar to that given in the proof of
Theorem 2.9, by applying Theorem 2.6 and Lemma 2.2 (II) . �
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For two examples in the case where T = Z , please see [12, Section 3]. For an
arbitrary time scale T with t0 ∈ T , consider the integral dynamic equation

u(t, s) = a(t, s) +
∫ t

t0

g(τ, s, u(τ, s))Δτ +
∫ t

t0

∫ ∞

s
h(τ,η, u(τ,η), log |u(τ,η)|)∇ηΔτ

(2.48)
where u : [t0,∞)2

T
→ R , g : [t0,∞)2

T
× R → R , and h : [t0,∞)2

T
× R

2 → R , with g
and h appropriately integrable. Assume that g and h also satisfy the inequalities

|g(t, s, u)| � c(t, s)|u|, (2.49)

|h(t, s, u, log |u|)| � |u|(f (t, s) log |u| + b(t, s)
)
, (2.50)

where b(t, s) , c(t, s) , and f (t, s) are defined as in Corollary 2.8, with |a(t, s)| � A for
some real constant A � 0 . Let u(t, s) be a solution of (2.48) defined for t, s ∈ [t0,∞)T .
Using (2.48) together with inequalities (2.49) and (2.50), we obtain

|u(t, s)| + 1 � (A + 1) +
∫ t

t0

c(τ, s)(|u(τ, s)| + 1)Δτ

+
∫ t

t0

∫ ∞

s
[|u(τ,η)| + 1] [f (τ,η) log(|u(τ,η)| + 1) + b(τ,η)]∇ηΔτ

for all t, s ∈ [t0,∞)T . Applying Corollary 2.8 to the previous inequality leads to

|u(t, s)| � exp

{
exp

[
p(t, s)

∫ t

t0

∫ ∞

s
f (τ,η)∇ηΔτ

]
[log ((A + 1)p(t, s))

+ p(t, s)B1(t, s)]
}
− 1,

where

B1(t, s) :=
∫ t

t0

∫ ∞

s
b(τ,η)∇ηΔτ,

p(t, s) := 1 +
∫ t

t0

c(τ, s)ec(t,σ(τ))Δτ,

and G(x) :=
∫ x

1 dr/r = log x ; note this requires a final assumption, namely that

x = log ((A + 1)p(t, s)) + p(t, s)B1(t, s) � 1.

3. Inequalities of Hilbert-Pachpatte type on time scales

As in the previous section, we will begin with a few foundational results before
presenting the main inequalities. Although we are concerned once more with dynamic
double integrals, this section is independent of Section 2; the thread of unification and
extension, however, continues. Note that if T = Z , then Lemma 3.1 below is a discrete
inequality from [9, 13], and Lemma 3.2 below is a discrete inequality from Németh [13].
All of the theorems and corresponding proofs below are modelled after those given in
the special case of T = Z presented by Pachpatte [15, 17].
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LEMMA 3.1. Let z : T → R be a left-dense continuous function, with z � 0 , and
α � 1 a real constant. Then the nabla integral inequality

(∫ t

t0

z(η)∇η
)α

� α
∫ t

t0

z(τ)
(∫ τ

t0

z(η)∇η
)α−1

∇τ

holds for points t, t0 ∈ T with t � t0 .

Proof. Fix t ∈ T , t � t0 . If t is a left-dense point, by a modification of the chain
rule [7, Theorem 1.87], we have that

[(∫ t

t0

z(η)∇η
)α]∇

= α
(∫ t

t0

z(η)∇η
)α−1

z(t).

If t is a left-scattered point, then ρ(t) < t and ν(t) > 0 . Define the nonnegative real
numbers x, y ∈ R via

x :=
∫ ρ(t)

t0

z(η)∇η, y :=
∫ t

ρ(t)
z(η)∇η = ν(t)z(t).

Then the nabla derivative can be written as[(∫ t

t0

z(η)∇η
)α]∇

=
1

ν(t)
[(x + y)α − xα ] . (3.1)

Now f : R → R via f (x) := xα is differentiable on R , so by the mean value theorem,

(x + y)α − xα = αkα−1y � α(x + y)α−1y, some real k ∈ [x, x + y],

since α , x , and y are all nonnegative. Combining this with (3.1), we obtain

[(∫ t

t0

z(η)∇η
)α]∇

� α
(∫ t

t0

z(η)∇η
)α−1

z(t). (3.2)

In either case, (3.2) holds. If we nabla integrate (3.2) from t0 to t , the desired inequality
follows. �

