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Abstract. This paper considers the class of s -convex stochastic orderings for random variables
valued in an arbitrary discrete subset of the half-positive real line. After having established
a sufficient condition of crossing-type for these orderings, explicit expressions are derived for
stochastic extrema in moment spaces. Some applications in actuarial science are discussed.

1. Introduction

Univariate stochastic orderings are partial orders defined on sets of distribution
functions. Stochastic orderings allow for many interesting applications in probability;
see, e.g., the books by SHAKED & SHANTHIKUMAR (1994) and DENUIT, DHAENE,
GOOVAERTS & KAAS (2005) for overviews. For instance, stochastic orders can be used
to compare complex models with more tractable ones which are “riskier”, leading thus
to more conservative decisions.

Stochastic orderings are defined on sets of distribution functions. In this paper, we
consider classes of random variables to favor the intuitive contents of the results (the
reader has to keep in mind that we do not compare the particular versions of the random
variables but their respective distributions). Furthermore, all the random variables will
be assumed to have a support bounded from below. Without loss of generality, these
random variables will be assumed to take non-negative values.

Consider two random variables X and Y valued in a subset S of the half-positive
real line R

+ . Many stochastic orderings, denoted here by �S
∗ , can be defined by

reference to some cone U S∗ of measurable functions f : S → R by

X �S
∗ Y ⇔ E[f (X)] � E[f (Y)] for all f ∈ U S

∗ ,

provided that the expectations exist. Orderings defined in this way are generally referred
to as integral stochastic orderings; see, e.g., DENUIT, DHAENE, GOOVAERTS & KAAS

(2005).
In the notation “�S

∗ ”, we made explicit the dependence of the integral stochastic
ordering on the support S of the random variables X and Y to be compared. This
dependence, usually ignored in the literature, can be fundamental as pointed out further.
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In fact, the structure of S may be exploited to propose more efficient orderings than
those obtained by considering all the random variables as valued in R

+ .

Considering random variables valued in R
+ , and taking for U R

+

∗ the class of the
functions f : R

+ → R with non-negative first derivative f 1/ yields the well-known
stochastic dominance �ST . Taking for U R

+

∗ the class of the functions f : R
+ → R

with non-negative second derivative f 2/ yields the convex order �CX . To generalize
the orderings �ST and �CX , DENUIT, LEFÈVRE & SHAKED (1998) introduced broad
classes of univariate orderings, named the s -convex orders. These rely on the notion
of convex functions with increasing degrees, such as introduced by POPOVICIU (1933).
The convex functions of degree s ( s being a positive integer) are well-known in
interpolation theory where they are often called convex functions with respect to the
Tchebycheff system {1, x, x2, . . . , xs−1} (see, e.g., KARLIN & NOVIKOFF (1963) as well
as KARLIN & STUDDEN (1966)). It can be shown that the convex functions of degree 1
are the non-decreasing functions while the convex functions of degree 2 are the usual
convex functions. Generally speaking, the convexity of degree s is usually characterized
through sign properties of the divided difference operator. Considering randomvariables
valued in R

+ , and taking for U R
+

∗ the class of the functions f : R
+ → R with non-

negative s th derivative ( f s/ � 0 ), yields the (continuous) s -convex order �R
+

s−cx . As
announced, the orderings with s = 1 and s = 2 reduce to �ST and �CX , respectively.

Inmany situations, the stochastic orderings used are constructed for comparing real
random variables. Classes of stochastic ordering specific to discrete random variables
have received much less attention. FISHBURN & LAVALLE (1995) and LEFÈVRE & UTEV

(1996) have introduced, independently, some classes of such stochastic orderings, in the
context of economics and biology respectively. The s -orderings among discrete random
variables valued in Dn = {0, 1, . . . , n} are defined by means of forward differences.
Recall that the forward difference operator Δ is defined for each function f : Dn → R

by Δf (i) = f (i + 1) − f (i) for all i = 0, . . . , n − 1 . The k -th forward difference
operator Δk , k = 1, 2, . . . , is defined recursively by Δkf (i) = Δk−1f (i+1)−Δk−1f (i)
for all i = 0, . . . , n−k (by convention, Δ0f ≡ f and Δ1f ≡ Δf ). Taking for U Dn∗ the
class of the functions f : Dn → R such that Δsf (i) � 0 for all i = 0, . . . , n− s yields
the �Dn

s−cx order. The �Dn
s−cx orders have been studied in details in DENUIT, LEFÈVRE

& MESFIOUI (1999) and COURTOIS, DENUIT & VAN BELLEGEM (2006).
Now, a more general situation is when the random variables take on values in an

arbitrary (rather than equidistant) ordered finite grid of non-negative points, denoted
by En = {e0, . . . , en} say. By convention, e0 < e1 < . . . < en . Stochastic orderings
specific for comparing such random variables have been proposed by DENUIT, LEFÈVRE

& UTEV (1999). The s -convex orders on an arbitrary grid are of direct interest in
various fields of applications,especially for problems of risky decision making,portfolio
selection, insurance premium evaluation and of option pricing. We will come back to
applications in Section 5. To motivate the results contained in this paper, and to
illustrate the theoretical results derived in the next sections, let us consider the discrete
claim severity distribution given in WALHIN & PARIS (1998) displayed in Table 1. This
is the distribution of the amounts of claim made to an insurance company. The first three
moments are μ1 = 31.5 , μ2 = 1401.8 and μ3 = 71879.1 . In such a case, we can use
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the continuous s -convex orders if we consider that the claim size is valued in [0, 67] .
We can also use the arithmetic s -convex orders considering the claim size as valued in
D67 = {0, 1, . . . , 67} . As it will be argued below, it is more efficient to account for the
particular form E9 = {0, 7, 12, 17, 23, 28, 39, 46, 53, 67} of the support.

Support points 0 7 12 17 21 23 28 39 46 53 67
Probability masses 0.05 0.1 0.15 0.05 0.05 0.05 0.1 0.1 0.1 0.15 0.1

Table 1. Claim Severity Distribution.
To deal with arbitrary support, we need the general approach to the s -convex

orders that uses the concept of divided differences defined as follows. Let f : S → R

and x0, x1, . . . , xs ∈ S . Starting from

[xi]f = f (xi), i = 0, . . . , s,

the s th divided differences are defined recursively by

[x0, . . . , xs]f =
[x1, . . . , xs]f − [x0, . . . , xs−1]f

xs − x0
=

s∑
i=0

f (xi)∏s
j=0;j�=i(xi − xj)

.

