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SOME INEQUALITIES ON STATISTICAL SUMMABILITY (C, 1)

M. MURSALEEN, ABDULLAH ALOTAIBI AND S. A. MOHIUDDINE

(communicated by H. Srivastava)

Abstract. We prove some inequalities related to the concepts of C1(st) -conservative matrices,
C1(st) - lim sup and C1(st) - lim inf which are natural analogues of (c, st ∩ l∞) -matrices,
st - lim sup and st - lim inf respectively.

1. Introduction

Let l∞ and c be the Banach spaces of bounded and convergent sequences of real
numbers with the usual supremum norm. Let A = (ank) , n, k ∈ N , be an infinite
matrix of real numbers, and let x = (xk) be a sequence of real numbers. We write
Ax = (An(x)) if An(x) =

∑
k

ankxk converges for each n . Let X and Y be any two

sequence spaces. If x ∈ X implies Ax ∈ Y , then we say that the matrix A maps X
into Y . We denote the class of all matrices A which map X into Y by (X, Y) . If
X and Y are equipped with X - lim and Y - lim , A ∈ (X, Y) and Y - limAx = X -
lim x for all x ∈ X , then we write A ∈ (X, Y)reg .

It is known that A ∈ (c, c) , that is, A is conservative if and only if

(i) ||A|| = sup
n

∑
k
|ank| < ∞ ,

(ii) ak = lim
n

ank , for each k ,

(iii) a = lim
n

∑
k

ank .

If A is conservative, the number χ = χ(A) = a−∑
k

ak is called the characteristic

of A . A is said to be regular if and only if (i), (ii) with ak = 0 for all k ; and (iii)
with a = 1 hold.

Let E ⊆ N . Natural density δ of E is defined by

δ(E) = lim
n

1
n
|{k � n : k ∈ E}|,

where the vertical bars indicate the number of elements in the enclosed set. The
sequence x = (xk) is said to be statistically convergent to L if for every ε > 0 ,
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δ{k : |xk − L| � ε} = 0 (cf. Fast [5] and Steinhauss [11]). Statistical convergence for
double sequences has been defined and studied by Mursaleen and Edely [9].
The idea of A-statistical convergence was defined by Kolk [7] and Duman et al [4] used
A-statistical convergence for approximating operators.

Recently, Moricz [8] defined the concept of statistical (C, 1) summability as fol-
lows. Let σk denote the (first) arithmetic means of a sequence x = (xk) , that is,

σk = σk(x) =
1

k + 1

k∑
j=0

xj, k = 0, 1, 2....

We say that x = (xk) is statistically summable (C, 1) to L if the sequence σ = (σk)
is statistically convergent to L , i.e. st - limσ = L . We denote by C1(st) the set of all
sequences which are statistically summable (C, 1) .

In this paper we prove some inequalities related to the concepts of C1(st) -
conservativematrices, C1(st) - lim sup and C1(st) - lim inf which are natural analogues
of (c, st∩l∞) -matrices (cf. Kolk [7] ), st - lim sup and st - lim inf respectively (cf. Fridy
and Orhan [6]). Such type of inequalities are also considered by Çoşkun and Çakan [2],
and Çakan and Altay [1].

2. Main Result

The following lemma is a consequence of Theorem 1 of Kolk [7].

LEMMA 2.1. A ∈ (c, C1(st) ∩ l∞) if and only if

sup
n

∑
k

|ank| < ∞,

C1(st)- lim
n

ank = αk for every k, and

C1(st)- lim
n

∑
k

ank = α.

We call such matrices as C1(st) -conservative matrices, and in this case

κ = α −
∑

k

αk

is defined which is known as the C1(st) - characteristic of A . This number is analogous
to the number χst defined by Çoşkun and Çakan [2].

THEOREM 2.1. Let A be conservative and x ∈ l∞ . Then

lim sup
n

∑
k

(ank − ak)xk � λ + χ
2

β(x) +
λ − χ

2
α(−x) (2.1.1)

for some constant λ � |χ| , if and only if

lim sup
n

∑
k

|ank − ak| � λ , (2.1.2)
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lim
n

∑
k∈E

|ank − ak| = 0 (2.1.3)

for every E ⊆ N with δ(E) = 0 , where β(x) = C1(st) - lim sup x and α(x) = C1(st) -
lim inf x .