LEMMA 3.2. Let z : T → R be a left-dense continuous function. Then the
equality that allows interchanging the order of nabla integration given by

∫ t

t0

(∫ s

t0

z(η)∇η
)
∇s =

∫ t

t0

(∫ t

ρ(η)
z(η)∇s

)
∇η =

∫ t

t0

[t − ρ(η)] z(η)∇η (3.3)

holds for points s, t, t0 ∈ T with t, s � t0 .
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Proof. In a manner similar to [6, Theorem 3.10], we see that all integrals in (3.3)
are well-defined. Set

Z(t) :=
∫ t

t0

[t − ρ(η)] z(η)∇η −
(∫ t

t0

(∫ s

t0

z(η)∇η
)
∇s

)
.

Then Z(t0) = 0 , and Z∇(t) =
∫ t

t0
z(η)∇η + 0 −

(∫ t
t0

z(η)∇η
)

= 0 for t � t0 , where

we have used [7, Theorem 8.50 (iv)]. By the uniqueness of initial value problems,
Z ≡ 0 , and the result follows. �

THEOREM 3.3. Let p, q � 1 be real numbers, and let a, b : T → R be left-dense
continuous nonnegative functions. If for s, t, t0 ∈ T with s, t � t0 we define

A(s) :=
∫ s

t0

a(τ)∇τ and B(t) :=
∫ t

t0

b(τ)∇τ,

then for s1, t1 ∈ T with s1, t1 � t0 we have

∫ s1

t0

∫ t1

t0

Ap(s)Bq(t)
s + t − 2t0

∇t∇s � 1
2
pq

(
(s1 − t0)

∫ s1

t0

(s1 − ρ(s))
(
Ap−1(s)a(s)

)2 ∇s

)1/2

×
(

(t1−t0)
∫ t1

t0

(t1−ρ(t))
(
Bq−1(t)b(t)

)2 ∇t

)1/2

, (3.4)

unless a ≡ 0 or b ≡ 0 .

Proof. Using Lemma 3.1 for any s ∈ (t0, s1]T and t ∈ (t0, t1]T we obtain

Ap(s) � p
∫ s

t0

a(τ)Ap−1(τ)∇τ and Bq(t) � q
∫ t

t0

b(τ)Bq−1(τ)∇τ. (3.5)

Using (3.5), the Cauchy-Schwarz inequality [7, Theorem 6.15], and the fact that
(xy)1/2 � 1

2 (x + y) for any real numbers x, y � 0 we observe that

Ap(s)Bq(t) � pq

(∫ s

t0

a(τ)Ap−1(τ)∇τ
)(∫ t

t0

b(τ)Bq−1(τ)∇τ
)

� pq(s − t0)1/2

(∫ s

t0

(
a(τ)Ap−1(τ)

)2 ∇τ
)1/2

(t − t0)1/2

×
(∫ t

t0

(
b(τ)Bq−1(τ)

)2 ∇τ
)1/2

� 1
2
pq(s + t − 2t0)

(∫ s

t0

(
a(τ)Ap−1(τ)

)2 ∇τ
)1/2

×
(∫ t

t0

(
b(τ)Bq−1(τ)

)2 ∇τ
)1/2

.
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Dividing both sides by s + t − 2t0 , nabla integrating over t from t0 to t1 and over s
from t0 to s1 , and using the Cauchy-Schwarz inequality again we get∫ s1

t0

∫ t1

t0

Ap(s)Bq(t)
s + t − 2t0

∇t∇s � 1
2
pq
∫ s1

t0

(∫ s

t0

(
a(τ)Ap−1(τ)

)2 ∇τ
)1/2

∇s

×
∫ t1

t0

(∫ t

t0

(
b(τ)Bq−1(τ)

)2 ∇τ
)1/2

∇t

� 1
2
pq(s1−t0)1/2

[∫ s1

t0

(∫ s

t0

(
a(τ)Ap−1(τ)

)2 ∇τ
)
∇s

]1/2

×(t1 − t0)1/2

[∫ t1

t0

(∫ t

t0

(
b(τ)Bq−1(τ)

)2 ∇τ
)
∇t

]1/2

.