The order �S
s−cx can then be defined by taking for C the class of all the s -convex

function f : S → R , i.e. the functions f : S → R such that [x0, . . . , xs]f � 0 for
any x0, x1, . . . , xs ∈ S . This general approach works whatever the form of the support
S of the random variables to be compared. Note that this definition reduces to the one
in terms of derivative and forward differences given above when S is R

+ and Dn ,
respectively. Specifically, for f : Dn → R , it can be shown that

[i, i + 1, . . . , i + s]f =
Δsf (i)

s!

so that the s -convex functions on Dn are those with positive s -th forward differ-
ences. Similarly, if f : R

+ → R possesses an s th derivative then for any x0 ∈ R
+ ,

h0, h1, . . . , hk � 0

[x0, x0 + h1, . . . , x0 + hk]f =
∫ 1

ξ1=0

∫ ξ1

ξ2=0
. . .

∫ ξk−1

ξk=0
f k/(ξk(hk − hk−1) + . . .

+ ξ2(h2 − h1) + ξ1h1 + x0)dξk . . . dξ2dξ1.

Since the functions xk and −xk are both s -convex for k = 1, . . . , s−1 , whatever
S , we see that

X �S
s−cx Y ⇒ E[Xk] = E[Yk] for k = 1, . . . , s − 1. (1)

The relation �S
s−cx can therefore only be used to compare random variables with the

same first s − 1 moments. The relation �S
s−cx is thus restricted to moment spaces.

At this stage, we could wonder whether there is anything to gain by considering the
specific form of the support of the random variables to be compared (instead of viewing
all of them valued in R

+ ). For s = 1, 2 the form of the support of the random variables
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to be compared is not relevant, in the sense that they can all be seen as valued in R
+ :

�S
1−cx⇔�R

+

1−cx⇔�ST and �S
2−cx⇔�R

+

2−cx⇔�CX for any S ⊆ R
+ . The equivalences

for s = 1 and s = 2 follows from the fact that it is always possible to continue any
non-decreasing function or any convex function on S as a functionwith the same shape
on (a larger subset of) R , using a piecewise linear function for instance. For s � 3 ,
however, this is no more necessarily true, and the structure of the support matters. For
instance, having two random variables valued in S , the implication

X �S
s−cx Y ⇒ X �T

s−cx Y

always holds true for S ⊂ T , but the reciprocal is false in general. Various coun-
terexamples can be found in DENUIT, LEFÈVRE & UTEV (1999); see also FISHBURN

& LAVALLE (1995). We thus get finer stochastic inequalities taking into account the
particular form of the support. For example, in the context of decision analysis, if the
decision-maker’s preferences agree with some s -convex ordering, when comparing two
alternatives, it is safer to consider them valued in a smaller set of outcomes rather than
in a larger one (because any such comparison can be extended to a larger set but not
reciprocally).

In this paper, we consider random variables valued in an arbitrary subset En =
{e0, e1, . . . , en} of the half positive real line. Having two random variables X and Y
valued in En , we have that X �En

s−cx Y ⇒ X �R
+

s−cx Y , and this implication is strict for
s � 3 . The order �En

s−cx studied in the present paper is thus stronger than the order
�R

+

s−cx defined and studied in DENUIT, LEFÈVRE & SHAKED (1998). We first prove that
the sufficient condition of crossing type established in DENUIT, LEFÈVRE & SHAKED

(1998) for �R
+

s−cx is also sufficient for �En
s−cx . This result is exploited in the second

part of this paper to get the extrema with respect to �En
s−cx . The paper is organized

as follows. To begin with, we give in Section 2 a new characterization of �En
s−cx . In

Section 3, a sufficient condition for �En
s−cx is obtained in terms of the number of crossing

points of the respective distribution functions. Section 4 is devoted to the construction
of the extrema with respect to �En

s−cx . Finally, Section 5 discusses some applications.

2. Characterizations of �En
s−cx

Note that it suffices to check the sign of the divided differences of order s on
consecutive points of En to prove that f : En → R is a s -convex function on En .
Indeed, for any x0, . . . , xs in En , there exist coefficients a0, . . . , an−s non-negative, of
sum 1 and independent of f such that

[x0, . . . , xs]f =
n−s∑
i=0

ai[ei, . . . , ei+s]f . (2)

Hence, f is s -convex on En if [ei, . . . , ei+s]f � 0 for i = 0, . . . , n− s . This provides
an efficient test for the s -convex property on En .

A question of practical importance is how to check the validity of �En
s−cx for a

given pair of random variables X and Y . It is indeed expensive to check whether
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E[f (X)] � E[f (Y)] holds for all the s -convex functions f : En → R . Therefore,
we would like to have a set of test functions (as small as possible). The following
characterization has been established in DENUIT, LEFÈVRE & UTEV (1999). It provides
a simple iterative procedure to check the validity of X �En

s−cx Y . Specifically, X �En
s−cx Y

holds if, and only if,
n∑

i=k

(
Pr[Y = ei] − Pr[X = ei]

)
(ei − e0) . . . (ei − ek−1) = 0 for k = 0, . . . , s − 1,

and
n∑

i=k+s

(
Pr[Y = ei] − Pr[X = ei]

)
(ei − ek+1) . . . (ei − ek+s−1) � 0 for k = 0, . . . , n − s.

For any x0 < x1 < · · · < xn fixed in En , let us consider the functions

w̃j;k ≡ w̃j;k(xj, . . . , xj+k|·) : En → R, for j = 0, 1, . . . , n − k,

which are defined by

w̃j;k(xj, . . . , xj+k|x) =
{

(x − xj) . . . (x − xj+k) if x � xj+k+1,
0 otherwise.

