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CONTOUR APPROXIMATION OF DATA AND THE HARMONIC MEAN
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(communicated by A. Ben-Israel)

Abstract. A contour approximation of data is a function capturing the data points in its lower
level–sets. Desirable properties of contour approximation are posited, and shown to be satisfied
uniquely (up to a multiplicative constant) by the weighted harmonic mean of distances to the
cluster centers. This harmonic mean is the joint distance function used in probabilistic clustering,
expressing the uncertainty of classification.

1. Introduction

Consider a data set D consisting of N data points {xi : i ∈ 1, N} ⊂ R
n . We

assume that D is partitioned into K clusters, 1 < K < N , each consisting of points
close to each other. We assume that the clusters are given (in practice they need to be
computed).

For example, the data set in Fig. 1(a) consists of 200 points in two equal clusters,
each sampled from a bivariate normal distribution. The data set in Fig. 2(a) has 1100
data points in two unequal clusters. The large cluster with 1000 points is simulated
from a spherical distribution. The small cluster is a sample from a bivariate normal
distribution.

With each cluster Ck (k ∈ 1, K) we associate a center ck and a distance function
dk(· , ·) . The distances used include

dk (x, y) =
〈
x − y,Σ−1

k (x − y)
〉1/2

(Mahalanobis distance), (1)

with Σk = the covariance matrix of Ck (assumed positive definite), in particular,

dk (x, y) = ‖x − y‖ (Euclidean distance). (2)

The cluster sizes qk are assumed known.
The purpose of this paper is to study a new kind of data approximation suggested

by the joint distance function (JDF) used in probabilistic clustering, [6, 9]. The JDF,
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denoted by D(x) , is the weighted harmonic mean (up to a scalar) of the distances
dk(x, ck) from all the cluster centers ck ,

D(x) =

K∏
j=1

dj(x, cj)
qj

K∑
i=1

∏
j�=i

dj(x, cj)
qj

, (3)

in particular,

D(x) =
d1(x, c1) d2(x, c2)

q2 d1(x, c1) + q1 d2(x, c2)
, for K = 2 . (4)

The JDF approximates the data in a sense illustrated in Fig. 1(b) and Fig. 2(b). This
suggests the following definition.

DEFINITION 1. Let F : R
2K → R+ be a function of the distances dk(x, ck) and

cluster sizes qk function D : R
n → R+ , defined in terms of a function , say

D(x) = F(d1(x, c1), · · · , dK(x, cK) ; q1, · · · , qK) , (5)

is called a contour approximation of the data D if for all x ∈ R
n and k ∈ 1, K ,

D(x) � dk(x, ck) , (6)

i.e., D captures the data in its lower level–sets.

Desirable properties of contour approximation are discussed in Section 3. We see
that D(x) measures the uncertainty of classification, with low values of D(x) indicating
that it is easier to classify x .

This paper uses the quasi–linear mean that is reviewed in Section 2. The main
result is Theorem 1 in Section 3, proving that the contour approximation of data is, up
to a constant, the weighted harmonic mean of the distances to the cluster centers with
the cluster sizes as weights. This establishes the uniqueness of the JDF in (3) as the
contour approximation satisfying the desirable properties.
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(a) A data set of 200 points in R
2 (b) Level–sets of the JDF

Figure 1. Contour approximation of data, two equal clusters
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(a) 1100 data points in two unequal clusters (b) Level–sets of the JDF
Figure 2. Contour approximation of data, unequal clusters

2. The quasi–linear mean

Let f be a continuous function, mapping an interval I = [a, b ] into itself, and
strictly monotonic on I . Let r, s � 0; r + s > 0 . The quasi–linear mean of the
numbers x, y ∈ I is

F(x, y; r, s) = f

(
rf −1(x) + sf −1(y)

r + s

)
, (7)

see [1, Section 5.3.2] and references therein. The numbers x, y are called the variables
of (7), and r, s its weights. The quasi–linear mean was characterized in [1, p. 242] by
the following properties, required for all a � x, y � b and r, s � 0 with r + s > 0 .