In the right-hand side of the previous expression we interchange the order of integration
as in (3.3) from Lemma 3.2 to get that∫ s1

t0

∫ t1

t0

Ap(s)Bq(t)
s + t − 2t0

∇t∇s � 1
2
pq

(
(s1 − t0)

∫ s1

t0

(s1 − ρ(s))
(
a(s)Ap−1(s)

)2 ∇s

)1/2

×
(

(t1 − t0)
∫ t1

t0

(t1 − ρ(t))
(
b(t)Bq−1(t)

)2 ∇t

)1/2

,

that is (3.4). �
REMARK 3. If T = Z and t0 = 0 , then ρ(x) = x − 1 and (3.4) reduces to

s1∑
s=1

t1∑
t=1

Ap
sB

q
t

s + t
� 1

2
pq

(
s1

s1∑
s=1

(s1 − s + 1)
(
asA

p−1
s

)2)1/2

×
(

t1

t1∑
t=1

(t1 − t + 1)
(
btB

q−1
t

)2
)1/2

,

which is [15, Theorem 1]. If T = R and t0 = 0 , then ρ(x) = x and (3.4) reduces to∫ s1

0

∫ t1

0

Ap(s)Bq(t)
s + t

dtds � 1
2
pq

(
s1

∫ s1

0
(s1 − s)

(
a(s)Ap−1(s)

)2
ds

)1/2

×
(

t1

∫ t1

0
(t1 − t)

(
b(t)Bq−1(t)

)2
dt

)1/2

,

which is [15, Theorem 5]. Thus Theorem 3.4 unifies and extends these two theorems to
arbitrary time scales.

REMARK 4. If in (3.4) we take p = q = 1 , then the inequality is∫ s1

t0

∫ t1

t0

A(s)B(t)
s + t − 2t0

∇t∇s � 1
2

(
(s1 − t0)

∫ s1

t0

(s1 − ρ(s))a2(s)∇s

)1/2

×
(

(t1 − t0)
∫ t1

t0

(t1 − ρ(t))b2(t)∇t

)1/2

. (3.6)
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Before continuing, we will need the following key theorem.

THEOREM 3.4. (Jensen’s Inequality) Let s, t ∈ T and x, y ∈ R . If a : T → R and
b : T → (x, y) are nonnegative, left-dense continuous functions with

∫ t
s a(τ)∇τ > 0 ,

and φ : (x, y) → R is continuous and convex, then

φ

(∫ t
s a(τ)b(τ)∇τ∫ t

s a(τ)∇τ

)
�
∫ t

s a(τ)φ(b(τ))∇τ∫ t
s a(τ)∇τ

.

Proof. This proof is modelled after those found inBohner and Peterson [7, Theorem
6.17] and Rudin [18, Theorem 3.3]. Let z0 ∈ (x, y) . By the convexity of φ , there exists
a β ∈ R such that φ(z) � φ(z0) + β(z − z0) for all z ∈ (x, y) . In particular, for
τ ∈ [s, t]T ,

φ(b(τ)) � φ(z0) + β(b(τ) − z0), z0 :=

∫ t
s a(τ)b(τ)∇τ∫ t

s a(τ)∇τ
. (3.7)

Multiplying (3.7) by a(τ) � 0 and nabla integrating from s to t yields∫ t

s
a(τ)φ(b(τ))∇τ � φ(z0)

∫ t

s
a(τ)∇τ + β

∫ t

s
a(τ)(b(τ) − z0)∇τ;

dividing this last expression by
∫ t

s a(τ)∇τ > 0 leads to

∫ t
s a(τ)φ(b(τ))∇τ∫ t

s a(τ)∇τ
� φ(z0) +

β
∫ t

s a(τ)(b(τ) − z0)∇τ∫ t
s a(τ)∇τ

= φ(z0) + 0 = φ(z0),

where z0 is given in (3.7). �
Our next result deals with a further generalization of the inequality given in (3.6).

THEOREM 3.5. Let a, b : T → R and A(s), B(t) be as in Theorem 3.3 . Let
p, q : T → R be left-dense continuous positive functions, and for s, t, t0 ∈ T with
s, t � t0 define

P(s) :=
∫ s

t0

p(τ)∇τ and Q(t) :=
∫ t

t0

q(τ)∇τ.