Then, it can be checked that

[xi, . . . , xi+k+1]w̃j;k = 0 if i � j − 1

[xi, . . . , xi+k+1]w̃j;k = 1 if i � j

[xi, . . . , xi+k+2]w̃j;k = 0 if i 
= j − 1

[xj−1, . . . , xj+k+1]w̃j;k > 0.

Henceforth, the function w̃j;k(ej, . . . , ej+k|·) : En → R ( j = 0, 1, . . . , n − k ) will be
simply denoted as w̃j;k(·) .

Let us now establish a useful characterization of �En
s−cx that extends Proposition

3.3. in DENUIT & LEFÈVRE (1997).

THEOREM 2.1. X and Y being two random variables valued in En , X �En
s−cx Y

if, and only if, the two conditions below are satisfied:

E[w̃0;k−1(X)] = E[w̃0;k−1(Y)] for k = 1, 2, . . . , s − 1,

and
E[w̃k;s−2(X)] � E[w̃k;s−2(Y)] for k = 1, 2, . . . , n − s + 1.

Proof. Let us first consider the “⇐ ”-part. Starting from the following expansion
formula for a function f : En → R :

f (ek) = f (e0) + (ek − e0)+[e0, e1]f + (ek − e0)+(ek − e1)+[e0, e1, e2]f
+ · · · + (ek − e0)+ · · · (ek − es−2)+[e0, e1, . . . , es−1]f

+
n−s+1∑

i=1

(ek − ei)+ · · · (ek − ei+s−2)+(ei+s−1 − ei−1)[ei−1, ei, . . . , ei+s−1]f



202 CINDY COURTOIS AND MICHEL DENUIT

we get

E[f (Y)] − E[f (X)] =
(

E[w̃0;0(Y)] − E[w̃0;0(X)]
)
[e0, e1]f

+
(

E[w̃0;1(Y)] − E[w̃0;1(X)]
)
[e0, e1, e2]f

+ · · · +
(

E[w̃0;s−2(Y)] − E[w̃0;s−2(X)]
)
[e0, e1, . . . , es−1]f

+
n−s+1∑

i=1

(
E[w̃i;s−2(Y)] − E[w̃i;s−2(X)]

)
[ei−1, ei, . . . , ei+s−1]f .

Therefore, E[f (Y)] − E[f (X)] is nonnegative if f is s -convex.
The “⇒ ”-part is obvious since the functions x �→ ±w̃0;k−1(x) ( k = 1, 2, . . . , s −

1 ) and x �→ w̃k;s−2(x) ( k = 1, 2, . . . , n − s + 1 ) are s -convex on En . �

3. Sufficient conditions for �En
s−cx

Let f be any real-valued function defined on a subset S of R
+ . The operator

S− , when applied to f , counts the number of sign changes of f over its domain S .
More precisely,

S−(f ) = sup S−
(
f (x1), f (x2), . . . , f (xn)

)
,

where the supremum is extended over all x1 < x2 < . . . < xn ∈ S , n is arbitrary
but finite and S−

(
y1, y2, . . . , yn

)
denotes the number of sign changes of the indicated

sequence {y1, y2, . . . , yn} , zero terms being discarded. The functions f 1 and f 2 are
said to cross each other k times if S−(f 1 − f 2) = k .

If X and Y are random variables valued in En , we say that FX � FY near en if
FX(ek) � FY(ek) for all k � k0 , with k0 � n − 1 . We show in the next result that
the crossing condition given by DENUIT, LEFÈVRE & SHAKED (1998) for �R

+

s−cx is also
sufficient for �En

s−cx .

PROPOSITION 3.1. Let X and Y be two random variables valued in En , such
that E[Xk] = E[Yk] for k = 1, . . . , s − 1 . Then S−(FX − FY) � s − 1 together with
FX � FY near en ⇒ X �En

s−cx Y .

Proof. For 1 � i, j � n , let

Ψj(i) = E[w̃i−j+1;j−2(X)] − E[w̃i−j+1;j−2(Y)].

From Theorem 2.1, we have to prove that S−(Ψs) = 0 and Ψs(k) � 0 for all k =
0, 1, . . . , n . By hypothesis, as Ψ1(k) = FY(ek−1)−FX(ek−1) , we have S−(Ψ1) � s−1
and Ψ1(k) � 0 for k � k0 ( k0 � n− 1 ). Let us now consider s = 2 . If S−(Ψ1) = 0 ,
the result is trivial; else Ψ1 exhibits opposite signs on the consecutive intervals I1 and
I2 . Then, as Ψ2(k) = −∑n

i=k(ei − ei−1)(FX −FY)(ei) =
∑n

i=k(ei− ei−1)Ψ1(i) , Ψ2 is
monotonic on each of these intervals and is negative on I2 . Consequently, Ψ2 exhibits
at most one sign change (on I1 ). Moreover, a sign change on I1 would imply that
Ψ2(0) 
= 0 which is not possible. So this yields S−(Ψ2) = 0 which suffices because
Ψ2 is negative on I2 .
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Now, let us assume that the result holds for s− 1 and let us establish it for s � 3 .
Since for a random variable X valued in En ,

E[w̃k−s+1;s−2(X)] =
{

(en − ek−1) −
∑n

i=k(ei − ei−1)FX(ei−1) for s = 2,∑n
i=k(ei − ei−s+1)E[w̃i−s+2;s−3(X)] for s � 3.

wehave the relation Ψs(k) =
∑n

i=k(ei−ei−s+1)Ψs−1(i) . Let us suppose that S−(Ψs−1) =
i � 1 , Ψs−1 exhibiting opposite signs on consecutive intervals I1, I2, . . . , Ii+1 . Then
Ψs is monotonic on each of these intervals and is negative on Ii+1 , so that Ψs exhibits
at most i sign changes, one over each Ij , j = 1, 2, . . . , i . Moreover, a sign change on
I1 would imply that Ψs(0) 
= 0 which is not possible, yielding S−(Ψs) � i− 1 . Since
S−(Ψs−1) = 0 ⇒ S−(Ψs) = 0 , we get that S−(Ψs) � max[0, S−(Ψs−1) − 1] . �

Remark that the sufficient conditions given by DENUIT & LEFÈVRE (1997) in their
Section 4 (Lemma4.2., Lemma4.3. andCorollary 4.5.) for �Dn

s−cx are easily extendable
for �En

s−cx .