Proof. Necessity. Let L(x) = lim sup x and l(x) = lim inf x . Since β(x) � L(x)
and α(−x) � −l(x) for all x ∈ l∞ , we have

lim sup
n

∑
k

(ank − ak)xk � λ + χ
2

L(x) − λ − χ
2

l(x),

and the necessity of (2.1.2) follows from Theorem 1 of Das [3]. Define the matrix
B = (bnk) by

bnk =
{

ank − ak for k ∈ E,
0 for k /∈ E.

Since A is conservative, the matrix B satisfies the conditions of Corollary 12 of Simons
[10]. Hence there exists a y ∈ l∞ such that ||y|| � 1 and

lim sup
n

∑
k

|bnk| = lim sup
n

∑
k

bnkyk. (2.1.4)

Now, let y = (yk) be defined by

yk =
{

1 for k ∈ E,
0 for k �∈ E.

So that, C1(st)- lim y = β(y) = α(y) = 0 ; and by (2.1.1) and (2.1.4) we have

lim sup
n

∑
k∈E

|ank − ak| � λ + χ
2

β(y) +
λ − χ

2
α(−y) = 0

and we get (2.1.3).
Sufficiency. Let x ∈ l∞ . Write E1 = {k : σk > β(x) + ε} and E2 = {k : σk <

α(x)− ε} . Then we have δ(E1) = δ(E2) = 0 ; and hence δ(E) = 0 for E = E1 ∩E2 .
We can write∑

k

(ank − ak)xk =
∑
k∈E

(ank − ak)xk +
∑
k �∈E

(ank − ak)+xk −
∑
k �∈E

(ank − ak)−xk,

where λ+ = max{0, λ}, λ− = max{−λ , 0}. Hence

lim sup
n

∑
k

(ank − ak)xk � lim sup
n

∑
k∈E

|ank − ak||xk| + lim sup
n

∑
k �∈E

(ank − ak)+σk

+ lim sup
n

⎡
⎣−∑

k �∈E

(ank − ak)−σk

⎤
⎦

= I1(x) + I2(x) + I3(x).
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From condition (2.1.3), we have I1(x) = 0 . Let ε > 0 , then there is a set E as
defined above such that for k �∈ E ,

α(x) − ε � σk � β(x) + ε, β(−x) − ε � −σk � α(−x) + ε. (2.1.5)

Therefore from conditions (2.1.2) and (2.1.5) and Lemma 1 of Das [3], we get

I2(x) � λ + χ
2

(β(x) + ε)

I3(x) � λ − χ
2

(α(−x) + ε).

Hence we get

lim sup
n

∑
k

(ank − ak)xk <
λ + χ

2
β(x) +

λ − χ
2

α(−x) + λ ε,

� λ + χ
2

β(x) +
λ − χ

2
α(−x),

since ε was arbitrary. This completes the proof of the theorem. �
To proveour next theorem, we need the following lemmawhich is C1(st) -analogue

of a result of Çoşkun and Çakan [2].

LEMMA 2.2. Let ||A|| < ∞ and C1(st) - lim
n

|ank| = 0 . Then there exists a y ∈ l∞
such that ||y|| � 1 and

C1(st)- lim sup
∑

k

ankyk = C1(st)- lim sup
∑

k

|ank|.

The following lemma is derived by replacing the functional st - lim by C1(st) - lim
in Lemma 2.3 of Çoşkun and Çakan [2].

LEMMA 2.3. Let A be C1(st) -conservative and λ > 0 . Then
C1(st) - lim sup

n

∑
k
|ank − αk| � λ if and only if C1(st) - lim sup

n

∑
k

(ank − αk)+ �
λ+κ

2 and C1(st) - lim sup
n

∑
k

(ank − αk)− � λ−κ
2 .