Furthermore, let φ and ψ be two real-valued, nonnegative, convex, and submultiplica-
tive functions defined on R+ = [0,∞)R . Then for s1, t1 ∈ T with s1, t1 � t0 we
have

∫ s1

t0

∫ t1

t0

φ(A(s))ψ(B(t))
s+t−2t0

∇t∇s � M(s1, t1)

(∫ s1

t0

(s1−ρ(s))
(

p(s)φ
[
a(s)
p(s)

])2

∇s

)1/2

×
(∫ t1

t0

(t1−ρ(t))
(

q(t)ψ
[
b(t)
q(t)

])2

∇t

)1/2

, (3.8)
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where

M(s1, t1) =
1
2

(∫ s1

t0

[
φ(P(s))

P(s)

]2

∇s

)1/2(∫ t1

t0

[
ψ(Q(t))

Q(t)

]2

∇t

)1/2

. (3.9)

Proof. From the hypotheses, Jensen’s inequality [7, Theorem 6.17], and the
Cauchy-Schwarz inequality [7, Theorem 6.15]

φ(A(s))
hypoth
= φ

(
P(s)

∫ s
t0

p(τ)a(τ)/p(τ)∇τ∫ s
t0

p(τ)∇τ

)

submult
� φ(P(s))φ

(∫ s
t0

p(τ)a(τ)/p(τ)∇τ∫ s
t0

p(τ)∇τ

)

Jensen’s
� φ(P(s))

P(s)

∫ s

t0

p(τ)φ
[
a(τ)
p(τ)

]
∇τ

C-S ineq
� φ(P(s))

P(s)
(s − t0)1/2

{∫ s

t0

(
p(τ)φ

[
a(τ)
p(τ)

])2

∇τ

}1/2

. (3.10)

In a similar way, we likewise obtain

ψ(B(t)) � ψ(Q(t))
Q(t)

(t − t0)1/2

{∫ t

t0

(
q(η)ψ

[
b(η)
q(η)

])2

∇η

}1/2

. (3.11)

From (3.10) and (3.11) and the fact that (xy)1/2 � 1
2 (x + y) for any real numbers

x, y � 0 we observe that

φ(A(s))ψ(B(t)) � 1
2
(s+t−2t0)

⎛
⎝φ(P(s))

P(s)

{∫ s

t0

(
p(τ)φ

[
a(τ)
p(τ)

])2

∇τ

}1/2
⎞
⎠

×
⎛
⎝ψ(Q(t))

Q(t)

{∫ t

t0

(
q(η)ψ

[
b(η)
q(η)

])2

∇η

}1/2
⎞
⎠ . (3.12)

Dividing both sides by s + t − 2t0 , nabla integrating over t from t0 to t1 and over s
from t0 to s1 , and using the Cauchy-Schwarz inequality again we get
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∫ s1

t0

∫ t1

t0

φ(A(s))ψ(B(t))
s + t − 2t0

∇t∇s

� 1
2

∫ s1

t0

⎛
⎝φ(P(s))

P(s)

{∫ s

t0

(
p(τ)φ

[
a(τ)
p(τ)

])2

∇τ

}1/2
⎞
⎠∇s

×
∫ t1

t0

⎛
⎝ψ(Q(t))

Q(t)

{∫ t

t0

(
q(η)ψ

[
b(η)
q(η)

])2

∇η

}1/2
⎞
⎠∇t

C-S ineq
� 1

2

{∫ s1

t0

(
φ(P(s))

P(s)

)2

∇s

}1/2{∫ s1

t0

∫ s

t0

(
p(τ)φ

[
a(τ)
p(τ)

])2

∇τ∇s

}1/2

×
{∫ t1

t0

(
ψ(Q(t))

Q(t)

)2

∇t

}1/2{∫ t1

t0

∫ t

t0

(
q(η)ψ

[
b(η)
q(η)

])2

∇η∇t

}1/2

.

Recall from the notation from (3.9); in the right-hand side of the previous expression
we interchange the order of integration as in (3.3) from Lemma 3.2 to get that

∫ s1

t0

∫ t1

t0

φ(A(s))ψ(B(t))
s + t − 2t0

∇t∇s � M(s1, t1)

{∫ s1

t0

(s1−ρ(s))
(

p(s)φ
[
a(s)
p(s)

])2

∇s

}1/2

×
{∫ t1

t0

(t1−ρ(t))
(

q(t)ψ
[
b(t)
q(t)

])2

∇t

}1/2

.

This is (3.8), so this completes the proof. �
The next two theorems deal with minor variants of the inequality given in Theo-

rem 3.5.

THEOREM 3.6. Let a, b : T → R be as in Theorem 3.3 , and define for s, t, t0 ∈ T

with s, t � t0

A(s) =
1

s − t0

∫ s

t0

a(τ)∇τ, B(t) =
1

t − t0

∫ t

t0

b(η)∇η.