4. Extrema with respect to �En
s−cx

As pointed out in (1), the s -convex orders can only be used to compare random
variables sharing the same first s − 1 moments. This means that these orders can only
be used inside moment spaces.

Let us denote as Ms(En;μ1,μ2, . . . ,μs−1) the set of all the (distribution functions
of) random variables valued in En and with prescribed first s − 1 moments μk =
E[Xk] , k = 1, . . . , s − 1 . This set is usually referred to as a moment space in the
literature. Henceforth, the moment sequence (μ1,μ2, . . . ,μs−1) is supposed to be such
that Ms(En;μ1,μ2, . . . ,μs−1) is non void. The following condition for such a space to
be non void can be found in KARLIN & STUDDEN (1966): Ms(En;μ1,μ2, . . . ,μs−1) is
non void if, and only if, the point (μ1, . . . ,μs−1) is an element of the convex hull of
{(θ, θ2, . . . , θ s−1)|θ ∈ En} . The conditions for s = 2, 3, 4 are

• s = 2 : e0 � μ1 � en ;
• s = 3 : μ2 � (e0 + en)μ1 − e0en and μ2 � (ei + ei+1)μ1 − eiei+1

( i = 0, . . . , n − 1 );
• s = 4 : μ3 � eiei+1en − (eiei+1 + eien + ei+1en)μ1 + (ei + ei+1 + en)μ2

( i = 0, . . . , n−2 ) and μ3 � e0ejej+1−(e0ej+e0ej+1+ejej+1)μ1+(e0+ej+ej+1)μ2

( j = 1, . . . , n − 1 ).
The purpose of this section is to derive extremal random variables X(s)

min and X(s)
max ,

i.e. elements of Ms(En;μ1,μ2, . . . ,μs−1) such that the stochastic inequalities

X(s)
min �En

s−cx X �En
s−cx X(s)

max for all X ∈ Ms(En;μ1,μ2, . . . ,μs−1) (3)

hold true. Such extrema are very useful in numerous applications. As we will see in
Section 5, these stochastic extrema will furnish useful numerical bounds on quantities
that are otherwise hard to compute.

The theory of discrete Tchebycheff systems, described in KARLIN & STUDDEN

(1966), may be used to solve this problem. Here, however, we will derive the extrema
from the sufficient conditions that we obtain in Section 3.
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Let us quote that the concept of extrema in some classes of random variables
with respect to a given stochastic ordering is properly said not new (see, e.g., HARRIS

(1959, 1962), ROLSKI (1976) and STOYAN (1983, Section 1.9)). It originated in the
analytic problem of moments (see, e.g., KARLIN & SHAPLEY (1953) and KARLIN AND

STUDDEN (1966)). InDENUIT, LEFÈVRE &SHAKED (1998),DENUIT &LEFÈVRE (1997),
DENUIT, LEFÈVRE & MESFIOUI (1999) and COURTOIS, DENUIT & VAN BELLEGEM

(2006) a similar problem is discussed within the classes Ms([a, b];μ1,μ2, . . . ,μs−1)
or Ms(Dn;μ1,μ2, . . . ,μs−1) of all the random variables valued in the interval [a, b] or
in the grid Dn = {0, 1, . . . , n} with prescribed first s− 1 moments. The extrema built
here are better than those obtained for Ms([e0, en];μ1,μ2, . . . ,μs−1) (since the latter
do not take into account the fact that the support of X is just En and not the whole
interval [e0, en] ).

Before stating the next property, let us mention that the results given in Propositions
3.7. and 3.8. of DENUIT, LEFÈVRE & SHAKED (1998) for �R

+

s−cx can be extended to
�En

s−cx . We have the following result.

PROPERTY 4.1. (i) The support of X(s)
max is the set{

ei ∈ En|es
i = c0 + c1 · ei + c2 · e2

i + · · · + cs−1 · es−1
i

}
(4)

where the ci ’s are real constants such that

es
i � c0 + c1 · ei + c2 · e2

i + · · · + cs−1 · es−1
i , for all ei ∈ En.

(ii) The support of X(s)
min is the set{

ei ∈ En|es
i = c0 + c1 · ei + c2 · e2

i + · · · + cs−1 · es−1
i

}
(5)

where the ci ’s are real constants such that

es
i � c0 + c1 · ei + c2 · e2

i + · · · + cs−1 · es−1
i , for all ei ∈ En.

Proof. We only prove (i) ; the proof for (ii) is similar. Let us establish the
“⇐ ”-part of (i). Let X be a random variable in Ms (En;μ1,μ2, . . . ,μs−1) , i.e. such
that

n∑
i=0

Pr[X = i]ek
i = μk , k = 0, 1, . . . , s − 1.

Assume further that the support of X is (4). Let Z be any random variable in
Ms (En;μ1,μ2, . . . ,μs−1) . We then have

E[Xs] =
n∑

i=0

Pr[X = i]es
i =

n∑
i=0

Pr[X = i]
s−1∑
k=0

cke
k
i =

s−1∑
k=0

ck

n∑
i=0

Pr[X = i]ek
i

=
s−1∑
k=0

ckμk =
s−1∑
k=0

ck

n∑
i=0

Pr[Z = i]ek
i =

n∑
i=0

Pr[Z = i]
s−1∑
k=0

cke
k
i

�
n∑

i=0

Pr[Z = i]es
i = E[Zs].
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Hence, X achieves the maximum of E[Zs] over Ms (En;μ1,μ2, . . . ,μs−1) . Since the
function xs is s -convex on En , X must be the s -convexmaximum in Ms(En;μ1,μ2, . . . ,
μs−1) .