F(x, x; r, s) = x (reflexivity) , (8a)
a = F(a, b ; 1, 0) < F(a, b ; r, s) < F(a, b ; 0, 1) = b , ∀ r, s > 0 , (8b)
F(a, b ; rt, st) = F(a, b ; r, s) , ∀ t > 0 , (8c)
F(F(x, y; r, s), F(X, Y; R, S) ; r + s, R + S) (8d)

= F(F(x, X; r, R), F(y, Y; s, S) ; r + R, s + S) , ∀ a � X, Y � b , R, S � 0 ,

F(a, b ; r, s) < F(a, b ; r, t) , ∀ s < t , (8e)
F(x, y ; r, s) < F(x, z ; r, s) , ∀ y < z . (8f)

The generator f can be expressed explicitly by F as follows

f (t) = F(a, b ; 1 − t, t) , ∀ 0 � t � 1 . (8)

REMARKS 1.
(a) From definition (7) it follows that F is continuous, and satisfies

F(x, y; r, s) = F(y, x; s, r) (symmetry) , (10a)
F(F(x, y ; r, s), z ; r + s, t) = F(x, F(y, z ; s, t) ; r, s + t) (associativity) , (10b)

which imply (8d).
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(b) The common value in (10b) is defined as the quasi–linear mean of the three
variables x, y, z :

F(x, y, z ; r, s, t) = f

(
rf −1(x) + sf −1(y) + tf −1(z)

r + s + t

)
(11)

with weights r, s, t . Definition (7) can be analogously extended to more than three
variables.

3. A contour approximation of data

Let D be a given data set in R
n with two clusters, C1 and C2 . The i th cluster

is of size qi , has a center ci and a distance function di(· , ·) , which may depend on the
cluster (in particular, the Mahalanobis distance (1) depends on the cluster covariance).

The centers c1, c2 are assumed to be distinct.
We list some desirable properties of a contour approximation of D , i.e. a function

D(x) satisfying (6). In order to relate our results to the quasi–linear means of Section 2,
we express D(x) as

D(x) =
F(d1(x, c1), d2(x, c2) ; q1, q2)

q1 + q2
, (12)

and study the function F(d1, d2 ; q1, q2) in the numerator, identifying it with the quasi–
linear mean F(x, y ; r, s) of Section 2, see Remark 3(e). It suffices to study the case of
two clusters, because the function and its properties can be extended to any number of
clusters, see Remarks 3(c)–(d) below.

The desirable properties of F include (8a)–(8f), with x = d1, y = d2, r = q1

and s = q2 . In addition we require for all d1, d2 � 0, q1, q2 � 0 such that q1 +q2 > 0
that F is differentiable and satisfies:

F(d1, d2 ; q1, q2) = 0 if and only if d1 = 0 or d2 = 0 , (13a)
F(λ d1, λ d2 ; q1, q2) = λ F(d1, d2 ; q1, q2) , ∀ λ > 0 , (13b)

F′
1(0, d2 ; q1, q2) =

q1 + q2

q1
, ∀ q1 > 0 , (13c)

F′
2(d1, 0 ; q1, q2) =

q1 + q2

q2
, ∀ q2 > 0 , (13d)

where F′
i denotes the right derivative with respect to the i th place, i = 1, 2 .

REMARKS 2.
(a) The argument di = di(x, ci) vanishes if and only if x = ci . Since the cluster

centers are distinct, both arguments d1, d2 cannot vanish. Moreover, d1 = 0 determines
a unique d2 = d2(c1, c2) , and vice versa.

(b) A cluster center belongs unambiguously to its cluster. Since F measures the
uncertainty of classification, it is reasonable to assume (13a).

(c) If d1 and d2 have a (physical) dimension of distance (say both are measured in
meters), the homogeneity in (13b)means that F(d1, d2 ; q1, q2) has the same dimension,
i.e. it is a distance.
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(d) The right derivatives are needed in (13c)–(13d), because F is defined only for
d1, d2 � 0 .

(e) The function F vanishes at the cluster centers, but its behavior near the
centers depends on the cluster size: if q1 > q2 and α > 0 , the level–set {x :
F(d1(x, c1), d2(x, c2) ; q1, q2) � α} should include more points of the larger cluster, in
other words, the graph of F is flatter near d1 = 0 then near d2 = 0 . This explains the
right hand sides of (13c)–(13d).

THEOREM 1. Properties (8a)–(8f) and (13a)–(13d) characterize the function

F(d1, d2 ; q1, q2) =
(q1 + q2) d1d2

q2d1 + q1d2
, (14)

which, if d1, d2 > 0 , is the weighted harmonic mean of d1 and d2 ,

F(d1, d2 ; q1, q2) =
q1 + q2

1
d1/q1

+
1

d2/q2

. (15)

Proof. Aczél proved that the quasi–linear mean,

F(d1, d2 ; q1, q2) = f

(
q1f −1(d1) + q2f −1(d2)

q1 + q2

)
(16)

with a suitable function f , is characterized by (8a)–(8f), see [1, p. 242]. We show that
F has the form (14), and consequently that the function f in (16) is f (t) = 1/t .