Furthermore, let φ and ψ be two real-valued, nonnegative, and convex functions
defined on R+ = [0,∞)R . Then for s1, t1 ∈ T with s1, t1 � t0 we have∫ s1

t0

∫ t1

t0

(s − t0)(t − t0)
s + t − 2t0

φ(A(s))ψ(B(t))∇t∇s

� 1
2

(
(s1 − t0)

∫ s1

t0

(s1 − ρ(s)) (φ [a(s)])2 ∇s

)1/2

×
(

(t1 − t0)
∫ t1

t0

(t1 − ρ(t)) (ψ [b(t)])2 ∇t

)1/2

.
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Proof. Using the hypotheses and Jensen’s inequality, Theorem 3.4, we see that

φ(A(s))
hypoth
= φ

(
1

s − t0

∫ s

t0

a(τ)∇τ
)

Jensen’s
� 1

s − t0

∫ s

t0

φ [a(τ)]∇τ

C-S ineq
� (s − t0)1/2

s − t0

{∫ s

t0

(φ [a(τ)])2 ∇τ
}1/2

.

In a similar way, we likewise obtain

ψ(B(t)) � (t − t0)1/2

t − t0

{∫ t

t0

(ψ [b(η)])2 ∇η
}1/2

.

The rest of the proof can be completed by following the same procedure employed in
the proofs of Theorems 3.4 and 3.6, respectively, making suitable adjustments along the
way; we omit the details. �

THEOREM 3.7. Let a, b, p, q, P, Q be as in Theorem 3.5 , and define for s, t, t0 ∈ T

with s, t � t0

A(s) =
1

P(s)

∫ s

t0

p(τ)a(τ)∇τ, B(t) =
1

Q(t)

∫ t

t0

q(η)b(η)∇η.

Furthermore, let φ and ψ be defined as in Theorem 3.6 . Then for s1, t1 ∈ T with
s1, t1 � t0 we have∫ s1

t0

∫ t1

t0

P(s)Q(t)φ(A(s))ψ(B(t))
s + t − 2t0

∇t∇s

� 1
2

(
(s1 − t0)

∫ s1

t0

(s1 − ρ(s)) (p(s)φ [a(s)])2 ∇s

)1/2

×
(

(t1 − t0)
∫ t1

t0

(t1 − ρ(t)) (q(t)ψ [b(t)])2 ∇t

)1/2

.

Proof. Using the hypotheses and Jensen’s inequality, Theorem 3.4, we see that

φ(A(s))
hypoth
= φ

(
1

P(s)

∫ s

t0

p(τ)a(τ)∇τ
)

Jensen’s
� 1

P(s)

∫ s

t0

p(τ)φ [a(τ)]∇τ

C-S ineq
� (s − t0)1/2

P(s)

{∫ s

t0

(p(τ)φ [a(τ)])2 ∇τ
}1/2

.

In a similar way, we likewise obtain

ψ(B(t)) � (t − t0)1/2

Q(t)

{∫ t

t0

(q(η)ψ [b(η)])2 ∇η
}1/2

.

As before, the rest of the proof can be completed by following the same procedure em-
ployed in the proofs of Theorems 3.4 and 3.6, respectively, making suitable adjustments
along the way; we omit the details. �
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REMARK 5. Established over arbitrary time scales, including the special cases
of T = Z and T = R , Theorem 3.5 unifies and extends [15, Theorem 2] and [15,
Theorem 6]. Likewise Theorems 3.6 and 3.7 combine and generalize under one theory
the previously distinct results [15, Theorem 3] and [15, Theorem 7], and [15, Theorem
4] and [15, Theorem 8], respectively.
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[13] J. NÉMETH, Generalizations of the Hardy-Littlewood inequality, Acta Sci. Math. (Szeged), 32 (1971)
295–299.

[14] B. G. PACHPATTE, Inequalities applicable in the theory of finite difference equations, J. Math. Anal.
Appl., 222:2 (1998) 438–459.

[15] B. G. PACHPATTE, On some new inequalities similar to Hilbert’s inequality, J. Math. Anal. Appl., 226
(1998) 166–179.

[16] B. G. PACHPATTE, On nonlinear finite difference inequalities in two independent variables, Tamkang J.
Math., 33 (2002) 57–66.

[17] B. G. PACHPATTE, Inequalities for Finite Difference Equations, Marcel Dekker, New York (2002).
[18] W. RUDIN, Real and Complex Analysis, McGraw-Hill, New York (1966).

(Received July 12, 2007) Douglas R. Anderson
Concordia College

Department of Mathematics and Computer Science
Moorhead, MN 56562

USA
e-mail: andersod@cord.edu

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