Let us now prove the “⇒ ”-part of (i). It is obvious that E[(X(s)
max)s] � E[Zs] for

all Z in Ms (En;μ1,μ2, . . . ,μs−1) . Now, if the support of X(s)
max is not of the form (4)

then for any random variable Z in Ms (En;μ1,μ2, . . . ,μs−1) with such a support, we
have E[(X(s)

max)s] � E[Zs] , which ends the proof �
In the next section, we use the stochastic extrema with up to three moments known

(i.e. for s up to 4). This is why we derive hereafter analytic expressions for the

distribution of X(s)
min and X(s)

max for s = 1, 2, 3, 4 .
The extrema with respect to �En

1−cx in M1(En) are easily derived. Note that
M1(En) does not assign any condition on the moments. Therefore, it is obvious that

with respect to �En
1−cx , X(1)

min = e0 and X(1)
max = en almost surely. For the claim

distribution in Table 1, we thus have X(1)
min = 0 and X(1)

max = 67 almost surely. Needless
to say that these extrema only yield trivial bounds on the quantities of interest.

Let us now derive the extrema with respect to �En
2−cx in M2(En;μ1) . It is natural

to expect that the maximum with respect to �En
2−cx will concentrate all the probability

mass on the extreme points e0 and en , whereas the the minimum will concentrate all
the probability mass around the mean. This will indeed be the case, as demonstrated in
the next result.

PROPOSITION 4.2. For fixed μ1 , let ξ ∈ {0, 1, . . . , n− 1} be the integer such that
eξ < μ1 � eξ+1 . Then, with respect to �En

2−cx ,

X(2)
min =

⎧⎨⎩ eξ with probability r1 =
eξ+1−μ1

eξ+1−eξ
,

eξ+1 with probability r2 =
μ1−eξ

eξ+1−eξ
,

(6)

and

X(2)
max =

{
e0 with probability t1 = en−μ1

en−e0
,

en with probability t2 = μ1−e0

en−e0
.

(7)

Proof. The numbers r1 and r2 in (6) are probabilities since r1 + r2 = 1 and
r1, r2 � 0 by definition of eξ . Moreover, E[X(2)

min] = μ1 and it is directly seen that the

distribution function of X(2)
min and any X ∈ M2(En;μ1) intersect at most once. Thus,

applying Proposition 3.1 yields the result. The analysis for X(2)
max is similar. �

Considering the claim distribution in Table 1, we thus have

X(2)
min =

{
28 with probability 0.6818,
39 with probability 0.3182,

and

X(2)
max =

{
0 with probability 0.5299,
67 with probability 0.4701.
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It is interesting to compare these results with the extrema in M2(D67;μ1) and in
M2([0, 67];μ1) . The maximum is the same in all the cases, but the minima are

Y(2)
min =

{
31 with probability 0.5,
32 with probability 0.5,

in M2(D67;μ1) and Z(2)
min = 31.5 almost surely in M2([0, 67];μ1) . Clearly, Z(2)

min �[0,67]
2−cx

Y(2)
min �D67

2−cx X(2)
min so that taking the particular structure of the support into account im-

proves the lower bound in the 2-convex sense.
The extrema with respect to �En

3−cx in M2(En;μ1,μ2) are given in the next result.

PROPOSITION 4.3. For fixed μ1 and μ2 , let ξ1 ∈ {1, 2, . . . , n − 1} and ξ2 ∈
{0, 1, . . . , n − 2} such that eξ1 < μ2−μ1e0

μ1−e0
� eξ1+1 and eξ2 < μ1en−μ2

en−μ1
� eξ2+1 .

X(3)
min =

⎧⎪⎪⎨⎪⎪⎩
e0 with probability p1 = 1 − p2 − p3,

eξ1 with probability p2 =
−μ2+μ1(e0+eξ1+1)−e0eξ1+1

(eξ1
−e0)(eξ1+1−eξ1

) ,

eξ1+1 with probability p3 =
μ2−μ1(e0+eξ1

)+e0eξ1
(eξ1+1−e0)(eξ1+1−eξ1

) ,

(8)

and

X(3)
max =

⎧⎪⎪⎨⎪⎪⎩
eξ2

with probability q1 =
μ2−μ1(eξ2+1+en)+eξ2+1en

(eξ2+1−eξ2
)(en−eξ2

) ,

eξ2+2 with probability q2 =
−μ2+μ1(eξ2

+en)−eξ2
en

(eξ2+1−eξ2
)(en−eξ2+1)

,

en with probability q3 = 1 − q2 − q3.

(9)

Proof. Using the cut-criterion, it can be verified that the possible structure of
the supports of the 3 -convex discrete extrema takes the form

{
e0, eξ1 , eξ1+1,

}
or{

eξ2 , eξ2+1, en
}

. Property 4.1 is then used to derive the conditions on the support points
ξ1 and ξ2 so that the random variable corresponding to such support has moments μ1

and μ2 .
To that end, we just compute the polynomials p(ei) = c0 + c1ei + c2e2

i of degree
2 (i.e. c0 , c1 and c2 ∈ R ) such that X(3)

max ∈ M3 (En;μ1,μ2) (resp. X(3)
min ) is

concentrated on the set{
ei ∈ En|e3

i = c0 + c1ei + c2e
2
i

}
=

{
eξ2 , eξ2+1, en

}
(0 � ξ2 � n − 2)

resp.{
e0, eξ1 , eξ1+1

}
(1 � ξ1 < ξ1 + 1 � n − 1)

and e3
i � c0 + c1ei + c2e2

i for all i ∈ {0, 1, . . . , n} (resp. � ).
The only polynomial of degree 2 that fulfills the conditions

e3
ξ2

= c0 + c1eξ2 + c2e2
ξ2

e3
ξ2+1 = c0 + c1eξ2+1 + c2e2

ξ2+1

e3
n = c0 + c1en + c2e2

n

is

p(ei) =
(
eξ2 + eξ2+1 + en

)
e2
i −

(
eξ2eξ2+1 + eξ2en + eξ2+1en

)
ei + eξ2eξ2+1en.
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The zeros of the polynomial x3 − p(x) are of course eξ2 , eξ2+1 and en and x3 − p(x)
is always negative on En . So, as we have checked that e3

i � p(ei) on En , the random
variable with support {eξ2 , eξ2+1, en} (0 � ξ2 � n − 2) has to be X(3)

max .
The only polynomial of degree 2 that fulfills the conditions

e3
0 = c0 + c1e0 + c2e2

0
e3
ξ1

= c0 + c1eξ1 + c2e2
ξ1

e3
ξ1+1 = c0 + c1eξ1+1 + c2e2

ξ1+1

is

p(ei) =
(
e0 + eξ1 + eξ1+1

)
e2
i −

(
e0eξ1 + e0eξ1+1 + eξ1eξ1+1

)
ei + e0eξ1eξ1+1.