From (13a) it follows that

F(d1, d2 ; q1, q2) = d1 φ(d1, d2 ; q1, q2) = d2 ψ(d1, d2 ; q1, q2) (17)

for some functions φ , ψ that are homogenous of degree 0 by (13b), and satisfy

φ(d1, d2 ; q1, q2) =
d2

d1
ψ(d1, d2 ; q1, q2) (18)

for all d1 > 0 . Differentiating (17) we verify

F′
1(0, d2 ; q1, q2) = φ(0, d2 ; q1, q2) , F′

2(d1, 0 ; q1, q2) = ψ(d1, 0 ; q1, q2) . (19)

From (13c)–(13d), (18) and (19) it follows that

φ(d1, d2 ; q1, q2) =
(q1 + q2)d2

q2d1 + q1d2
, and ψ(d1, d2 ; q1, q2) =

(q1 + q2)d1

q2d1 + q1d2
, (20)

proving (14). �
Other properties of the function F(d1, d2 ; q1, q2) follow easily from its definition.

We list some below.
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COROLLARY 1. The function F of (14) has the following properties for all
d1, d2 � 0, q1, q2 � 0 such that q1 + q2 > 0 :

F(d1, d2 ; q1, q2) = F(d2, d1 ; q2, q1) , (21a)
F(F(d1, d2 ; q1, q2), d3 ; q1 + q2, q3) = F(d1, F(d2, d3 ; q2, q3) ; q1, q2 + q3) ,

∀ d3, q3 � 0 , (21b)

and if q1, q2 � 1 ,

F(d1, d2 ; q1, q2) � (q1 + q2) min {d1, d2} . (21c)

REMARKS 3.
(a) The symmetry relation (21a) is a rewriting of (10a). In the clustering context

it implies impartiality between clusters.
(b) The common value of (21b) defines F for the case of 3 clusters,

F(d1, d2, d3 ; q1, q2, q3) =
(q1 + q2 + q3) d1d2d3

q3d1d2 + q2d1d3 + q1d2d3
. (22)

(c) The general case is defined analogously,

F(d1, · · · , dk ; q1, · · · , qk)
:= F(F(d1, · · · , dk−1 ; q1, · · · , qk−1), dk ; q1 + · · · + qk−1, qk)

=

(
k∑

i=1
qi

)
k∏

i=1
di

k∑
i=1

qi
∏
j�=i

dj

. (23)

(d) Properties of F(d1, d2 ; q1, q2) are easily translated to the general case (23).
For example, the contour approximation D of (5) is

D(x) =
F(d1(x, c1), · · · , dK(x, cK) ; q1, · · · , qK)

q1 + q2 + · · · + qK
, (24)

in analogy with (12). The analog of (21c) is then, for all q1, · · · , qK � 1 ,

F(d1, · · · , dK ; q1, · · · , qK) � (q1 + · · · + qK) min {d1, · · · , dK}, (25)

guaranteeing the contour approximation inequality (6).
(e) Identifying F(x, y ; r, s) of (7) with F(d1, d2 ; q1, q2) of (14), we note that the

weights r, s are only required to be nonnegative with r + s > 0 , while the cluster sizes
q1, q2 are positive, and q1, q2 � 1 is required in (21c).
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4. Discussion

(a) Some clustering methods use all pairwise distances between data points, not
just distances to the cluster centers. These pairwise distances form a distance matrix,
one for each data point. The matrix analog of the harmonic mean is the parallel sum,
see, e.g., [2], [3], [4], [8], [10] and [11]. An analogous theory of contour approximation
can be developed using the parallel sum of the distance matrices, but the computations
involved are complicated.

(b) Harmonic means play an important role in ecology. The home ranges (areas
of activity) of animals are based on the harmonic mean of areal moments in much the
same way, and for similar reasons that contour approximation uses the harmonic mean
of distances, see, e.g., [7].

(c) A unified optimization framework for distance clustering, employing quasi–
linear means and other functions of distances, is given in [12].

Acknowledgement. Thanks to Dr. Cem Iyigun for the graphics of Figs. 1–2, and
permission to use them.
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