THEOREM 2.2. Let A be C1(st) -conservative. Then, for some constant λ � |κ |
and for all x ∈ l∞ ,

C1(st)- lim sup
n

∑
k

(ank − αk)xk � λ + κ
2

L(x) − λ − κ
2

l(x) (2.2.1)

if and only if

C1(st)- lim sup
n

∑
k

|ank − αk| � λ . (2.2.2)
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Proof. Necessity. If we define the matrix B = (bnk) by bnk = ank −αk for all n, k,
then, since A is C1(st) -conservative, the matrix B satisfies the hypothesis of Lemma
2.2. Hence for a y ∈ l∞ such that ||y|| � 1 we have

C1(st)- lim sup
n

∑
k

|bnk| = C1(st)- lim sup
n

∑
k

bnkyk.

Using (2.2.1), we get

C1(st)- lim sup
n

∑
k

|bnk| � λ + κ
2

L(y) − λ − κ
2

l(y)

�
(
λ + κ

2
+

λ − κ
2

)
||y||

� λ , since ||y|| � 1.

Hence (2.2.2) holds.
Sufficiency. As in Theorem 2.1, for some k0 ∈ N (k > k0), we can write∑
k

(ank − ak)xk =
∑
k�k0

(ank − ak)xk +
∑
k>k0

(ank − ak)+xk −
∑
k>k0

(ank − ak)−xk.

Since for any ε > 0 , l(x) − ε < xk < L(x) + ε ; and A is C1(st) -conservative, we get
by Lemma 2.3 that

C1(st)- lim sup
n

∑
k

(ank − αk)xk � (L(x) + ε)
(
λ + κ

2

)
−(l(x) − ε)

(
λ − κ

2

)

=
λ + κ

2
L(x) − λ − κ

2
l(x) + λ ε,

which gives (2.2.1), since ε was arbitrary.

This completes the proof of the theorem. �

THEOREM 2.3.. Let A be C1(st) -conservative. Then, for some constant λ � |κ |
and for all x ∈ l∞ ,

C1(st)- lim sup
n

∑
k

(ank − αk)xk � λ + κ
2

β(x) +
λ − κ

2
α(−x) (2.3.1)

if and only if (2.2.2) holds and

C1(st)- lim
n

∑
k∈E

| ank − αk |= 0 (2.3.2)

for every E ⊆ N with δ(E) = 0.

Proof. Necessity. Let (2.3.1) hold. Since β(x) � L(x) and α(−x) � −l(x) ,
(2.2.2) follows from Theorem 2.2. Now let us show the necessity of (2.3.2). For any
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E ⊆ N with δ(E) = 0 , let us define a matrix B = (bnk) as follows

bnk =
{

ank − αk for k ∈ E,
0 for k /∈ E.

Then, it is clear that B satisfies the conditions of Lemma 2.2 and hence there exists a
y ∈ l∞ such that ||y|| � 1 and

C1(st)- lim sup
n

∑
k

bnkyk = C1(st) - lim sup
n

∑
k

|bnk|.

Let us define the sequence y = (yk) by

yk =
{

1 for k ∈ E,
0 for k �∈ E.

Using the fact that C1(st) - lim y = β(y) = α(y) = 0 and (2.3.1), we get

C1(st)- lim sup
n

∑
k∈E

|ank − αk| � λ + κ
2

β(y) +
λ − κ

2
α(−y) = 0,

and hence we get (2.3.2).
Sufficiency. Let (2.2.2) and (2.3.2) hold and x ∈ l∞ . As in Theorem 2.1, we can

write∑
k

(ank − αk)xk =
∑
k∈E

(ank − αk)xk +
∑
k �∈E

(ank − αk)+xk −
∑
k �∈E

(ank − αk)−xk.

Using Lemma 2.3 and C1(st) -conservativeness of A , we have

C1(st)- lim sup
n

∑
k

(ank − αk)xk � λ + κ
2

β(x) +
λ − κ

2
α(−x) + λ ε.

But ε was arbitrary, so (2.3.1) holds.
This completes the proof of theorem. �
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