The zeros of the polynomial x3 − p(x) are of course e0 , eξ1 and eξ1+1 and x3 − p(x)
is always positive on En . So, as we have checked that e3

i � p(ei) on En , the random
variable with support {e0, eξ1 , eξ1+1} (1 � ξ1 � n − 1) has to be X(3)

min .
Finally, we have to fix conditions on the support points to assure the non-negativity

of their associated probabilities. The conditions on the support points of X(3)
min and X(3)

max

are respectively
0 < ξ1 < ξ1 + 1 � n
μ2 − μ1

(
eξ1 + eξ1+1

)
+ eξ1eξ1+1 � 0

μ2 − μ1
(
e0 + eξ1+1

)
+ e0eξ1+1 � 0

μ2 − μ1
(
e0 + eξ1

)
+ e0eξ1 � 0

and
0 � ξ2 < ξ2 + 1 < n
μ2 − μ1

(
eξ2+1 + en

)
+ eξ2+1en � 0

μ2 − μ1
(
eξ2

+ en
)

+ eξ2+1en � 0
μ2 − μ1

(
eξ2 + eξ2+1

)
+ eξ2eξ2+1 � 0

Moreover, because we have e2
i − (

eξ2 + eξ2+1

)
ei + eξ2eξ2+1 � 0 on En , the first

condition of the minimum and the last of the maximum are respectively always verified
and the system of conditions reduces to the one wanted. �

Considering the claim distribution in Table 1, we thus have

X(3)
min =

⎧⎨⎩
0 with probability 0.2889,
39 with probability 0.1729,
46 with probability 0.5382,

and

X(3)
max =

⎧⎨⎩
0 with probability 0.1840,
21 with probability 0.5717,
67 with probability 0.2443.

It is interesting to compare these results with the extrema in M3(D67;μ1,μ2) and in
M3([0, 67];μ1,μ2) . In M3(D67;μ1,μ2) , we have

Y(3)
min =

⎧⎨⎩
0 with probability 0.2921,
44 with probability 0.3568,
45 with probability 0.3511,
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and

Y(3)
max =

⎧⎨⎩
19 with probability 0.0271,
20 with probability 0.7277,
67 with probability 0.2453.

In M3([0, 67];μ1,μ2) , we have

Z(3)
min =

{
0 with probability 0.2922,
44.5016 with probability 0.7078,

and

Z(3)
max =

{
19.9634 with probability 0.7547,
67 with probability 0.2453.

We now have that X(3)
max �[0,67]

3−cx Y(3)
max �D67

3−cx Z(3)
max and Z(3)

min �[0,67]
3−cx Y(3)

min �D67
3−cx X(3)

min

so that we get finer extrema when the particular form of the support is exploited.
Let us now consider the case where three moments are known. The extrema with

respect to �En
4−cx in M4(En;μ1,μ2,μ3) are given in the next result.

PROPOSITION 4.4. If η1 , η2 and ζ ∈ {0, 1, . . . , n − 1} are such that 0 � η1 <

η1 + 1 < η2 < η2 + 1 � n , 0 < ζ < ζ + 1 < n and eζ < μ3−μ2(e0+en)+μ1e0en
μ2−μ1(e0+en)+e0en

� eζ+1

and define

α1 := −μ3+μ2(eη1+1+eη2+eη2+1)−μ1(eη1+1eη2+eη1+1eη2+1+eη2eη2+1)+eη1+1eη2eη2+1

α2 := μ3 − μ2(eη1 + eη2 + eη2+1) + μ1(eη1eη2 + eη1eη2+1 + eη2eη2+1) − el1eη2eη2+1

α3 := −μ3+μ2(eη1+eη1+1+eη2+1)−μ1(eη1eη1+1+eη1eη2+1+eη1+1eη2+1)+eη1eη1+1eη2+1

α4 := μ3 − μ2(eη1 + eη1+1 + eη2) + μ1(eη1eη1+1 + eη1eη2 + eη1+1eη2 ) − eη1eη1+1eη2

(10)
that are positive, then, with respect to �En

4−cx ,

X(4)
min =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
eη1 with probability v1 = α1

(eη1+1−eη1 )(eη2−eη1 )(eη2+1−eη1 ) ,

eη1+1 with probability v2 = α2
(eη1+1−eη1 )(eη2−eη1+1)(eη2+1−eη1+1)

,

eη2 with probability v3 = α3
(eη2−eη1 )(eη2−eη1+1)(eη2+1−eη2 ) ,

eη2+1 with probability v4 = α4
(eη2+1−eη1 )(eη2+1−eη1+1)(eη2+1−eη2 ) ,

(11)

and

X(4)
max =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

e0 with probability w1 = 1 − w2 − w3 − w4,

eζ with probability w2 =
μ3−μ2(e0+eζ+1+en)+μ1(e0eζ+1+e0en+eζ+1en)−e0eζ+1en

(eζ−e0)(eζ+1−eζ )(en−eζ ) ,

eζ+1 with probability w3 =
−μ3+μ2(e0+eζ+en)−μ1(e0eζ+e0en+eζ en)+e0eζ en

(eζ+1−e0)(eζ+1−eζ )(en−eζ+1)
,

en with probability w4 =
μ3−μ2(e0+eζ+eζ+1)+μ1(e0eζ+e0eζ+1+eζ eζ+1)−e0eζ eζ+1

(en−e0)(en−eζ )(en−eζ+1)
.

(12)

Proof. Using the cut-criterion, it can be verified that the possible structure of the
supports of the 4 -convex discrete extrema takes the form {eη1 , eη1+1, eη2 , eη2+1} or{
e0, eζ , eζ+1, en

}
. Property 4.1 is then used to derive the conditions on the support
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points η1,η2 and ζ so that the random variable corresponding to such support has
moments μ1,μ2 and μ3 .

To that end, we just compute the polynomials p(ei) = c0 + c1ei + c2e2
i + c3e3

i of

degree 3 (i.e. c0 , c1 , c2 and c3 ∈ R ) such that X(4)
max ∈ M4 (En;μ1,μ2,μ3) (resp.

X(4)
min ) is concentrated on the set{

i∈En:e4
i =c0+c1ei+c2e

2
i +c3e

3
i

}
=

{
e0, eζ , eζ+1, en

}
(1�ζ�n−2)

resp.

{eη1 , eη1+1, eη2 , eη2+1} (0�η1<η1+1<η2<η2+1�n)

and e4
i � c0 + c1ei + c2e2

i + c3e3
i for all i ∈ {0, 1, . . . , n} (resp. � ).

The only polynomial of degree 3 that fulfills the conditions

e4
0 = c0

e4
ζ = c0 + c1eζ + c2e2

ζ + c3e3
ζ

e4
ζ+1 = c0 + c1eζ+1 + c2e2

ζ+1 + c3e3
ζ+1

e4
n = c0 + c1en + c2e2

n + c3e3
n

is

p(ei) =
(
e0 + eζ + eζ+1 + en

)
e3
i

− (
e0eζ + e0eζ+1 + e0en + eζeζ+1 + eζen + eζ+1en

)
e2
i

+
(
e0eζeζ+1 + e0eζen + e0eζ+1en + eζeζ+1en

)
ei

−e0eζeζ+1en.

The zeros of the polynomial x4−p(x) are of course e0 , eζ , eζ+1 and en and x4−p(x)
is always negative on En . So, as we have checked that e4

i � p(ei) on En , the random

variable with support {e0, eζ , eζ+1, en} (1 � ζ � n − 2) has to be X(4)
max .

The only polynomial of degree 3 that fulfills the conditions

e4
η1

= c0 + c1eη1 + c2e2
η1

+ c3e3
η1

e4
η1+1 = c0 + c1eη1+1 + c2e2

η1+1 + c3e3
η1+1

e4
η2

= c0 + c1eη2 + c2e2
η2

+ c3e3
η2

e4
η2+1 = c0 + c1eη2+1 + c2e2

η2+1 + c3e3
η2+1

is

p(ei) = (eη1 + eη1+1 + eη2 + eη2+1) e3
i

− (eη1eη1+1 + eη1eη2 + eη1eη2+1 + eη1+1eη2 + eη1+1eη2+1 + eη2eη2+1) e2
i

+ (eη1eη1+1eη2 + eη1eη1+1eη2+1 + eη1eη2eη2+1 + eη1+1eη2eη2+1) ei

−eη1eη1+1eη2eη2+1.

The zeros of the polynomial x4 − p(x) are of course eη1 , eη1+1 , eη2 and eη2+1

and x4 −p(x) is always positive on En . So, as we have checked that e4
i � p(ei) on En ,

the random variable with support {eη1 , eη1+1, eη2 , eη2+1} (0 � η1 < η1 + 1 < η2 <

η2 + 1 � n) has to be X(4)
min .
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Finally, we have to fix conditions on the support points to assure the non-negativity
of their associated probabilities. The conditions on the support points of X(4)

max are

0 < ζ < ζ + 1 < n
−μ3 + μ2

(
eζ + eζ+1 + en

) − μ1
(
eζeζ+1 + eζen + eζ+1en

)
+ eζeζ+1en � 0

μ3 − μ2
(
e0 + eζ+1 + en

)
+ μ1

(
e0eζ+1 + e0en + eζ+1en

) − e0eζ+1en � 0
−μ3 + μ2

(
e0 + eζ + en

) − μ1
(
e0eζ + e0en + eζen

)
+ e0eζen � 0

μ3 − μ2
(
e0 + eζ + eζ+1

)
+ μ1

(
e0eζ + e0eζ+1 + eζeζ+1

) − e0eζeζ+1 � 0

and because we have
(
eζ + eζ+1 + en

)
e2
i −

(
eζeζ+1 + eζen + eζ+1en

)
ei + eζeζ+1en

� e3
i on En (cfr. 3 -convex maximum) and

(
e0 + eζ + eζ+1

)
e2
i − (

e0eζ + e0eζ+1

+eζeζ+1

)
ei + e0eζeζ+1 � e3

i on En (cfr. 3 -convex minimum), the first and the last
conditions are respectively always verified and the system of conditions reduces to

0 < ζ < ζ + 1 < n and eζ <
μ3 − μ2 (e0 + en) + μ1e0en

μ2 − μ1 (e0 + en) + e0en
� eζ+1.

The conditions on the support points of X(4)
min are given by

α1 � 0,α2 � 0,α3 � 0 and α4 � 0. (13)

�
Note that the solution {eη1 , eη1+1, eη2 , eη2+1} of (10) cannot be obtained explicitly.

In practice, each admissible pair {eη1 , eη2} of En has to be tested.
Considering the claim distribution in Table 1, we thus have

X(3)
min =

⎧⎪⎪⎨⎪⎪⎩
12 with probability 0.3918,
17 with probability 0.1607,
53 with probability 0.4225,
67 with probability 0.0250,

and

X(3)
max =

⎧⎪⎪⎨⎪⎪⎩
0 with probability 0.1821,
28 with probability 0.4660,
39 with probability 0.1830,
67 with probability 0.1689.

It is interesting to compare these results with the extrema in M4(D67;μ1,μ2,μ3) and
in M4([0, 67];μ1,μ2,μ3) . In M4(D67;μ1,μ2,μ3) , we have

Y(3)
min =

⎧⎪⎪⎨⎪⎪⎩
13 with probability 0.2894,
14 with probability 0.2683,
54 with probability 0.3463,
55 with probability 0.0960,

and

Y(3)
max =

⎧⎪⎪⎨⎪⎪⎩
0 with probability 0.1897,
31 with probability 0.5707,
32 with probability 0.0641,
67 with probability 0.1755.
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In M4([0, 67];μ1,μ2,μ3) , we have

Z(3)
min =

{
13.4722 with probability 0.5576,
54.2177 with probability 0.4424,

and

Z(3)
max =

⎧⎨⎩
0 with probability 0.1897,
31.1013 with probability 0.6348,
67 with probability 0.1755.

We now have that X(4)
max �[0,67]

4−cx Y(4)
max �D67

4−cx Z(4)
max and Z(4)

min �[0,67]
4−cx Y(4)

min �D67
4−cx X(4)

min so
that we get finer extrema when the particular form of the support is exploited.

We refer the reader to the appendix for a general procedure allowing to get the
extrema for s � 5 .

5. Applications

In this section, we derive bounds for the eventual ruin probability in the compound
Poisson risk process. In this classical model, the discrete claim amounts X1, X2, . . .
recorded by an insurance company are assumed to be independent and identically
distributed with common distribution function F , such that F(0) = 0 . The number
of claims in the time interval [0, t] is assumed to be independent of the individual
claim amounts and to form a Poisson process {N(t), t � 0} with constant rate λ .
Let also the premium rate c > 0 be such that the inequality c > λE[X1] holds (i.e.
the premium received in each period is larger than the net premium). Further, let
ψ(κ) be the ultimate ruin probability with an initial capital κ ; that is, the probability

that the process Z(t) = κ + ct − ∑N(t)
i=1 Xi , t � 0 , describing the wealth of the

insurance company, ever falls below zero. If the moment generating function of X
exists, the Lundberg’s inequality provides an exponential upper bound on ψ , namely
ψ(κ) � e−zκ , where z is the Lundberg’s adjustment coefficient satisfying the integral
equation E[ezX] = 1 + cz

λ . Remark that in storage theory,
∑N(t)

i=1 Xi can be seen as the
input process to a storage system when its content is positive. Then 1 − ψ is known
to be the limiting contents distribution. In queueing theory, 1 − ψ can be viewed as
the waiting time distribution for an M/G/1 queue with arrival rate λ and service time
distribution F .

Assume that the Xi ’s are valued in En . As the function f (x) = ezx is s -convex,

we have E[ezX(s)
min ] � E[ezX] � E[ezX(s)

max ] , with X(s)
min and X(s)

max the stochastic extremawith

respect to �En
s−cx . This provides bounds z(s)

min � z � z(s)
max on the Lundberg’s coefficient

where z(s)
min and z(s)

max are respectively the roots of the equations E[ezX(s)
max ] = 1 + cz

λ and

E[ezX(s)
min ] = 1 + cz

λ .
To illustrate our results, we use the discrete claim severity distribution given in

WALHIN & PARIS (1998) displayed in Table 1. For this special distributions, we thus
have n = 67 , μ1 = 31.5 , μ2 = 1401.8 and μ3 = 71879.1 . We take furthermore
λ = 10 and c = 400 (so that c > λμ1 ). Table 2 depicts the bounds on the Lundberg’s
coefficient in case two ( s = 3 ) or three ( s = 4 ) moments are considered. The
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bounds were computed using the continuous s -convex extrema on [0, 67] , the discrete
s -convex extrema on the equidistant support D67 = {0, 1, . . . , 67} and the discrete
s -convex extrema on the arbitrary grid E9 = {0, 7, 12, 17, 23, 28, 39, 46, 53, 67} . The
explicit expression of these extrema have been given in the preceding section. The third
method gives better results than the two other ones. The accuracy of the bounds is
remarkable.

s = 3 s = 4

z(3)
min , [0, 67] 0.00992428 0.01009877

z(3)
min , D67 0.00992431 0.01009877

z(3)
min , E9 0.00992664 0.01009981

z(3)
max , E9 0.01033457 0.01011517

z(3)
max , D67 0.01034111 0.01011622

z(3)
max , [0, 67] 0.01034132 0.01011625

Table 2. Bounds on the Lundberg’s coefficient z with c = 400 and λ = 10 .
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Appendix: Derivation of the extrema with respect to �En
s−cx in

Ms(En;μ1,μ2, . . . ,μs−1) for s � 5

The method proposed can be extended to the general case s � 5 . It is done in the
followingway. Using the cut-criterion and Property 4.1, it can be seen that the most gen-
eral form for the supports of the s -convex extrema, denoted by Supp

X(s)
min

and Supp
X(s)

max
,

are given as follows: for s = 2m , we have Supp
X(s)

min
=

{
eξ1 , eξ1+1, . . . , eξm , eξm+1

}
( e0 � eξ1 < eξ1+1 < . . . < eξm < eξm+1 � en ) and Supp

X(s)
max

=
{
e0, eζ1 , eζ1+1,

. . . , eζm−1
, eζm−1+1, en

}
(0 < eζ1 < eζ1+1 < . . . < eζm−1

< eζm−1+1 < en ) while
for s = 2m + 1 , we have Supp

X(s)
min

=
{
e0, eξ1 , eξ1+1, . . . , eξm , eξm+1

}
( e0 < eξ1 <

eξ1+1 < . . . < eξm < eξm+1 � en ) and Supp
X(s)

max
=

{
eζ1

, eζ1+1, . . . , eζm , eζm+1, en
}

( e0 � eζ1
< eζ1+1 < . . . < eζm−1

< eζm−1+1 < en ).

Then, to express the conditions on the support points so that X(s)
min and X(s)

max

have the required moments μ1,μ2, . . . ,μs−1 , we just have to compute the probabilities
associated to the support points and to check that they are positive. We get the resulting
probabilities using that
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X ∈ Ds(En;μ1,μ2, . . . ,μs−1) with SuppX =
{
ej1 , ej2 , . . . , ejk

}
⇒ Pr[X = eji ] =

E

[∏
l�=i(X − ejl)

]
∏

l�=i(eji − ejl)
(i = 0, 1, . . . , k).

The solution
(
eξ1 , . . . , eξs/2

, eζ1 , . . . , eζ(s/2)−1

)
( s even) (resp.

(
eξ1 , . . . , eξ(s−1)/2

, eζ1 ,

. . . , eζ(s−1)/2

)
( s odd)) cannot be obtained explicitly. Nevertheless, it is easily ob-

tained by testing each admissible sequence
(
eξ1 , . . . , eξs/2

, eζ1 , . . . , eζ(s/2)−1

)
(resp.(

eξ1 , . . . , eξ(s−1)/2
, eζ1 , . . . , eζ(s−1)/2

)
) of En .
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